Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste I Semestre 2024

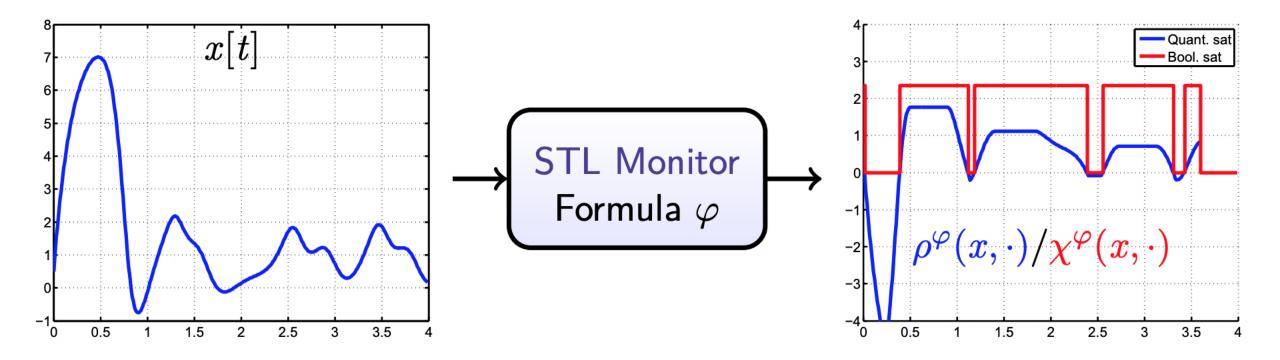
Lecture 14-15: STL applications: testing and falsification, parameter synthesis

[Many Slides due to J. Deshmukh, S. Silvetti]

Terminology

- **Syntax**: A set of syntactic rules that allow us to construct formulas from specific ground terms
- Semantics: A set of rules that assign meanings to well-formed formulas obtained by using above syntactic rules
- Model-checking/Verification: $M \models \phi \iff \forall \mathbf{x} \in trace(M) \ s(\varphi, \mathbf{x}, 0) = 1$
- Monitoring: computing s for a single trace $\mathbf{x} \in trace(M)$
- Statistical Model Checking: "doing statistics" on s(φ, x, 0) for a finitesubset of trace(M)

STL Monitor



An STL monitor is a transducer that transforms x into Boolean or a quantitative signal

Parametric Chemical Reaction Network (PCRN)

Population CTMC models, i.e. CTMC models in the biochemical reactions style.

SET OF SPECIES $S = \{S_1, \dots, S_n\}$, i.e. the different agent states.

STATE SPACE

The state space is described by a vector of n variables

$$\mathbf{X} = (X_{S_1}, \dots, X_{S_n}) \in \mathbb{N},$$

each counting the number of agents (jobs, molecules, ...) of a given kind.

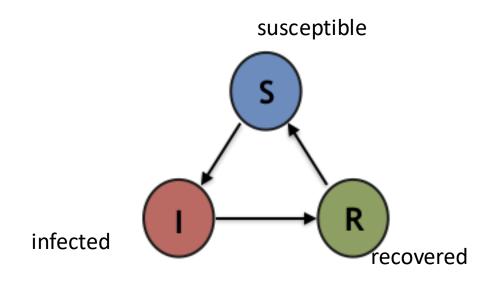
TRANSITIONS

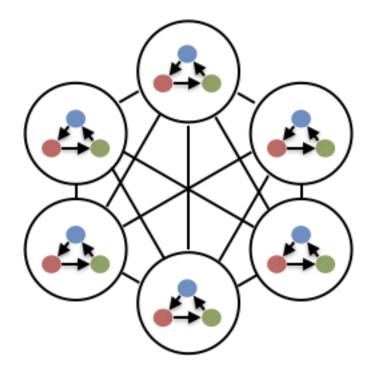
The dynamics is given by a set of chemical reactions:

$$m_1S_1 + \ldots + m_nS_n \to r_1S_1 + \ldots + r_nS_n,$$

with a rate given by a function $f(X, \theta)$.

Example: SIR epidemic model



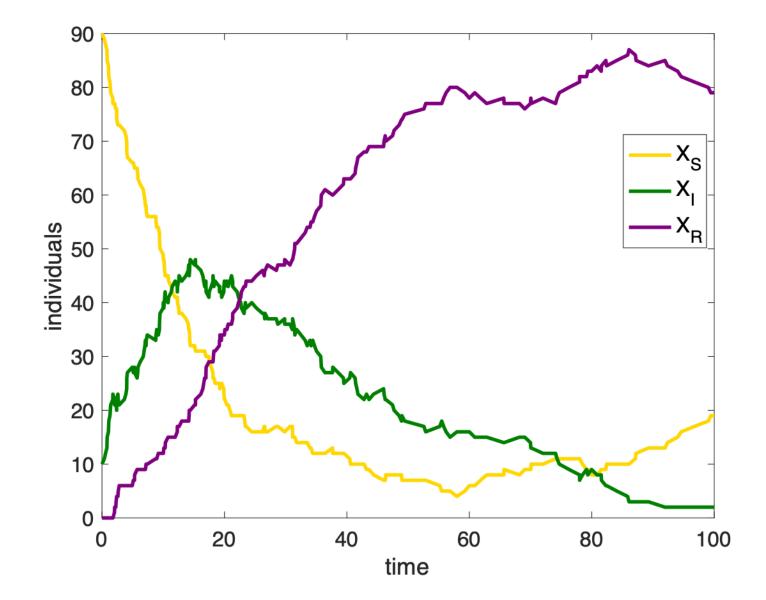


 $\mathcal{M}_{\boldsymbol{\theta}}$

infection:
$$S + I \rightarrow 2I$$
 $f_i(X, \theta) = k_i X_S X_I$ recover: $I \rightarrow R$ $f_r(X, \theta) = k_r X_I$ loss of immunity: $R \rightarrow S$ $f_l(X, \theta) = k_l X_R$

State vector: $\mathbf{X} = (X_S, X_I, X_R)$ Vector of parameters: $\boldsymbol{\theta} = (k_i, k_r, k_l)$

Example: SIRS epidemic model



Stochastic Semantics

SATISFACTION PROBABILITY (Boolean Semantics)

$$P(\varphi) = \mathbb{P}\{I_{\varphi}(X) = 1\} := P\{\vec{x} \in Path^{\mathcal{M}} | \mathcal{X}(\vec{x}, 0, \varphi) = 1\}$$

where $I_{\omega}(X)$ is a Bernoulli random variable

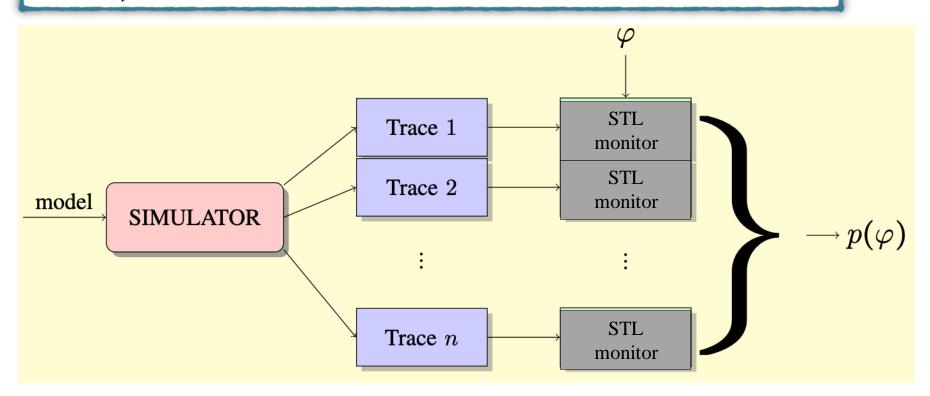
AVERAGE ROBUSTNESS(Quantitative Semantics)

 $\mathbb{P}\{R_{\varphi}(X) \in [a, b]\} := P\{\vec{x} \in Path^{\mathcal{M}} | \rho(\vec{x}, 0, \varphi) \in [a, b]\}$

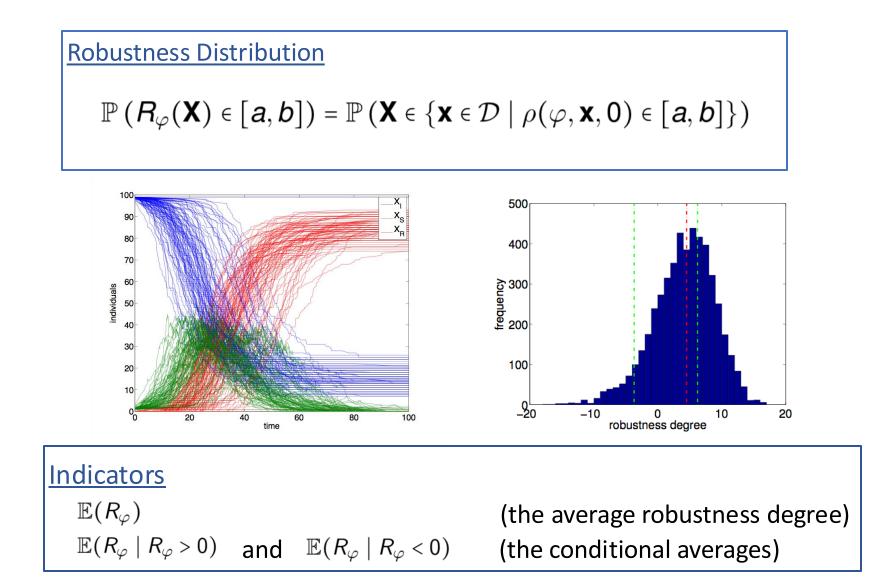
where $R_{\omega}(X)$ in a measurable function

Statistical Model Checking (SMC)

The probability satisfaction can be estimated as an average of the truth values T_i of the formula φ over many sample trajectories.



Average robustness degree



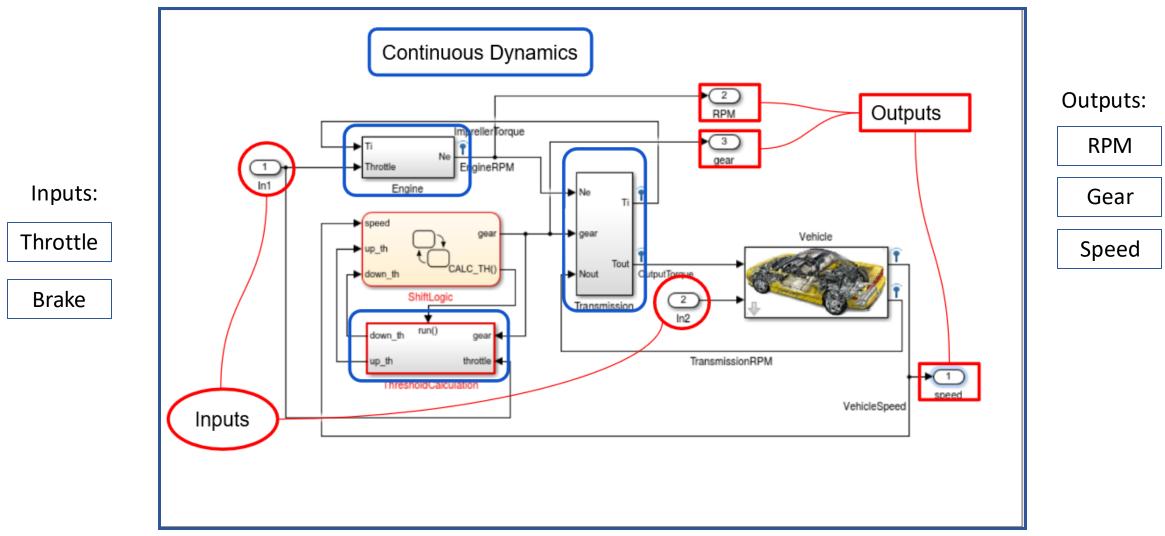
	• 00
Specification	Natural Language
Safety $(\Box_{[0,\theta]}\phi)$	ϕ should always hold from time 0 to θ .
Liveness $(\diamond_{[0,\theta]}\phi)$	ϕ should hold at some point from 0 to θ (or now).
	ϕ_1 through ϕ_n should hold at some point in the future (or now), not necessarily in order or at the same time.
Stabilization $(\Diamond \Box \phi)$	At some point in the future (or now), ϕ should always hold.
Recurrence $(\Box \diamondsuit \phi)$	At every point in time, ϕ should hold at some point in the future (or now).
Reactive Response $(\Box(\phi \rightarrow \psi))$	At every point in time, if ϕ holds then ψ should hold.

The many uses of STL and its quantitative semantics

- Requirement-based testing for closed-loop control models
- Falsification Analysis
- Parameter Synthesis
- Mining Specifications/Requirements from Models
- Online Monitoring

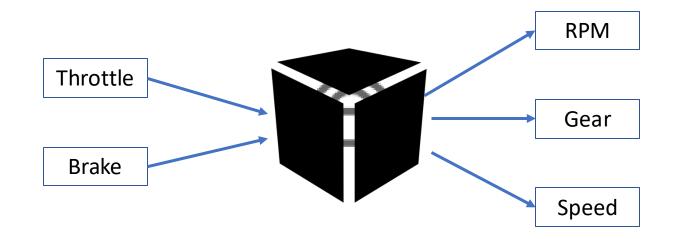
...

Example



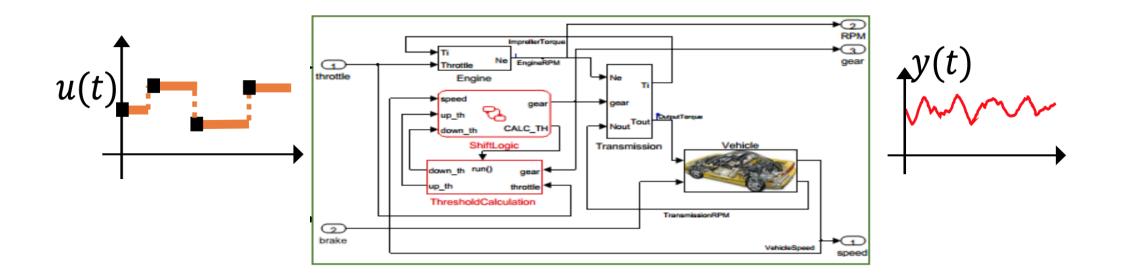
Simulink model of a Car Automatic Gear Transmission Systems

Black Box Assumption



Black Box Assumption

For simplicity, consider the composed plant model, controller and communication to be a model M that is excited by an input signal $\mathbf{u}(t)$ and produces some output signal $\mathbf{y}(t)$



Automatic Transmission			
	Natural Language	MTL	
ϕ_1^{AT}	The engine speed never reaches $\bar{\omega}$.	$\Box(\omega<\bar{\omega})$	
ϕ_2^{AT}	The engine and the vehicle speed never reach $\bar{\omega}$ and \bar{v} , resp.	$\Box((\omega < \bar{\omega}) \land (v < \bar{v}))$	
ϕ_3^{AT}	There should be no transition from gear two to gear one and back to gear two in less than 2.5 sec.	$\Box((g_2 \wedge Xg_1) \to \Box_{(0,2.5]} \neg g_2)$	
ϕ_4^{AT}	After shifting into gear one, there should be no shift from gear one to any other gear within 2.5 sec.	$\Box((\neg g_1 \wedge Xg_1) \to \Box_{(0,2.5]}g_1)$	
ϕ_5^{AT}	When shifting into any gear, there should be no shift from that gear to any other gear within 2.5sec.	$\wedge_{i=1}^4 \Box((\neg g_i \wedge Xg_i) \to \Box_{(0,2.5]}g_i)$	
ϕ_6^{AT}	If engine speed is always less than $\bar{\omega}$, then vehicle speed can not exceed \bar{v} in less than T sec.	$\neg(\diamondsuit_{[0,T]}(v > \bar{v}) \land \Box(\omega < \bar{\omega}))$	
ϕ_7^{AT}	Within T sec the vehicle speed is above \bar{v} and from that point on the engine speed is always less than $\bar{\omega}$.	$\diamondsuit_{[0,T]}((v \ge \bar{v}) \land \Box(\omega < \bar{\omega}))$	
ϕ_8^{AT}	A gear increase from first to fourth in under 10secs, ending in an RPM above $\bar{\omega}$ within 2 seconds of that, should result in a vehicle speed above \bar{v} .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Challenges with real-world systems

- If plant model, software and communication is simple (e.g. linear models), then we can do formal analysis
- Most real-world examples have very complex plants, controllers and communication!
- Verification problem, in the most general case is undecidable
 it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer to the problem

Verification vs. Testing

- For simplicity, **u** is a function from \mathbb{T} to \mathbb{R}^m ; let the set of all possible functions representing input signals be U
- Verification Problem:

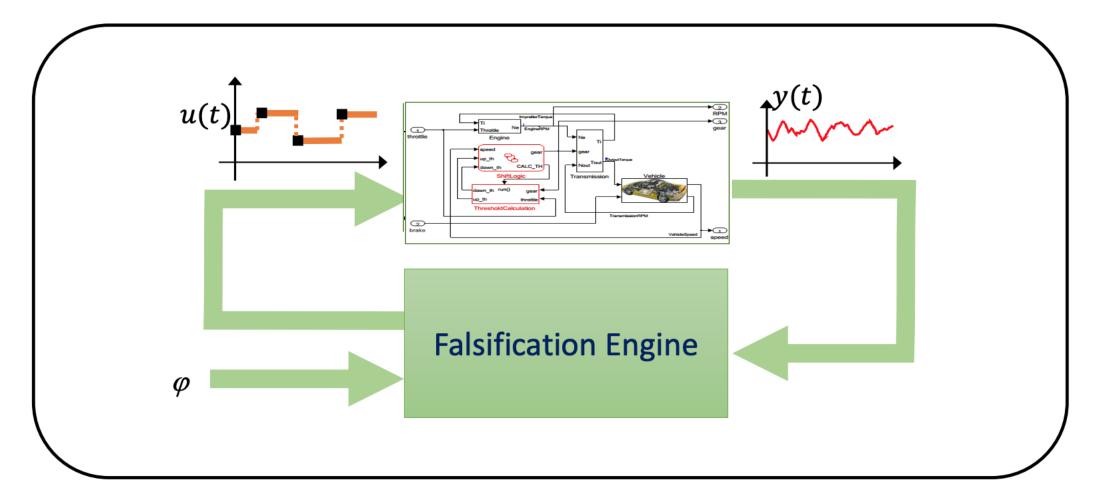
Prove the following: $\forall \mathbf{u} \in U: (\mathbf{y} = M(\mathbf{u})) \vDash \varphi(\mathbf{u}, \mathbf{y})$

Falsification/Testing Problem:

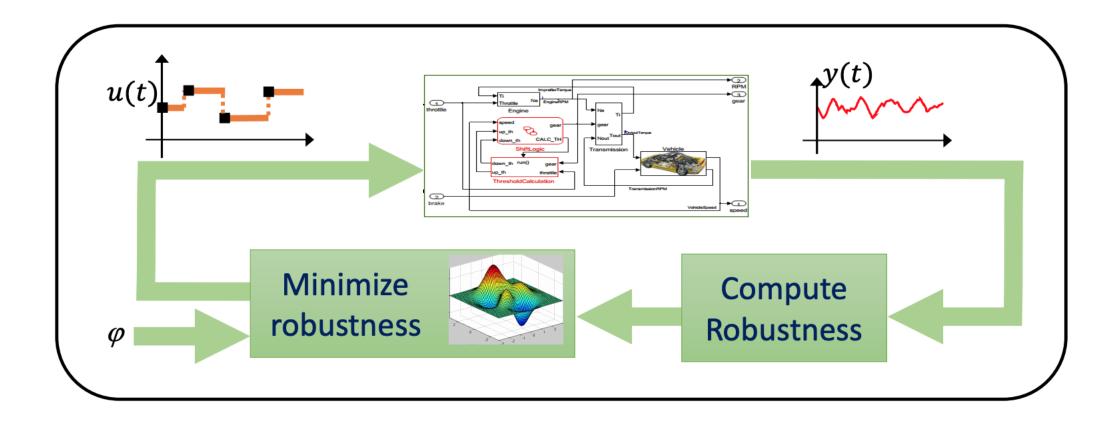
Find a witness to the query: $\exists \mathbf{u} \in U : (\mathbf{y} = M(\mathbf{u})) \not\models \varphi(\mathbf{u}, \mathbf{y})$

These formulations are quite general, as we can include the following "model uncertainties" as input signals: Initial states, tunable parameters in both plant and controller, time-varying parameter values, noise, etc.,

Falsification/Testing



Falsification by optimization

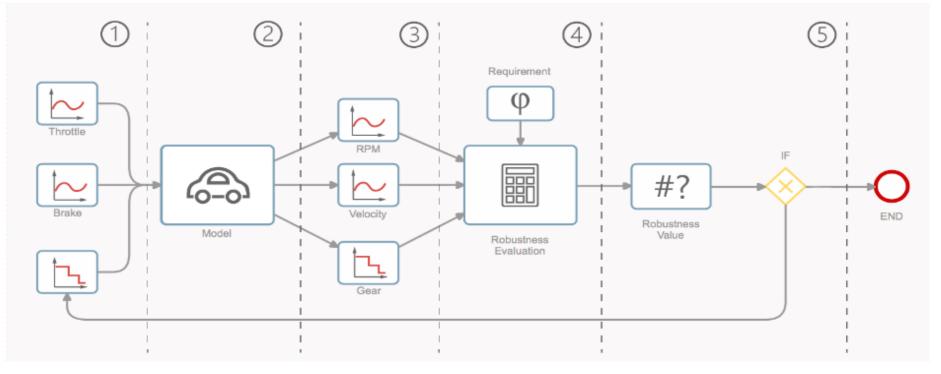


Use robustness as a cost function to minimize with Black-box/Global Optimizers

Falsification/Testing

- Falsification or testing attempts to find one or more **u** signals such that $\neg \varphi(\mathbf{u}, M(\mathbf{u}))$ is true.
- In verification, the set \mathbb{T} (the time domain) could be unbounded, in falsification or testing, the time domain is necessarily bounded, i.e. $\mathbb{T} \subseteq [0, T]$, where T is some finite numeric constant
- In verification the co-domain of \mathbf{u} , could be an unbounded subset of \mathbb{R}^m , in falsification, we typically consider some compact subset of \mathbb{R}^m
- For the i^{th} input signal component, let D_i denote its compact co-domain. Then the input signal $\mathbf{u} : \mathbb{T} \rightarrow D_1 \times \cdots \times D_m$, where $\mathbb{T} \subseteq [0, T]$ In simple words: input signals range over bounded intervals and over a bounded time horizon

Falsification CPS



<u>Goal</u>:

Find the inputs (1) which falsify the requirements (4)

Problems:

- Falsify with a low number of simulations
- Functional Input Space

Active Learning Adaptive Parameterization

Falsification re-framed

Given:

- Set of all such input signals : U
- ▶ Input signal $\mathbf{u} : \mathbb{T} \to D_1 \times \cdots \times D_m$, where $\mathbb{T} \subseteq [0, T], D_i \subset \mathbb{R}$ compact set
- Model *M* s.t. $M(\mathbf{u}) = \mathbf{y}, \quad \mathbf{y}: \mathbb{T} \to \mathbb{R}^n$ *M* maps **u** to some signal **y** with the same domain as **u**, and co-domain some subset of \mathbb{R}^n
- Property φ that can be evaluated to true/false over given **u** and **y**

Check: $\exists \mathbf{u} \in U : (\mathbf{y} = M(\mathbf{u})) \vDash \neg \varphi(\mathbf{u}, \mathbf{y})$

Input/Output Properties for Closed-loop Models

- Properties/Specifications/Requirements are rarely monolithic formulas $\varphi(\mathbf{u}, \mathbf{y})$
- Function Typically specified as a pair: a pre-condition φ_I on the inputs, and a post-condition φ_O on the outputs
- Verification problem then stated as:

Prove that: $\forall \mathbf{u} \in U$: $(\mathbf{u} \models \varphi_I) \land (\mathbf{y} = M(\mathbf{u})) \Rightarrow (\mathbf{y} \models \varphi_O)$

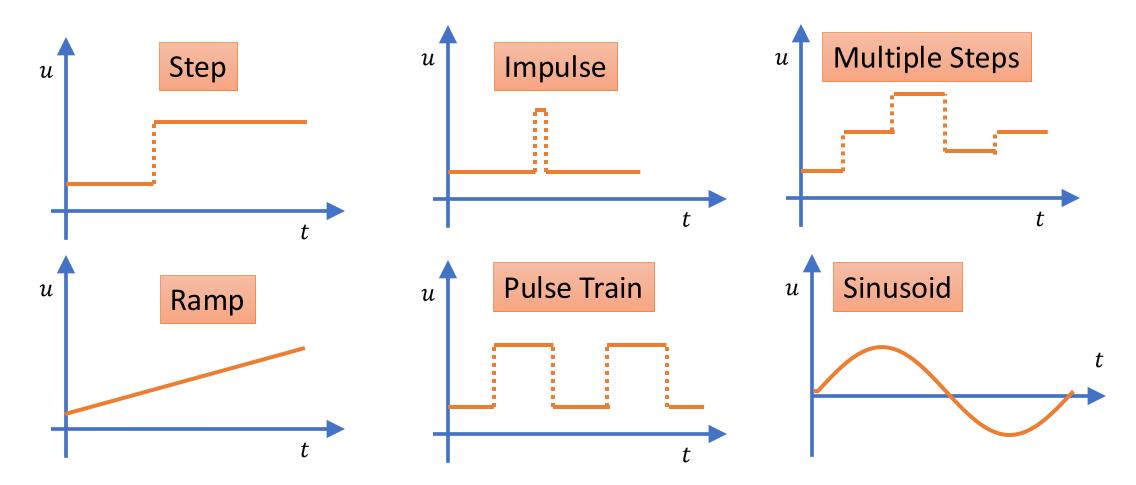
Testing problem stated as:

Find *u* such that $(\mathbf{u} \models \varphi_I) \land (\mathbf{y} = M(\mathbf{u})) \land (\mathbf{y} \not\models \varphi_O)$

Input Properties/Pre-conditions

- Common practice in control theory to excite closed-loop models with input signals of certain special shapes
- Motivation comes from theory of linear systems, where a step-response or impulse-response are enough to characterize all behaviors of the system
- Such special shapes do not provide comprehensive information for nonlinear closed-loop systems, yet, it is still common to excite these systems with a few common patterns
- Frequently, input signal patterns come from engineering insights or application-specific domain expertise

Common input patterns used for testing



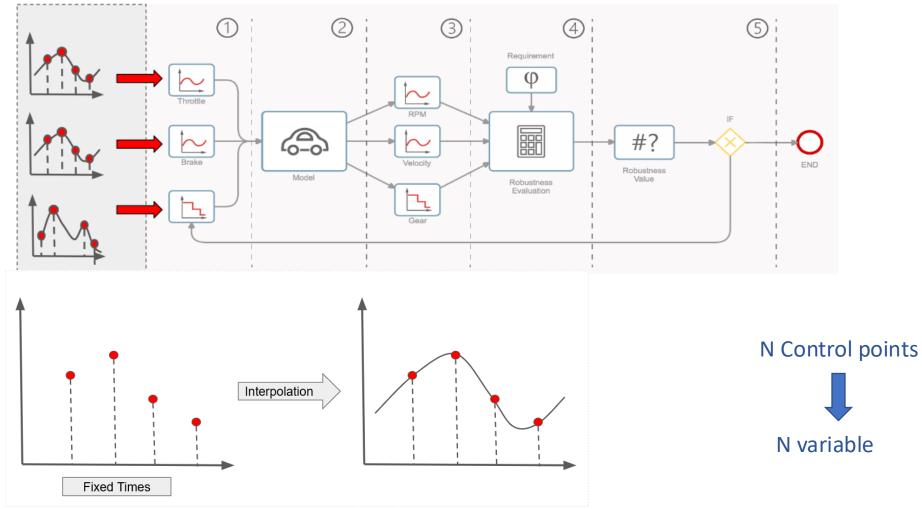
Testing in practice

- Each time-point in a signal is an independent dimension, i.e. the signal can change arbitrarily at each time-point in the signal
- Number of independent domains is infinite (e.g. consider a signal defined over rational time-points)
- Typical testing approach is to find a *test-suite*: This is a **finite** number of test input signals (satisfying φ_I) and then obtain output behaviors using these signals as test inputs.
- If each corresponding output signal satisfies the output property φ_0 , then testing concludes, indicating that the model is correct for the given test-suite (i.e. no output in the test-suite satisfies φ_0).

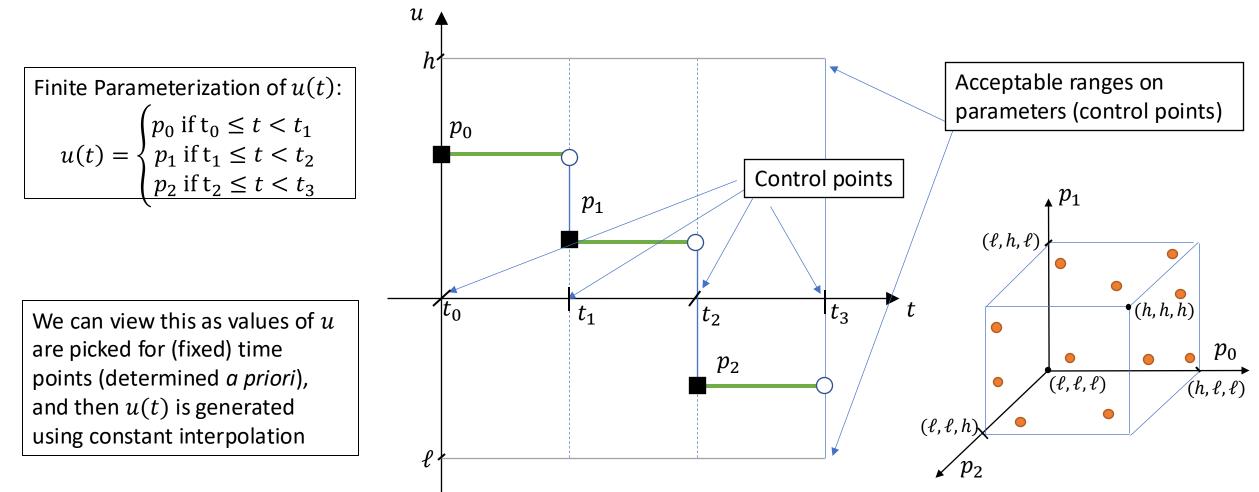
Signal Generation

- Find a signal generator for the property φ_I
 - Function that uses random-ness to generate an input signal that satisfies φ_I (hopefully, an input signal different from previously generated ones!)
- Signal generation usually relies on defining a *finite parameterization* for the input signal
 - ▶ For the chosen class of signals, find parameters that define the shape
 - Define acceptable ranges for the parameters
 - Define a generation function that takes the parameter values as inputs and generates an input signal

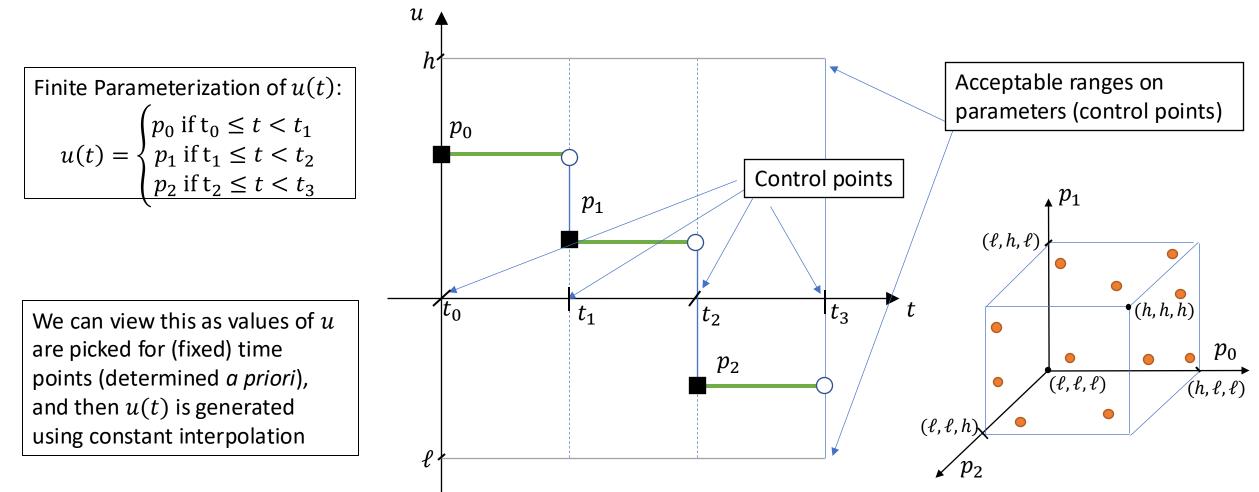
Finite Parameterization



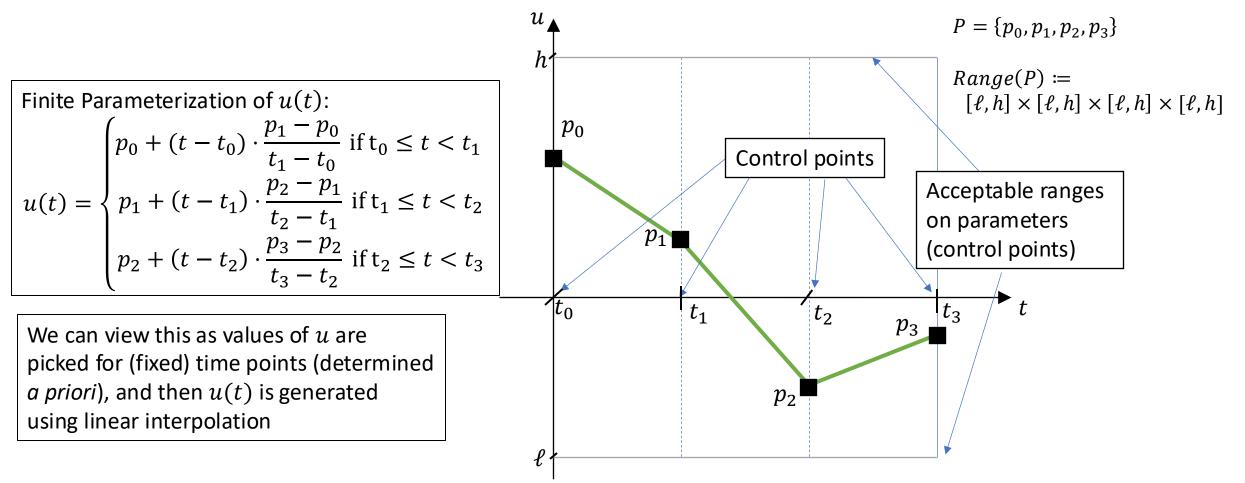
Finite parameterization using control points



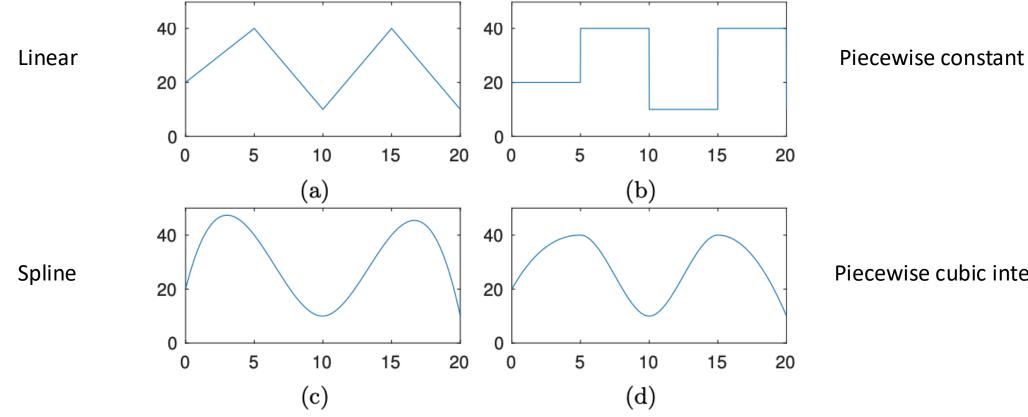
Finite parameterization using control points



Finite parameterization using linear interpolation



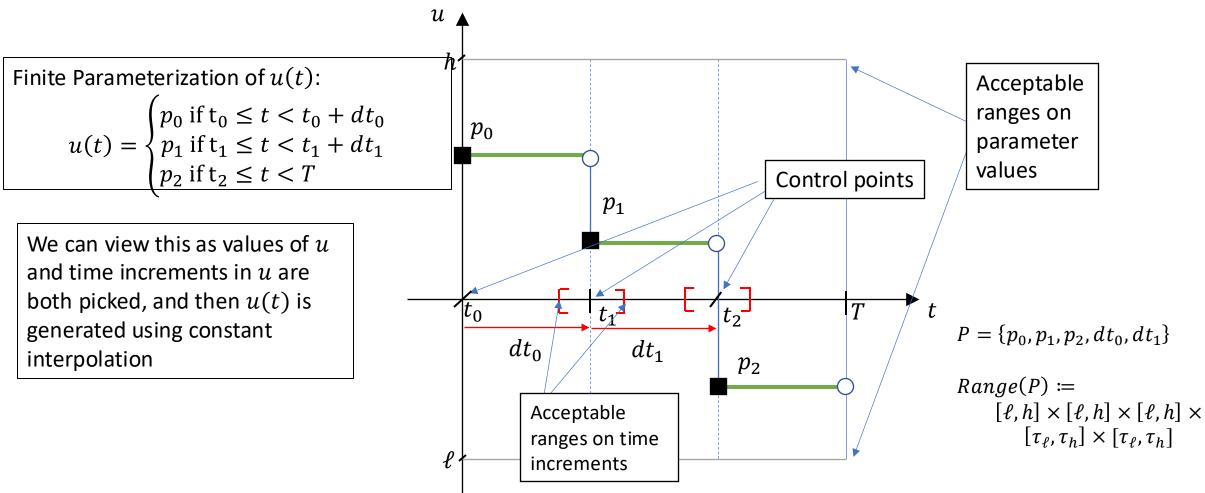
Finite parameterization using interpolation



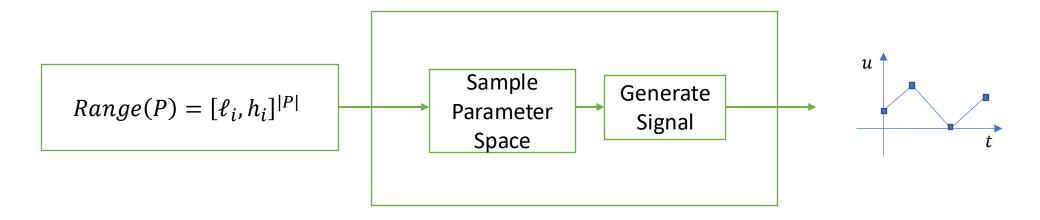
Piecewise cubic interpolation

 $\lambda = [20, 40, 10, 40, 10]$ t = [0, 5, 10, 15, 20]

Finite parameterization variable control point times

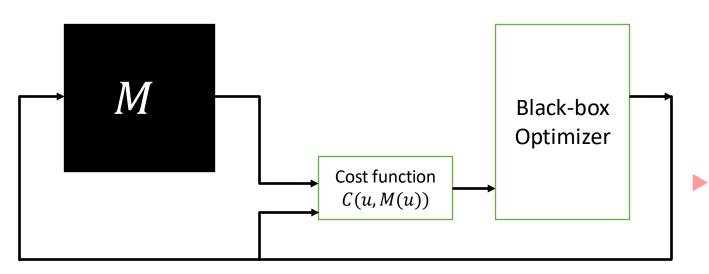


Signal Generator



- Signal Generation controlled by the testing algorithm
 - Parameter space could be sampled all at once
 - Parameter space could be sampled in a sequential fashion, e.g. using a method such as Markov Chain Monte Carlo
 - Sampling scheme could be application-specific: uniform random, quasi-random (more evenly spread out), truncated normal, grid-based sampling (points from a fixed grid), etc.

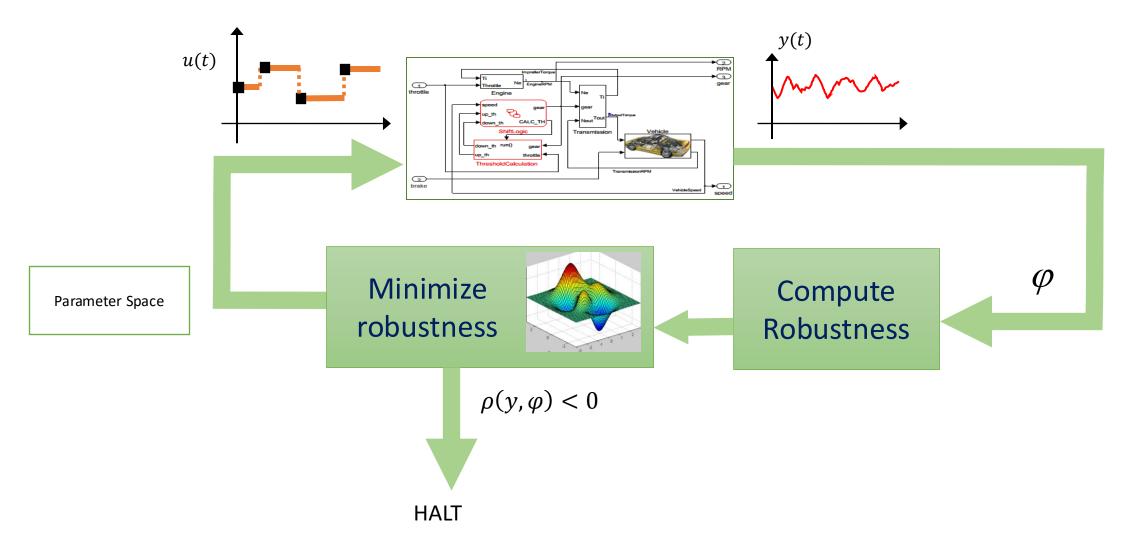
Black-box Optimization



Given:

- Function $M: U \rightarrow Y$ with unknown symbolic representation
- Ability to query the value of M at any given u; query will return some y
- Cost function $C: X \times Y \to \mathbb{R}$
- Objective of black-box optimizer
 - Let $x^* = \min_{x \in \mathbf{X}} C(x, f(x))$
 - Find \hat{x} such that $\|\hat{x} x^*\|$ is small
- Let $\hat{x_i}$ be the best answer found by optimizer in its i^{th} iteration

Falsification using Optimization



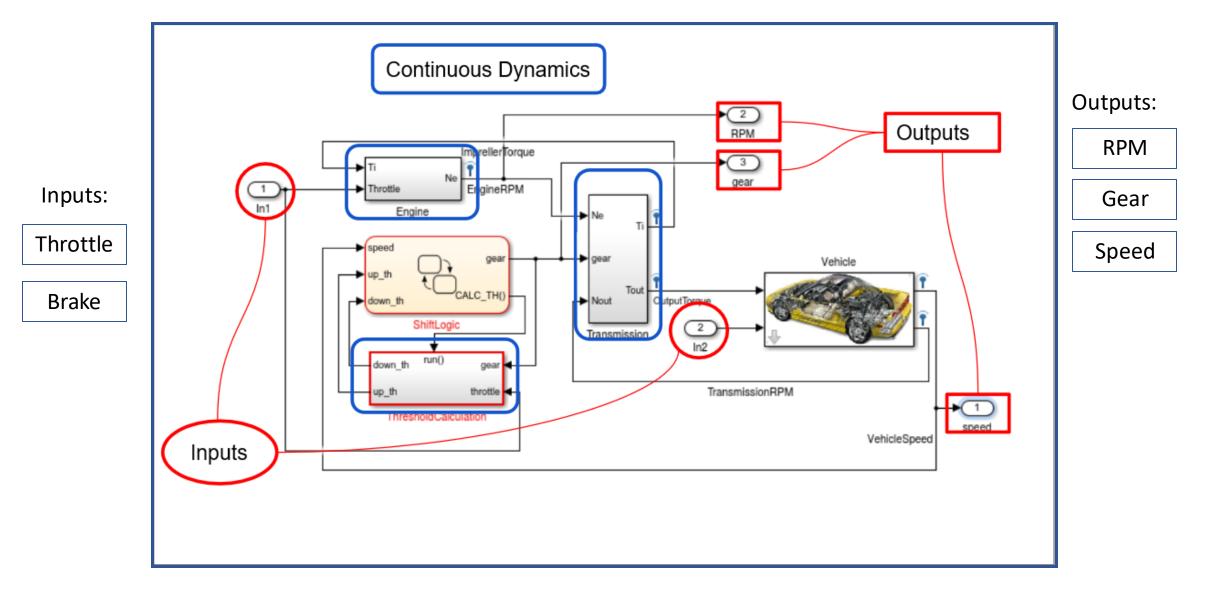
Step-by-step of how falsification works

- Given: a finite parameterization for input signals, a model that can be simulated and an STL property
- While the number of allowed iterations is not exhausted do:
 - pick values for the signal parameters
 - generate an input signal
 - run simulation with generated input signal to get output signal
 - compute robustness value of given property w.r.t. the input/output signals
 - if robustness value is negative, HALT
 - pick a new set of values for the signal parameters based on certain heuristics

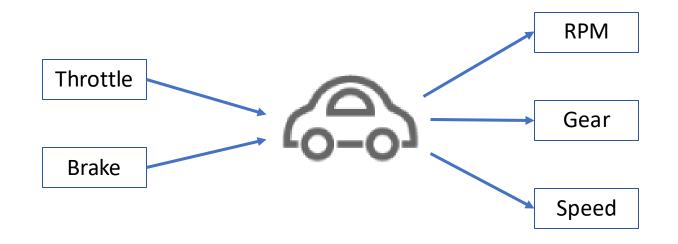
Picking new parameter values to explore

- Pick random sampling as a (not very good) strategy!
- Basic method: locally approximate the gradient of the function ρ locally, and chose the direction of steepest descent (greedy heuristic to take you quickly close to a local optimum)
- Challenge 1: cost surface may not be convex, thus you could have many local optima
- Challenge 2: cost surface may be highly nonlinear and even discontinuous, using just gradient-based methods may not work well
- Heuristics rely on:
 - combining gradient-based methods with perturbing the search strategy (e.g. simulated annealing, stochastic local search with random restarts)
 - evolutionary strategies: Covariance Matrix Adaptation Evolution Strategy (CMA-ES), genetic algorithms etc.
 - probabilistic techniques: Ant Colony Optimization, Cross-Entropy optimization, Bayesian optimization

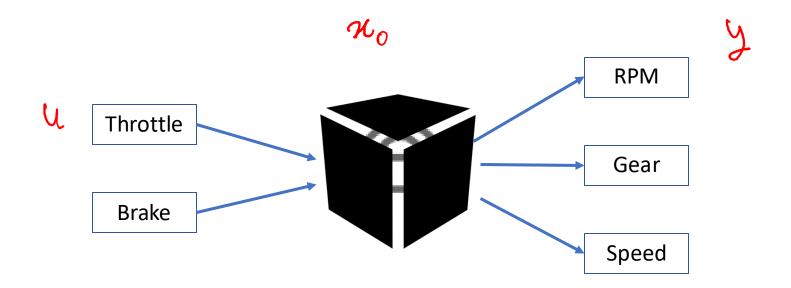
Model



Model

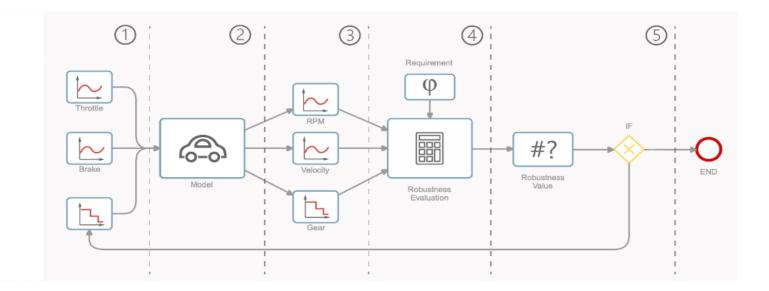


Black Box Assumption



- Less information
- A more general Approach (interesting for industries)

Falsification of CPS



Goal:

Find the inputs (1) which falsify the requirements (4)

Problems:

- Falsify with a low number of simulations
- Functional Input Space

Active Learning Adaptive Parameterization

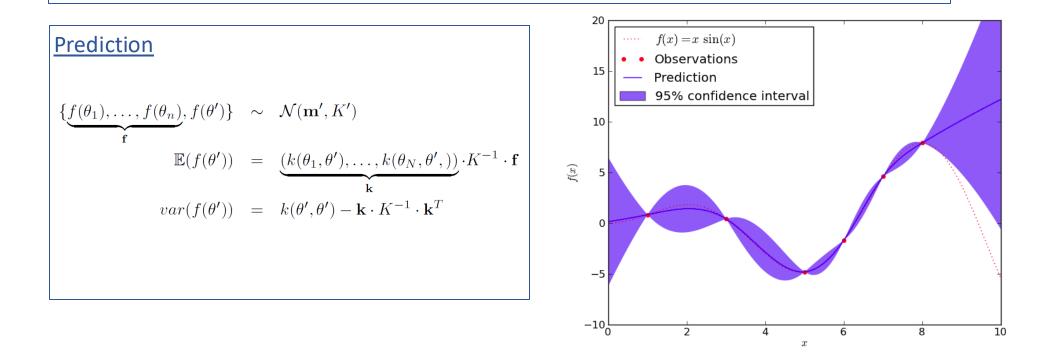
Gaussian Processes

Definition

$$f \sim GP(m,k) \iff (f(t_1), f(t_2), \dots, f(t_n)) \sim N(m,K)$$

where $m = (m(t_1), m(t_2), \dots, m(t_n))$ is the vector mean

 $K \in \mathbb{R}^{n \times n}$ is the covariance matrix, such that $K_{ij} = k(f(t_i), f(t_j))$



Gaussian Process Regression

Gaussian Processes can be used for Bayesian prediction and classification tasks.

Idea: put a **GP prior** on functions; condition on **observed data (training set)** (x_i, y_i) ; we compute a **posterior** distribution on functions; make **predictions**.

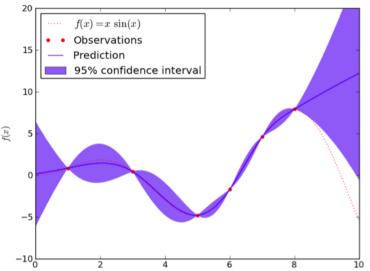
Latent function: f , GP ; Noise model: $p(y_i|f(x_i))$

Prediction (latent function
$$f^*$$
 at x^*)
 $p(f^*|\mathbf{y}) \propto \int df(\mathbf{x}) p(f^*, f(\mathbf{x})) p(\mathbf{y}|f(\mathbf{x}))$

Under Gaussian noise $y(\mathbf{x}) = f(\mathbf{x}) + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2) \in$ predictions have an analytic expression.

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} K(X,X) + \sigma_n^2 I & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix}\right)$$

 $\begin{aligned} \mathbf{f}_*|X, \mathbf{y}, X_* &\sim \mathcal{N}\big(\bar{\mathbf{f}}_*, \operatorname{cov}(\mathbf{f}_*)\big), \text{ where} \\ \bar{\mathbf{f}}_* &\triangleq \mathbb{E}[\mathbf{f}_*|X, \mathbf{y}, X_*] = K(X_*, X)[K(X, X) + \sigma_n^2 I]^{-1}\mathbf{y}, \\ \operatorname{cov}(\mathbf{f}_*) &= K(X_*, X_*) - K(X_*, X)[K(X, X) + \sigma_n^2 I]^{-1}K(X, X_*) \end{aligned}$



Domain Estimation Problem

Finding the trajectories which falsify the requirements, finding $u \in B$

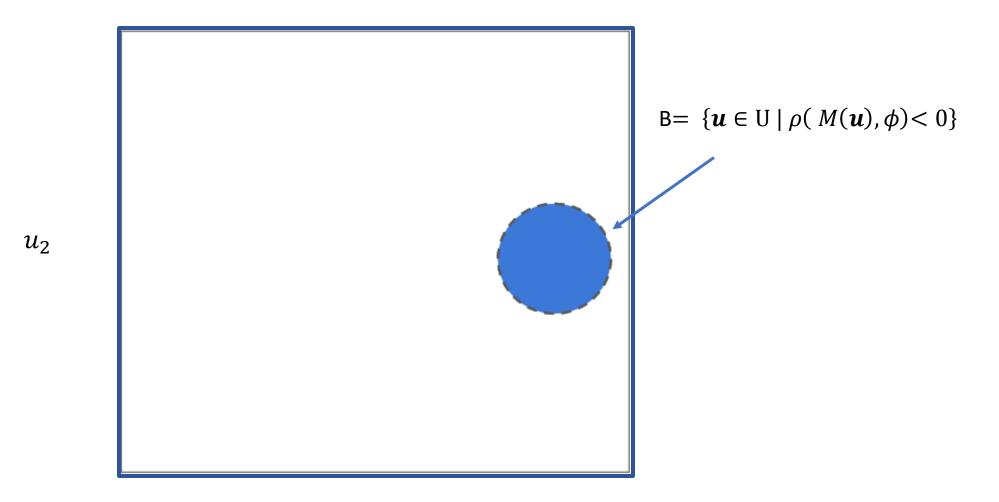
 $\mathsf{B}=\{\boldsymbol{u}\in\mathsf{U}\mid\rho(\phi,\boldsymbol{u},0)<0\}\subseteq U$

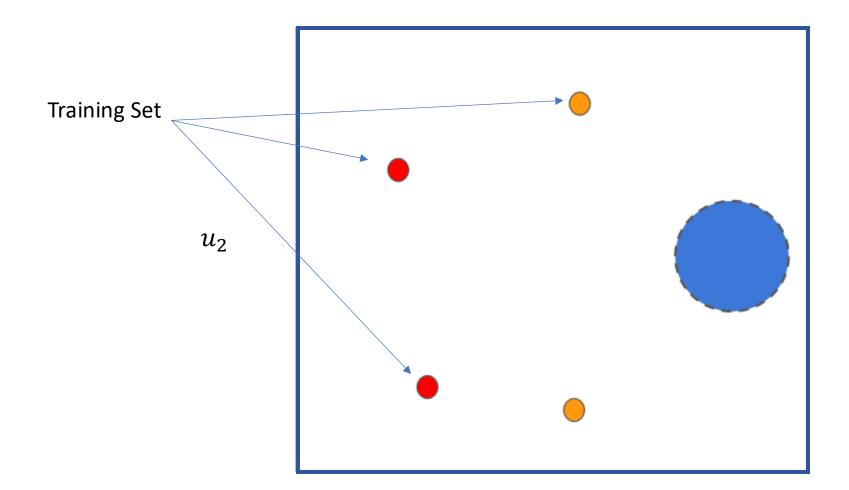
> Training Set: $K = \{u_i, \rho(\phi, u_i, 0)\}_{i \le n}$ (the partial knowledge after n iterations)

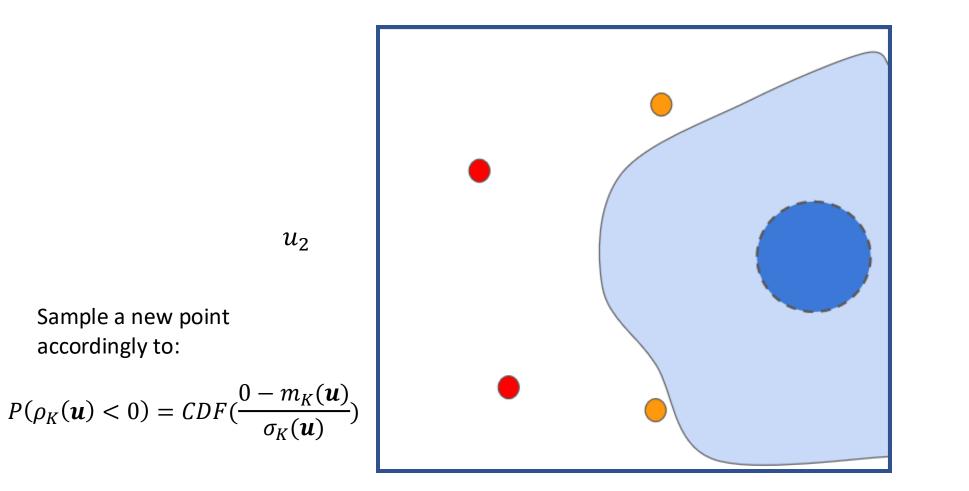
> Gaussian Process: $\rho_K(\mathbf{u}) \sim GP(m_K(\mathbf{u}), \sigma_K(\mathbf{u}))$ (the partial model)

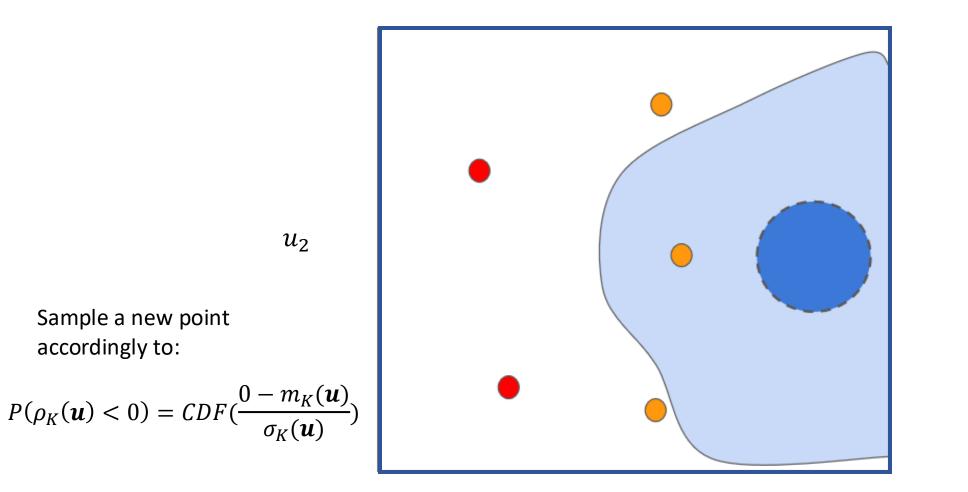
$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

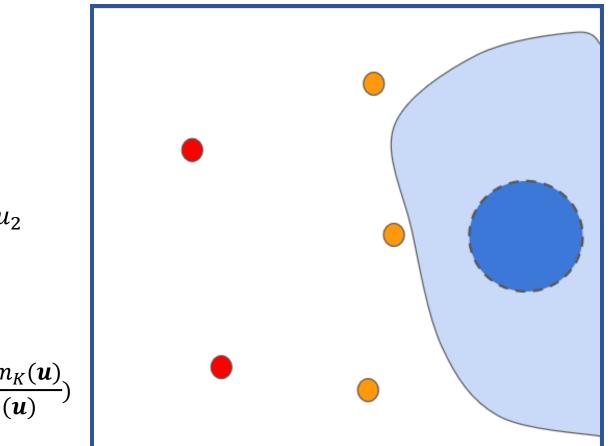
Idea: implementing an iterative sample strategy in order to increase the probability to sample a point in B, as the number of iterations increases.



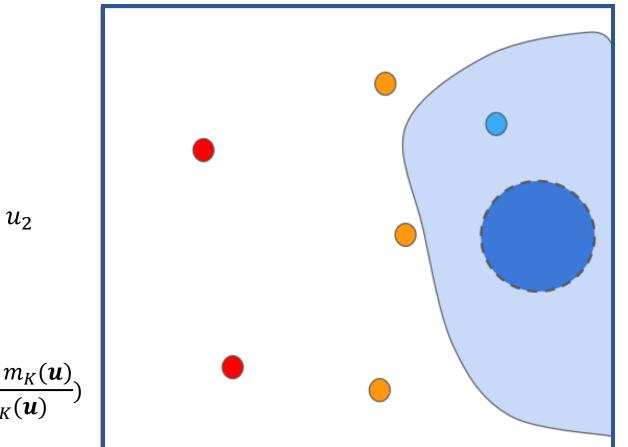




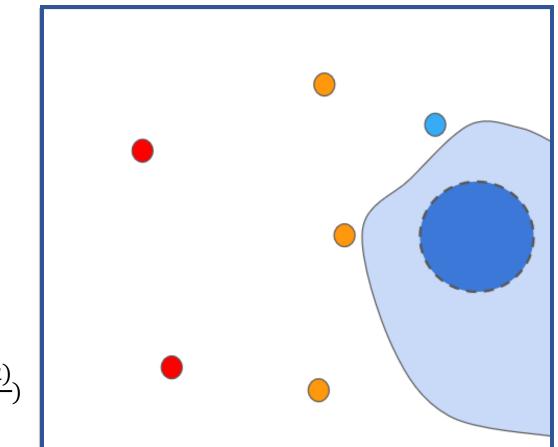




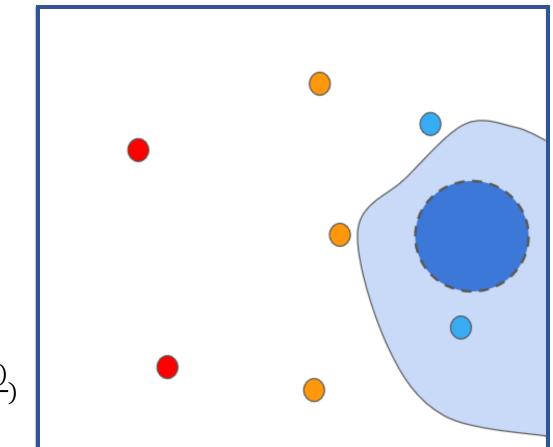
$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$



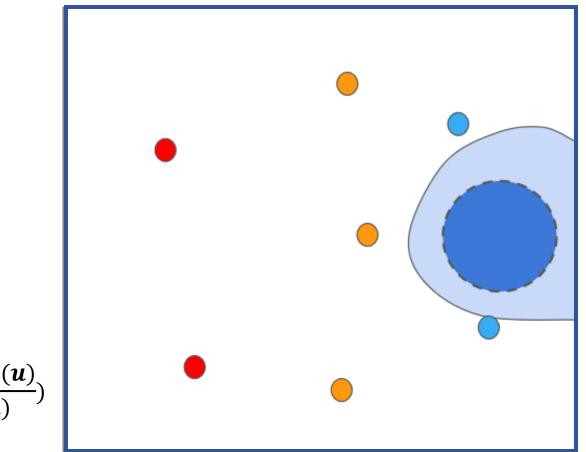
$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$



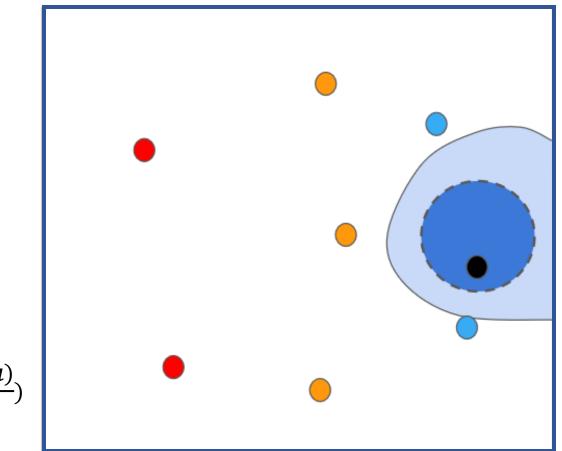
$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$



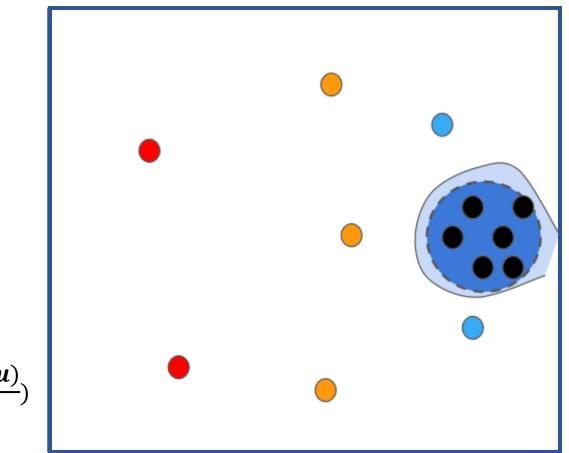
$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$



$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$



$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$



$$u_2$$

$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

Domain Estimation Problem

Finding the trajectories which falsify the requirements, finding $u \in B$

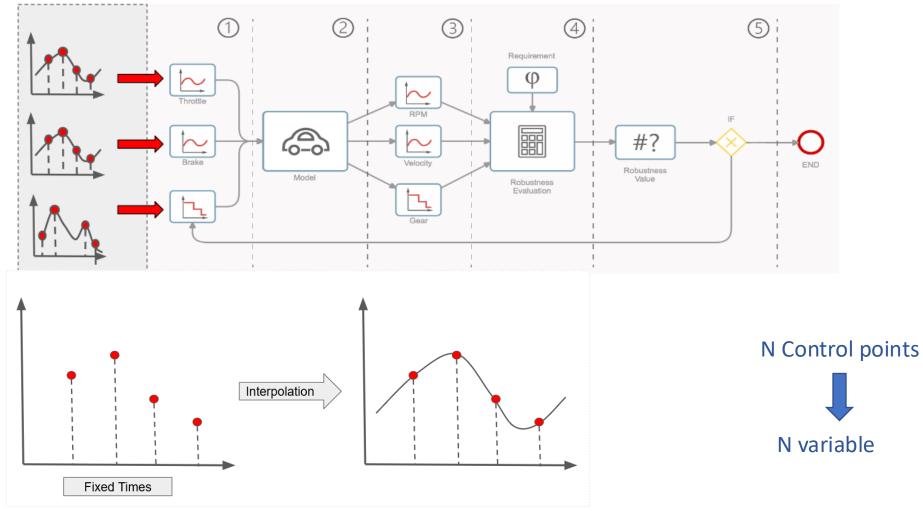
$$\mathsf{B} = \{ \boldsymbol{u} \in \mathsf{U} \mid \rho(\phi, \boldsymbol{u}, 0) < 0 \} \subseteq U$$

We call B the counterexample set and its elements counterexamples

If B is empty then $\rho(\phi, u, 0) \ge 0$

Solving the domain estimation problem could be extremely difficult because of the infinite dimensionality of the input space, which is a space of functions

Finite Parameterization



60

Domain Estimation Problem

Finding the trajectories which falsify the requirements, finding $\hat{c} \in \hat{B}$

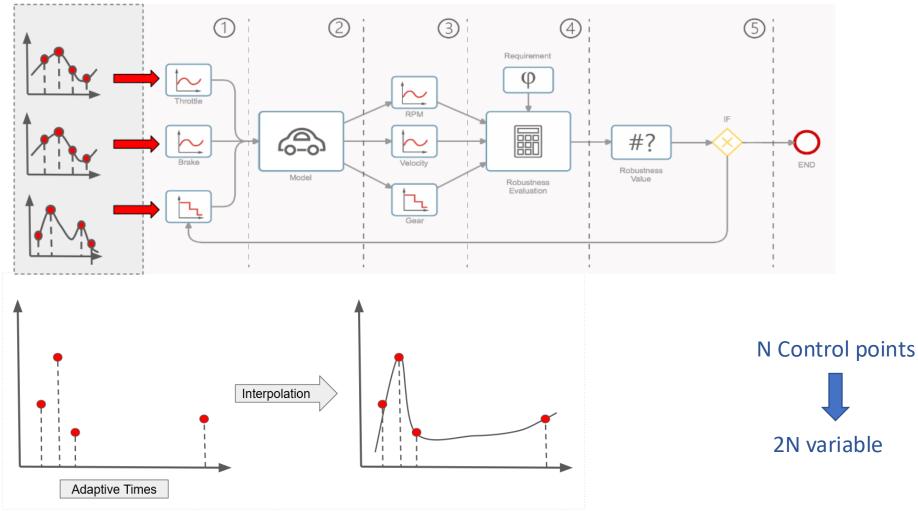
$$\hat{B} = \{ \hat{c} \in U_{n_1} \times \cdots \times U_{n_{|U|}} \mid \rho(\phi, P_n(\hat{c}), 0)) < 0 \}$$

Where
$$c_k = \{(t_1^k, u_{n_k}^k), \dots, (t_{n_k}^k, u_{k_n})\}$$
 and $P_n = (P_{n_1}, \dots, P_{n|U|})$

Piecewise linear or polynomial functions are known to be dense in the space of continuous functions!

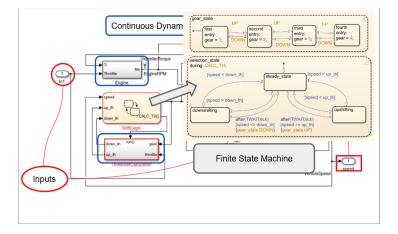
Then, B has at least one element $\Leftarrow \exists n \in \omega^{|U|}$, \hat{B} has at least one element.

Adaptive Parameterization



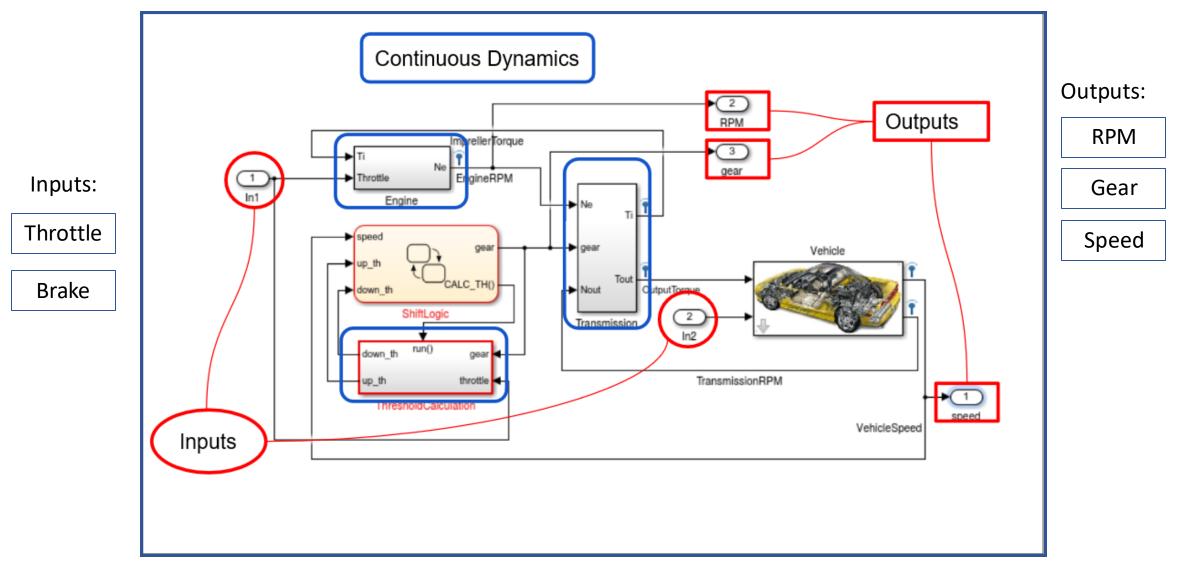
Tests Case & Results

- φ₁(v̄, ω̄) = G_[0,30](v ≤ v̄ ∧ ω ≤ ω̄) (in the next 30 seconds the engine and vehicle speed never reach ω̄ rpm and v̄ km/h, respectively)
- $\phi_2(\bar{v},\bar{\omega}) = \mathbf{G}_{[0,30]}(\omega \leq \bar{\omega}) \rightarrow \mathbf{G}_{[0,10]}(v \leq \bar{v})$ (if the engine speed is always less than $\bar{\omega}$ rpm, then the vehicle speed can not exceed \bar{v} km/h in less than 10 sec)
- φ₃(v̄, ω̄) = F_[0,10](v ≥ v̄) → G_[0,30](ω ≤ ω̄) (the vehicle speed is above v̄ km/h than from that point on the engine speed is always less than ω̄ rpm)



	Adaptive DEA		Adaptive GP-UCB		S-TaLiRo		
Req	nval	times	nval	times	nval	times	Alg
ϕ_1	4.42 ± 0.53	2.16 ± 0.61	4.16 ± 2.40	0.55 ± 0.30	5.16 ± 4.32	0.57 ± 0.48	UR
ϕ_1	6.90 ± 2.22	5.78 ± 3.88	8.7 ± 1.78	1.52 ± 0.40	39.64 ± 44.49	4.46 ± 4.99	SA
ϕ_2	3.24 ± 1.98	1.57 ± 1.91	7.94 ± 3.90	1.55 ± 1.23	12.78 ± 11.27	1.46 ± 1.28	CE
ϕ_2	10.14 ± 2.95	12.39 ± 6.96	23.9 ± 7.39	9.86 ± 4.54	59 ± 42	6.83 ± 4.93	SA
ϕ_2	8.52 ± 2.90	9.13 ± 5.90	13.6 ± 3.48	4.12 ± 1.67	43.1 ± 39.23	4.89 ± 4.43	SA
ϕ_{3}	5.02 ± 0.97	2.91 ± 1.20	5.44 ± 3.14	0.91 ± 0.67	10.04 ± 7.30	1.15 ± 0.84	CE
ϕ_3	7.70 ± 2.36	7.07 ± 3.87	10.52 ± 1.76	2.43 ± 0.92	11 ± 9.10	1.25 ± 1.03	UR

Model



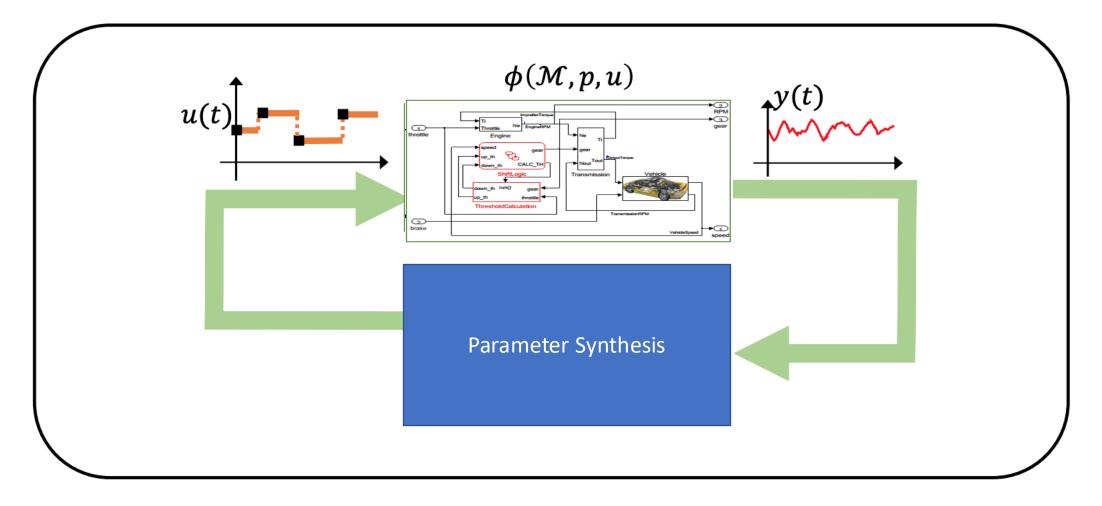
https://it.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html

Bibliography

Falsification:

- Silvetti S., Policriti A., Bortolussi L. (2017) An Active Learning Approach to the Falsification of Black Box Cyber-Physical Systems. IFM 2017. LNCS, vol 10510. Springer, Cham.
- Several excellent papers on the first development of falsification technology can be found on the web-site of S-TaLiRo : <u>https://sites.google.com/a/asu.edu/s-taliro/references</u>
- Jyotirmoy Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, and Vinayak S. Prabhu. 2017. Testing Cyber-Physical Systems through Bayesian Optimization. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 170 (September 2017)
- Deshmukh, Jyotirmoy, Xiaoqing Jin, James Kapinski, and Oded Maler. Stochastic Local Search for Falsification of Hybrid Systems. In International Symposium on Automated Technology for Verification and Analysis, pp. 500-517.

Parameter Synthesis



Parameter Synthesis

Problem

Given a model, depending on a set of parameters $\theta \in \Theta$, and a specification ϕ (STL formula), find the parameter combination θ s.t. the system satisfies ϕ as more as possible

➡

Solution Strategy

- **rephrase** it as a optimisation problem (maximizing ρ)
- evaluate the function to optimise
- solve the optimisation problem

Parameter Synthesis

Problem

Find the parameter configuration that maximizes $E[R_{\phi}](\theta)$, of which we have few costly and noisy evaluations.

Methodology

1. Sample { $(\theta_{(i)}, y_{(i)})$, i = 1,...,n}

2. Emulate (**GP Regression**): $E[R_{\phi}] \sim GP(\mu,k)$

3. Optimize the emulation via **GP-UCB algorithm**, new $\theta_{(n+1)}$

Gaussian Process Regression

Gaussian Processes can be used for Bayesian prediction and classification tasks.

Idea: put a **GP prior** on functions; condition on **observed data (training set)** (x_i, y_i) ; we compute a **posterior** distribution on functions; make **predictions**.

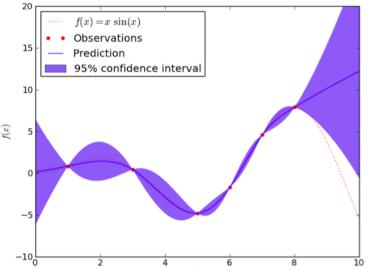
Latent function: f , GP ; Noise model: $p(y_i|f(x_i))$

Prediction (latent function
$$f^*$$
 at x^*)
 $p(f^*|\mathbf{y}) \propto \int df(\mathbf{x}) p(f^*, f(\mathbf{x})) p(\mathbf{y}|f(\mathbf{x}))$

Under Gaussian noise $y(\mathbf{x}) = f(\mathbf{x}) + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2) \in$ predictions have an analytic expression.

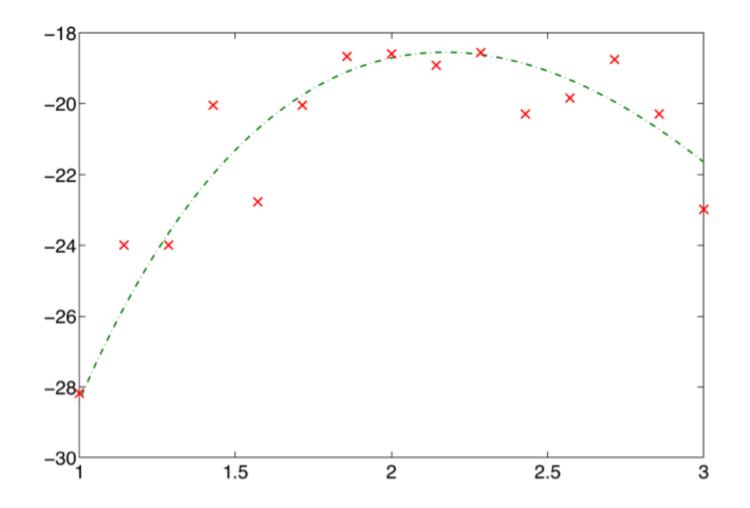
$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} K(X,X) + \sigma_n^2 I & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix}\right)$$

 $\begin{aligned} \mathbf{f}_*|X, \mathbf{y}, X_* &\sim \mathcal{N}\big(\bar{\mathbf{f}}_*, \operatorname{cov}(\mathbf{f}_*)\big), \text{ where} \\ \bar{\mathbf{f}}_* &\triangleq \mathbb{E}[\mathbf{f}_*|X, \mathbf{y}, X_*] = K(X_*, X)[K(X, X) + \sigma_n^2 I]^{-1}\mathbf{y}, \\ \operatorname{cov}(\mathbf{f}_*) &= K(X_*, X_*) - K(X_*, X)[K(X, X) + \sigma_n^2 I]^{-1}K(X, X_*) \end{aligned}$



(1) Sample

Collection of the training set {($\theta^{(i)}, y^{(i)}$), i = 1,...,m} for parameters values θ .

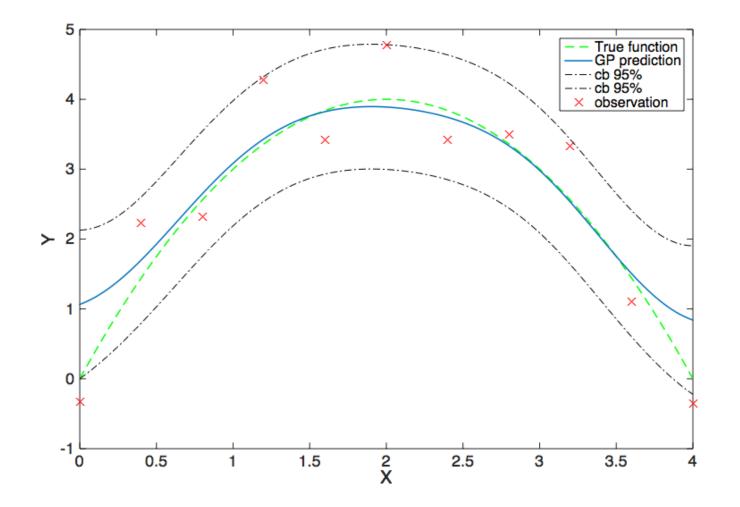


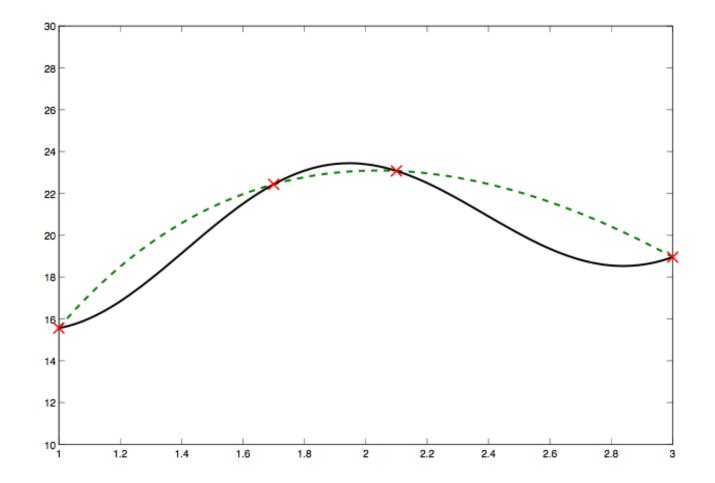
(2) The GP Regression

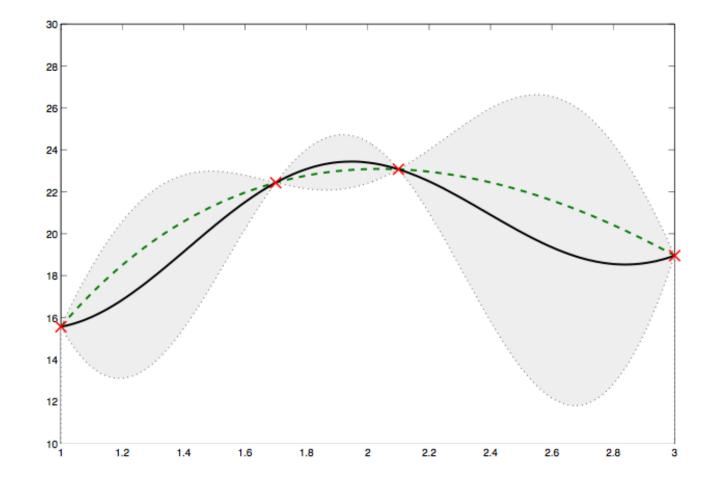
We have noisy observations y of the function value distributed around an unknown true value f (θ) with spherical Gaussian noise

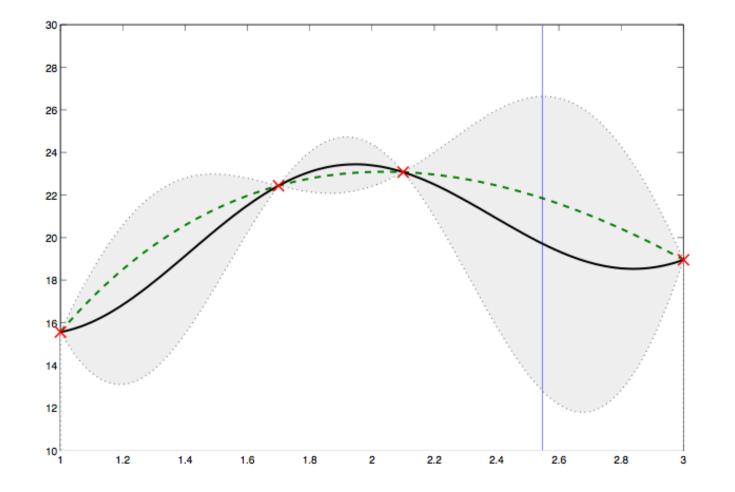
(2) The GP Regression

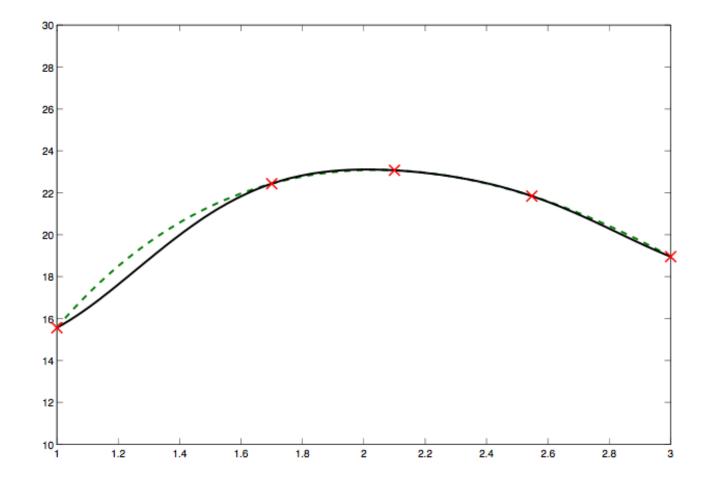
We have noisy observations y of the function value distributed around an unknown true value f (θ) with spherical Gaussian noise

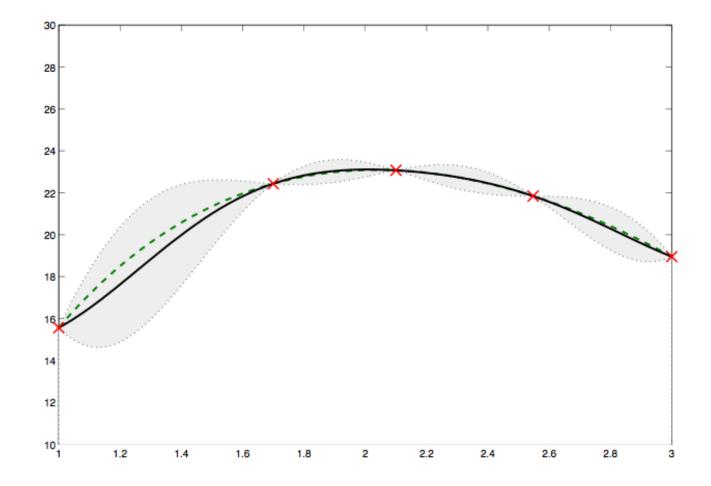


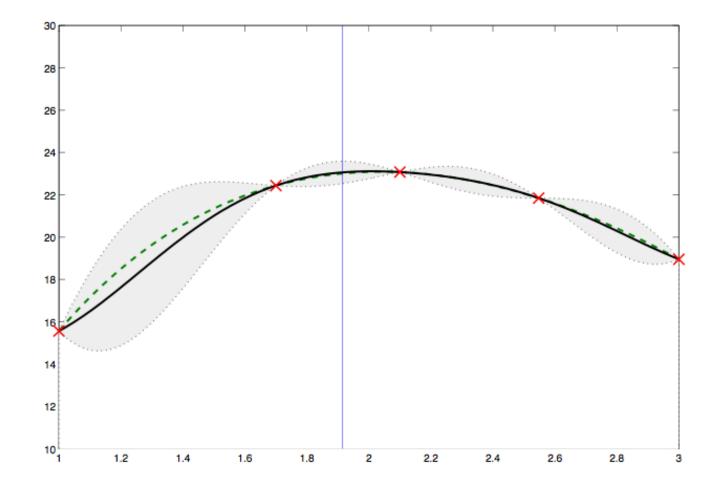












Bibliography

Parameter Synthesis:

- Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Guido Sanguinetti, System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587: 3-25 (2015)
- Bortolussi L., Silvetti S. (2018) Bayesian Statistical Parameter Synthesis for Linear Temporal Properties of Stochastic Models. TACAS 2018. LNCS, vol 10806. Springer, Cham