Cyber-Physical Systems

Laura Nenzi

Universita degli Studi di Trieste
| Semestre 2024

Lecture 14-15: STL applications: testing and falsification,
parameter synthesis

[Many Slides due to J. Deshmukh, S. Silvetti]

Terminology

e Syntax: A set of syntactic rules that allow us to construct formulas from
specific ground terms

* Semantics: A set of rules that assign meanings to well-formed formulas
obtained by using above syntactic rules

* Model-checking/Verification: M E ¢ < Vx € trace(M) s(¢,x,0) =1
* Monitoring: computing s for a single trace x € trace(M)

« Statistical Model Checking: “doing statistics” on s(¢, X, 0) for a finite-
subset of trace(M)

STL Monitor

An STL monitor is a transducer that transforms x into Boolean or a quantitative signal

STL Monitor

Formula ¢

_ === Quant. sat
......|==Bool. sat |.

e

0.5

1

1.5

2

2.5

3

3.5

4

Parametric Chemical Reaction Network (PCRN)

Population CTMC models, i.e. CTMC models in the biochemical reactions style.

———————————— —————————————— —_—
EET OF SPECIES

S ={S5,,...,5,}, i.e. the different agent states.]

——1
STATE SPACE

The state space is described by a vector of n variables

X = (Xsl, ""XSn) € N,
each counting the number of agents (jobs, molecules, ...) of a given kind.J

r R R—— — R ——— S —— l'__‘—__-'__ﬂ

TRANSITIONS
The dynamics is given by a set of chemical reactions:

mS,+...+m,S, > nrS; +...+r,S,

!
ith a rate gi functi

| with a rate given by a function f(x,).

Example: SIR epidemic model

susceptible

infected . .
ecovered

infection: ¢4 1 9 [i(X,0) = ki XsX;
recover: [— R (X, 0) =k.X;
loss of immunity: R - S £(X,0) = kXg

Statevector: X = (Xg, X;, Xg) M H

Vector of parameters: 0 = (ki k., k)

Example: SIRS epidemic model

90 .

80 -

70 -

individuals
N w NN (é)] (e)]
o o o o o

—_
o

o

time

80

100

Stochastic Semantics

SATISFACTION PROBABILITY(Boolean Semantics)

P(p) = P{I,(X) = 1}: = P{X € Path™|X(%,0,¢) = 1}

where ICD(X) is a Bernoulli random variable J

AVERAGE ROBUSTNESS(Quantitative Semantics)

P{R,(X) € [a,b]}: = P{X € Path™|p(%,0, ¢) € [a,b]}

where R¢(X) in a measurable function J

Statistical Model Checking (SMC)

The probability satisfaction can be estimated as an average of the truth
values 7 of the formula ¢ over many sample trajectories.

¥

|

model

SIMULATOR

Trace 1

e

Trace 2

Trace n

IR

— p(p)

Average robustness degree

Robustness Distribution

P (Ry(X) € [a b]) =P (Xe{xeD|p(p,Xx,0)c[ab]})

individuals

—%O -10 0 10 20
robustness degree
Indicators
E(Ry) (the average robustness degree)
E(R, | R,>0) and E(R,|R,<0) (the conditional averages)

F Y s .

Specification Natural Language

Safety (O[o,919) ¢ should always hold from time 0 to 6.

Liveness (O[g,9]¢) ¢ should hold at some point from 0 to 6 (or now).

Coverage ¢1 through ¢, should hold at some point in the future
(CPp1 ASPa ... AOy) (or now), not necessarily in order or at the same time.

Stabilization (¢O¢) At some point in the future (or now), ¢ should always
hold.

Recurrence (O0OG¢) At every point in time, ¢ should hold at some point in
the future (or now).

Reactive Response At every point in time, if ¢ holds then ¢ should hold.
(Olg — ¥))

10

The many uses of STL and its quantitative semantics

Requirement-based testing for closed-loop control models
Falsification Analysis

Parameter Synthesis

Mining Specifications/Requirements from Models

Online Monitoring

Testing and falsification

Exam

Inputs:

Throttle

Brake

Inputs

[Continuous Dynamics]

4 Iﬁeﬂer
- Ne

Torque

-

—

&

gear

ineRPM

)

CALC_TH()

ShifiLogic

¥

\

runf}

I TITEST oA~ UL THON

T

L

e

gear

Outputs

Outputs:

Tout
Nout g

i
> s
- .
gL R - 3
» "
s il Ll i
L
-2 £ »

.,_‘.“ . # L]
. . 7.

)

TransmissionRPM

VehicleSpeed

RPM

Gear

Speed

Simulink model of a Car Automatic Gear Transmission Systems

Black Box Assumption

RPM

» Gear

Throttle ~*
/

Brake

N

Speed

Black Box Assumption

For simplicity, consider the composed plant model, controller and communication to be a
model M that is excited by an input signal u(t) and produces some output signal y(t)

130

(t)

u(t)l m=1 = —

0

Automatic Transmission

Natural Language

MTL

Al The engine speed never reaches w. O(w < @)
The engine and the vehicle speed _ _
2 never reich w and v, resp. ’ Bllw <@) A (v <))
There should be no transition from
4T gear two to gear one and back to | O((g2 A Xg1) = O(0,2.5792)
gear two in less than 2.5 sec.
After shifting into gear one, there
AT should be no shift from gear one to | O((—g1 A Xg1) = O(0,2.5/91)
any other gear within 2.5 sec.
When shifting into any gear, there
AT should be no shift from that gear to | Aj_;0((—g; A Xgi) — O(0,2.5/9:)
any other gear within 2.5sec.
If engine speed is always less than @,
AT then vehicle speed can not exceed v | (o (v > 7) A D(w < @))
in less than 7T sec.
Within T sec the vehicle speed is
AT above ¥ and from that point on the | o 7((v > 9) A B(w < @))
engine speed is always less than @.
A gear increase from first to fourth
in under 10secs, ending in an RPM | ((g1 U g2 U g3 U g4) A <po,10)(94 A
Q4T above W within 2 seconds of that, | O o(w > @))) = <p10(92 —

should result in a wvehicle speed
above .

X (g4 Uy 1) (v >)))

Challenges with real-world systems

If plant model, software and communication is simple (e.g. linear models),
then we can do formal analysis

Most real-world examples have very complex plants, controllers and
communication!

Verification problem, in the most general case is undecidable

it is proved to be impossible to construct an algorithm that always leads to
a correct yes-or-no answer to the problem

Verification vs. Testing

For simplicity, u is a function from T to R™; let the set of all possible
functions representing input signals be U

Verification Problem:

Prove the following: Vu € U: (y = M(u)) E ¢(u,y)
Falsification/Testing Problem:

Find a witness to the query: 3u € U : (y = M(u)) ~ o(u,y)

These formulations are quite general, as we can include the following
“model uncertainties” as input signals: Initial states, tunable parameters in
both plant and controller, time-varying parameter values, noise, etc.,

Falsification/Testing

Falsification Engine

Falsification by optimization

Minimize
0 robustness

Compute
Robustness

Use robustness as a cost function to minimize with Black-box/Global Optimizers

Falsification/Testing

Falsification or testing attempts to find one or more u signals such that
—@(u, M(u)) is true.

In verification, the set T (the time domain) could be unbounded, in falsification or
testing, the time domain is necessarily bounded, i.e. T < [0, T], where T is some
finite numeric constant

In verification the co-domain of u, could be an unbounded subset of R™, in
falsification, we typically consider some compact subset of R™

For the it" input signal component, let D; denote its compact co-domain. Then
the input signalu: T-> Dy X ---X D,,, where T € [0, T]

In simple words: input signals range over bounded intervals and over a bounded
time horizon

Falsification CPS
®

: [| : . :
I [I | — : |
o> |- B —0
: Model | | N : Huﬁiﬁ:ﬁeﬁg : END
RN : :
Goal:
Find the inputs (1) which falsify the requirements (4)
Problems:

* Falsify with a low number of simulations
e Functional Input Space

Active Learning
Adaptive Parameterization

Falsification re-framed

Given:
Set of all such input signals : U
Input signalu :T — D; X --- X D,,, where T € [0,T], D; € R compact set

ModelM st. M(u) =y, y:T - R"
M maps u to some signal y with the same domain as u, and co-domain
some subset of R"

Property @ that can be evaluated to true/false over given uandy

Check: Ju € U : (y = M(u)) F—p(u,y)

Input/Output Properties for Closed-loop Models

Properties/Specifications/Requirements are rarely monolithic formulas

e(u,y)
Typically specified as a pair: a pre-condition ¢; on the inputs, and a post-
condition @, on the outputs

Verification problem then stated as:

Prove that: Vu € U: (u E ¢;) A (y = M(u)) = (Y E ¢p)
Testing problem stated as:

Find u such that (u @) A (y = M(u)) A (y ¥ ¢0)

Input Properties/Pre-conditions

Common practice in control theory to excite closed-loop models with input
signals of certain special shapes

Motivation comes from theory of linear systems, where a step-response or
impulse-response are enough to characterize all behaviors of the system

Such special shapes do not provide comprehensive information for

nonlinear closed-loop systems, yet, it is still common to excite these systems
with a few common patterns

Frequently, input signal patterns come from engineering insights or
application-specific domain expertise

Common input patterns used for testing

A A A _
u Step u Impulse u Multiple Steps
| >
> . > -
t
A A , A _
u Ramp u Pulse Train u | Sinusoid
. .
t ; >

Testing in practice

Each time-point in a sighal is an independent dimension, i.e. the signal can
change arbitrarily at each time-point in the signal

Number of independent domains is infinite (e.g. consider a signal defined
over rational time-points)

Typical testing approach is to find a test-suite: This is a finite number of test
input signals (satisfying ¢;) and then obtain output behaviors using these
signals as test inputs.

If each corresponding output signal satisfies the output property ¢, then
testing concludes, indicating that the model is correct for the given test-
suite (i.e. no output in the test-suite satisfies @).

Signhal Generation

Find a signal generator for the property @,

Function that uses random-ness to generate an input signal that satisfies
@; (hopefully, an input signal different from previously generated ones!)
Signal generation usually relies on defining a finite parameterization for the

input signal
For the chosen class of signals, find parameters that define the shape
Define acceptable ranges for the parameters

Define a generation function that takes the parameter values as inputs and
generates an input signal

Finite Parameterization

.....................

RPM
B
Velocity

Fixed Times ‘

29

N Control points

!

N variable

Finite parameterization using control points

Finite Parameterization of u(t):

Po lfto <t< tl
U,(t) =< P1 lftl <t< tz
|%) lftz <t< t3

\

We can view this as values of u
are picked for (fixed) time
points (determined a priori),
and then u(t) is generated
using constant interpolation

Acceptable ranges on

parameters (control points)

U A
hl 1 1
bo
N
Control
m_
_ O/ \
tO | tl : tz
P2
- C
Pt

s P1
(4, h,£)
® (©)
g @
(h, h, h)
()
) ®) pO‘
7 & 4,%) (h,%,0)
® @

Finite parameterization using control points

Finite Parameterization of u(t):

Po lfto <t< tl
U,(t) =< P1 lftl <t< tz
|%) lftz <t< t3

\

We can view this as values of u
are picked for (fixed) time
points (determined a priori),
and then u(t) is generated
using constant interpolation

Acceptable ranges on

parameters (control points)

U A
hl 1 1
bo
N
Control
m_
_ O/ \
tO | tl : tz
P2
- C
Pt

s P1
(4, h,£)
® (©)
g @
(h, h, h)
()
) ®) pO‘
7 & 4,%) (h,%,0)
® @

Finite parameterization using linear interpolation

Uy P = {po, p1, P2, p3}
" | | Range(P)
ange =
Finite Par(ameterization of u(t): \ [£,h] x [£,h] x [€,h] x [£,h]
P1— Do . Po ? ?
+ (t —ty) - ifty<t<t 3 .
Po+(0) ti—tg ! N Control points
u(t) = 4 py + (E = t)) P27 PN ift, <t <t, ‘ Acceptable ranges
th— 44 on parameters
D> + (t —_ tZ) . 223 fz iftz <t< ts (Control pomts)
3~ 12 i
2 3
We can view this as values of u are 3 Ps m
picked for (fixed) time points (determined 5
a priori), and then u(t) is generated p, l
using linear interpolation
{/

Finite parameterization using interpolation

Linear

Spline

40

20

40

20

@)
0 5 10 15 20

A =120, 40, 10, 40, 10]

40 |

20

0 S 10 15 20
SO
0 3] 10 15 20

(d)

t=10, 5, 10, 15, 20]

Piecewise constant

Piecewise cubic interpolation

Finite parameterizati

Finite Parameterization of u(t):

Po lfto < t<t0+dt0
P1 lftl < t<t1+dt1

u(t) =

We can view this as values of u
and time increments in u are
both picked, and then u(t) is
generated using constant
interpolation

u A
h1
Po
L
Control points
to T
‘ O
Acceptable
ranges on time
£1 increments

t

on variable control point times

\ Acceptable
ranges on

parameter
values

P = {po, p1, P2, dty, dtq}

Range(P) =
[£,h] X [£,h] x [£,h] X
[0, Th] X [T, T1]

Signhal Generator

Sample
Generate
Range(P) = [£;, h;]'P! Parameter Signal _QA

Space t

Signal Generation controlled by the testing algorithm

Parameter space could be sampled all at once

Parameter space could be sampled in a sequential fashion, e.g. using a method such as Markov Chain
Monte Carlo

Sampling scheme could be application-specific: uniform random, quasi-random (more evenly spread
out), truncated normal, grid-based sampling (points from a fixed grid), etc.

Black-box Optimization

——

Cost function
C(u, M(uw))

Black-box

Optimizer

Given:

Function M: U = Y with unknown
symbolic representation

Ability to query the value of M at any
given u; query will return some y

Cost function C: X XY - R
Objective of black-box optimizer
Let x* = minC(x, f(x))
x€X
Find X such that ||X — x™|| is small

Let X; be the best answer found by
optimizer in its it" iteration

Ideally, lim|| X; —x*|| =0
1l—> 00

Falsification using Optimization

V'S

y(®)

u(t) |
] : —l_. — :
e e | >

Parameter Space

HALT

Step-by-step of how falsification works

Given: a finite parameterization for input signals, a model that can be
simulated and an STL property
While the number of allowed iterations is not exhausted do:
pick values for the signal parameters
generate an input signal
run simulation with generated input signal to get output signal
compute robustness value of given property w.r.t. the input/output signals
if robustness value is negative, HALT

pick a new set of values for the signal parameters based on certain
heuristics

Picking new parameter values to explore

Pick random sampling as a (not very good) strategy!

Basic method: locally approximate the gradient of the function IE locally, and chose the
direction)of steepest descent (greedy heuristic to take you quickly close to a local
optimum

Challenge 1: cost surface may not be convex, thus you could have many local optima

Challenge 2: cost surface may be highly nonlinear and even discontinuous, using just
gradient-based methods may not work well

Heuristics rely on:
combining gradient-based methods with perturbing the search strategy (e.g. simulated
annealing, stochastic local search with random restarts)
evolutionary strategies: Covariance Matrix Adaptation Evolution Strategy (CMA-ES),
genetic algorithms etc.
probabilistic techniques: Ant Colony Optimization, Cross-Entropy optimization, Bayesian
optimization

Inputs:

Throttle

Brake

Model

Inputs

In1

[Continuous Dynamics]

ellerforque

™

Ti
| Throttie

|

Ne
ne

EJginenPu
> e

)

.. Engi

—

Ti

Outputs:

7— Outputs

(o)

(speed
e ,LD&C gear | gear
- down_tn ‘“‘“T””h Nout
ShiftLogic -

-~

gear
up_th throttie
V]]

RPM

Gear

Speed

Model

Throttle

Brake

RPM

Gear

Speed

Black Box Assumption

v Throttle \

N

RPM

Gear

Brake /

<

Speed

Less information
A more general Approach (interesting for industries)

Falsification of CPS

Goal:
Find the inputs (1) which falsify the requirements (4)
Problems:
* Falsify with a low number of simulations ‘ Active Learning

e Functional Input Space - Adaptive Parameterization

(Gaussian Processes

Definition

f~GPmk) == (f(t), f(t), ... f(t)) ~ N(m,K)

wherem = (m(ty), m(ty),...,m(t,)) is the vector mean

K € R™™ is the covariance matrix, such that K;; = k(f(t;), f(t;))

20

Prediction 1l flz) = sin(x)

* QObservations

'| — Prediction
Il 95% confidence interval

flz)

Gaussian Process Regression

Gaussian Processes can be used for Bayesian prediction and classification tasks.

Idea: put a GP prior on functions; condition on observed data (training set) (xl-, yl-);
we compute a posterior distribution on functions; make predictions.

Latent function: r, GP ; Noise model: p(y;|f (x;))

e e . X
Prediction (latent function f ™ at X) i r—
* Observations

p(F*]y) o f dFO)P(F, FONPYIF)) [l oo e s

Under Gaussian noise y(X) = f(x) +&, &~ N(0,02) =
predictions have an analytic expression.

E] v R ARR))

£ X,y, X« N(f'*, cov(f,,,)), where
f. £ E[f.|X,y,X.] = K(X,,X)[K(X,X)+ 021"y,

cov(f,) = K(X,, X.) — K(X., X)[K(X,X) + 021] ' K(X, X.)

> 2

Domain Estimation Problem

Finding the trajectories which falsify the requirements, finding u € B

B={uecU|p(p,u0)<0}cU

» Training Set: K= {u;, p(¢,u;,0))},<,, (the partial knowledge after n iterations)

» Gaussian Process: px(u)~ GP(mg(u), ox(u)) (the partial model)
O —
P(pi() < 0) = CDF (1

Idea: implementing an iterative sample strategy in order to increase the probability to
sample a point in B, as the number of iterations increases.

Domain Estimation Algorithm (DEA)

B= {ueU|p(M(u),$)< 0}

Domain Estimation Algorithm (DEA)

Domain Estimation Algorithm (DEA)

O
o
Uz
Sample a new point
accordingly to:
0 — my(u) ®
P < 0) =CDF
(px (W)) (o (10)) O

Domain Estimation Algorithm (DEA)

o
Uz
Sample a new point
accordingly to:
0 — my (u) ¢
P < 0) =CDF
(px (W)) (o (10))

Domain Estimation Algorithm (DEA)

O
®
Uz
Sample a new point
accordingly to:
0 — my(w) ®
P < 0) =CDF
(px (W)) (o (10)) O

Domain Estimation Algorithm (DEA)

O
¢
Uz
Sample a new point
accordingly to:
0 — my(w) ®
P < 0) =CDF
(px (W)) (o (1)) O

Domain Estimation Algorithm (DEA)

O
¢
Uz
Sample a new point
accordingly to:
0 — my(u) o
P < 0) =CDF
(px (W)) (o (1)) O

Domain Estimation Algorithm (DEA)

O
®
Uz
Sample a new point
accordingly to:
0 — my(w) ®
P < 0) =CDF
(px (W)) (o (10)) O

Domain Estimation Algorithm (DEA)

°
Uz
Sample a new point
accordingly to:
0 — my(w) ®
P < 0) =CDF
(px (W)) (o (10)) O

Domain Estimation Algorithm (DEA)

®
Uz
Sample a new point
accordingly to:
0 — my(w) ®
P < 0) =CDF
(px (W)) (o (10)) O

Domain Estimation Algorithm (DEA)

o
Uz
Sample a new point
accordingly to:
0 — my (u) ¢
P < 0) =CDF
(px (W)) (o (1)) O

Domain Estimation Problem

Finding the trajectories which falsify the requirements, finding u € B

B={ueU|p(p,u,0)<0}cU

We call B the counterexample set and its elements counterexamples

If B is empty then p(¢p,u,0) =0

Solving the domain estimation problem could be extremely difficult because of the infinite
dimensionality of the input space, which is a space of functions

Finite Parameterization

.....................

RPM
B
Velocity

Fixed Times ‘

60

N Control points

!

N variable

Domain Estimation Problem

Finding the trajectories which falsify the requirements, finding ¢ € B
B={¢eU, x X Un, | (¢, Pa(6),0)) < 0}
Where ¢, = {(tf, U5), (th o Uiy,)} and By = (Poyy s Byyyy))

Piecewise linear or polynomial functions are known to be dense in the space of
continuous functions!

Then, B has at least one element &= 3n € w!U!, B has at least one element.

Adaptive Parameterization

.....................

RPM
Velocity

"]

. N Control points
.| l
1 Ii []
1Y 2N variable
| Ly
\ Adaptive Times

62

Tests Case & Results

e 01(0.0) = Gpao(v < T Aw < @) (in the next 30 seconds the engine and T e ————
vehicle speed never reach @ rpm and © km/h, respectively) el) e
o 09(7,0) = Gpag(w £ @) = Gpio(v <) (if the engine speed is always & ==
less than @ rpm, then the vehicle speed can not exceed 7 knv/h in less than 10 /| [~
sec)
o 03(0,0) = Fo0(v =2 7) = Gpan(w < ©) (the vehicle speed is above © _—
km/h than from that point on the engine speed is always less than @ rpm)
Adaptive DEA Adaptive GP-UCB S-TaLiRo
Req nval times nval times nval times Alg
o) 4.42+053 216+061 | 416+240 0554030 | 5164+432 057+048 UR
M 6.90+222 578+ 3.88 87178 1524040 | 39.64+£4449 4461499 SA
o 324+198 157+191 | 7944390 1554123 | 1278 +£11.27 1.46+1.28 CE
do || 10.14+£295 12394696 | 23.9+739 9.86+4.54 59 +42 6.83 +4.93 SA
) 852+290 913+£590 | 136348 4124167 | 43113923 489+443 SA
03 502+097 2914+120 | 544+3.14 0914067 | 10.04£7.30 1.15+0.84 CE
s 770+236 T707x387 | 1052+£1.76 2434092 11+£9.10 1.254+1.03 UR

64

Inputs:

Model

Throttle

Brake

Inputs

In1

[Continuous Dynamics]

™

eller

—

Torque

Ti
| Throttie

\ Engi

Ne
ne

EJginenPu

— >

)

gear

(speed
—{up_th tD(j
e uchph
ShifiLogic
\

(o

up_th

Qear
thiroitle

Ti

Outputs:

7— Outputs

W

-~

RPM

Gear

Speed

https://it.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html

https://it.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html

Bibliography

Falsification:

Silvetti S., Policriti A., Bortolussi L. (2017) An Active Learning Approach to the Falsification of Black Box Cyber-Physical Systems. |IFM
2017. LNCS, vol 10510. Springer, Cham.

Several excellent papers on the first development of falsification technology can be found on the web-site of S-TaLiRo :
https://sites.google.com/a/asu.edu/s-taliro/references

Jyotirmoy Deshmukh, Marko Horvat, Xiaoging Jin, Rupak Majumdar, and Vinayak S. Prabhu. 2017. Testing Cyber-Physical Systems
through Bayesian Optimization. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 170 (September 2017)

Deshmukh, Jyotirmoy, Xiaoqing Jin, James Kapinski, and Oded Maler. Stochastic Local Search for Falsification of Hybrid Systems. In
International Symposium on Automated Technology for Verification and Analysis, pp. 500-517.

https://sites.google.com/a/asu.edu/s-taliro/references

Parameter synthesis

Parameter Synthesis

-~

u(t), m=— -
W’

>

Parameter Synthesis

Parameter Synthesis

Problem

Given a model, depending on a set of parameters 8 € 0, and a specification ¢
(STL formula), find the parameter combination 0 s.t. the system satisfies ¢ as
more as possible

4

Solution Strategy

e rephrase it as a optimisation problem (maximizing p)
e evaluate the function to optimise
e solve the optimisation problem

Parameter Synthesis

Problem
Find the parameter configuration that maximizes E[R4](0), of which we
have few costly and noisy evaluations.

4

Methodology

1.Sample {(6,,y;), i =1,...,n}
2. Emulate (GP Regression): E[Ry] ~ GP(u,k)

3. Optimize the emulation via GP-UCB algorithm, new 0., ,

Gaussian Process Regression

Gaussian Processes can be used for Bayesian prediction and classification tasks.

Idea: put a GP prior on functions; condition on observed data (training set) (xl-, yl-);
we compute a posterior distribution on functions; make predictions.

Latent function: r, GP ; Noise model: p(y;|f (x;))

e e . X
Prediction (latent function f ™ at X) i r—
* Observations

p(F*]y) o f dFO)P(F, FONPYIF)) [l oo e s

Under Gaussian noise y(X) = f(x) +&, &~ N(0,02) =
predictions have an analytic expression.

E] v R ARR))

£ X,y, X« N(f'*, cov(f,,,)), where
f. £ E[f.|X,y,X.] = K(X,,X)[K(X,X)+ 021"y,

cov(f,) = K(X,, X.) — K(X., X)[K(X,X) + 021] ' K(X, X.)

> 2

(1) Sample

Collection of the training set {(6",y"), i = 1,...,m} for parameters values 8.

-18

|
o
o
I

|
N
(9]
I

1.5

2.5

(2) The GP Regression

We have noisy observations y of the function value distributed around
an unknown true value f (6) with spherical Gaussian noise

(2) The GP Regression

We have noisy observations y of the function value distributed around
an unknown true value f (6) with spherical Gaussian noise

e

— — True function
——GP prediction
—-—-cb 95%
—-—-cb 95%
»* observation

1.5

> |

2.5

74

(3) The GP-UCB Algorithm

Balance Exploration and Exploitation: we maximise the 95% upper

quantile of the distribution: Oc1 = argmaxg[p* () + Bern/ k*(0,0)]

ao

28

26

14

12

10 1 i i i i
1 12 1.4 1.6 1.8 2 2.2 24 26 2.8 3

75

(3) The GP-UCB Algorithm

Balance Exploration and Exploitation: we maximise the 95% upper

quantile of the distribution: Oc1 = argmaxg[p* () + Bern/ k*(0,0)]

ao

28—

26

76

(3) The GP-UCB Algorithm

Balance Exploration and Exploitation: we maximise the 95% upper

quantile of the distribution: Oc1 = argmaxg[p* () + Bern/ k*(0,0)]

ao

28

26

77

(3) The GP-UCB Algorithm

Balance Exploration and Exploitation: we maximise the 95% upper

quantile of the distribution: Oc1 = argmaxg[p* () + Bern/ k*(0,0)]

ao

28|~

26

14

12

10 | 1 | | 1
1 1.2 1.4 1.6 1.8 2 22 2.4 2.6 2.8 3

78

(3) The GP-UCB Algorithm

Balance Exploration and Exploitation: we maximise the 95% upper

quantile of the distribution: Oc1 = argmaxg[p* () + Bern/ k*(0,0)]

ao

28|~

26

29

14§

12|

10!

79

(3) The GP-UCB Algorithm

Balance Exploration and Exploitation: we maximise the 95% upper

quantile of the distribution: Oc1 = argmaxg[p* () + Bern/ k*(0,0)]

ao

28

26

29

14}

12|

80

Bibliography

Parameter Synthesis:

Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Guido Sanguinetti, System design of stochastic models using robustness of temporal
properties. Theor. Comput. Sci. 587: 3-25 (2015)

Bortolussi L., Silvetti S. (2018) Bayesian Statistical Parameter Synthesis for Linear Temporal Properties of Stochastic Models. TACAS
2018. LNCS, vol 10806. Springer, Cham

	Slide 1: Cyber-Physical Systems
	Slide 2: Terminology
	Slide 3: STL Monitor
	Slide 4: Parametric Chemical Reaction Network (PCRN)
	Slide 5: Example: SIR epidemic model
	Slide 6: Example: SIRS epidemic model
	Slide 7
	Slide 8: Statistical Model Checking (SMC)
	Slide 9: Average robustness degree
	Slide 10
	Slide 11: The many uses of STL and its quantitative semantics
	Slide 12
	Slide 13: Example
	Slide 14: Black Box Assumption
	Slide 15: Black Box Assumption
	Slide 16
	Slide 17: Challenges with real-world systems
	Slide 18: Verification vs. Testing
	Slide 19: Falsification/Testing
	Slide 20: Falsification by optimization
	Slide 21: Falsification/Testing
	Slide 22
	Slide 23: Falsification re-framed
	Slide 24: Input/Output Properties for Closed-loop Models
	Slide 25: Input Properties/Pre-conditions
	Slide 26: Common input patterns used for testing
	Slide 27: Testing in practice
	Slide 28: Signal Generation
	Slide 29: Finite Parameterization
	Slide 30: Finite parameterization using control points
	Slide 31: Finite parameterization using control points
	Slide 32: Finite parameterization using linear interpolation
	Slide 33: Finite parameterization using interpolation
	Slide 34: Finite parameterization variable control point times
	Slide 35: Signal Generator
	Slide 36: Black-box Optimization
	Slide 37: Falsification using Optimization
	Slide 38: Step-by-step of how falsification works
	Slide 39: Picking new parameter values to explore
	Slide 40: Model
	Slide 41: Model
	Slide 42: Black Box Assumption
	Slide 43: Falsification of CPS
	Slide 44: Gaussian Processes
	Slide 45: Gaussian Process Regression
	Slide 46: Domain Estimation Problem
	Slide 48: Domain Estimation Algorithm (DEA)
	Slide 49: Domain Estimation Algorithm (DEA)
	Slide 50: Domain Estimation Algorithm (DEA)
	Slide 51: Domain Estimation Algorithm (DEA)
	Slide 52: Domain Estimation Algorithm (DEA)
	Slide 53: Domain Estimation Algorithm (DEA)
	Slide 54: Domain Estimation Algorithm (DEA)
	Slide 55: Domain Estimation Algorithm (DEA)
	Slide 56: Domain Estimation Algorithm (DEA)
	Slide 57: Domain Estimation Algorithm (DEA)
	Slide 58: Domain Estimation Algorithm (DEA)
	Slide 59: Domain Estimation Problem
	Slide 60: Finite Parameterization
	Slide 61: Domain Estimation Problem
	Slide 62: Adaptive Parameterization
	Slide 64: Tests Case & Results
	Slide 65: Model
	Slide 66: Bibliography
	Slide 67
	Slide 68: Parameter Synthesis
	Slide 69: Parameter Synthesis
	Slide 70: Parameter Synthesis
	Slide 71: Gaussian Process Regression
	Slide 72: (1) Sample
	Slide 73: (2) The GP Regression
	Slide 74: (2) The GP Regression
	Slide 75: (3) The GP-UCB Algorithm
	Slide 76: (3) The GP-UCB Algorithm
	Slide 77: (3) The GP-UCB Algorithm
	Slide 78: (3) The GP-UCB Algorithm
	Slide 79: (3) The GP-UCB Algorithm
	Slide 80: (3) The GP-UCB Algorithm
	Slide 81: Bibliography

