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Terminology

• Syntax: A set of syntactic rules that allow us to construct formulas from 
specific ground terms 

• Semantics: A set of rules that assign meanings to well-formed formulas 
obtained by using above syntactic rules 

• Model-checking/Verification: 𝑀 ⊨ 𝜙 ⟺ ∀𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀 𝑠 𝜑, 𝐱, 0 = 1

• Monitoring: computing 𝑠 for a single trace 𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀

• Statistical Model Checking: “doing statistics” on s 𝜑, 𝐱, 0 for a finite-
subset of 𝑡𝑟𝑎𝑐𝑒 𝑀



STL Monitor
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An STL monitor is a transducer that transforms x into Boolean or a quantitative signal
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Parametric Chemical Reaction Network (PCRN)

Population CTMC models, i.e. CTMC models in the biochemical reactions style. 

𝑛

𝐗 = (𝑋𝑆1
, … , 𝑋𝑆𝑛

) ∈ ℕ,

𝑓(𝑿, 𝜽).
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Example: SIR epidemic model

State vector: 
Vector of parameters:

infection:                    

recover:          

loss of immunity:

susceptible

recovered
infected

𝑆 + 𝐼 → 2𝐼 𝑓𝑖(𝑿, 𝜽) = 𝑘𝑖𝑋𝑆𝑋𝐼

𝜽 = (𝑘𝑖, 𝑘𝑟, 𝑘𝑙)

𝐼 → 𝑅

𝑅 → 𝑆

𝐗 = (𝑋𝑆, 𝑋𝐼, 𝑋𝑅)

𝑓𝑟(𝑿, 𝜽) = 𝑘𝑟𝑋𝐼

𝑓𝑙(𝑿, 𝜽) = 𝑘𝑙𝑋𝑅

ℳ𝜽
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Example: SIRS epidemic model



Stochastic Semantics

𝑃(𝜑) = ℙ{𝐼𝜑(𝑋) = 1}: = 𝑃{ Ԧ𝑥 ∈ 𝑃𝑎𝑡ℎℳ|𝒳( Ԧ𝑥, 0, 𝜑) = 1}

ℙ{𝑅𝜑(𝑋) ∈ [𝑎, 𝑏]}: = 𝑃{ Ԧ𝑥 ∈ 𝑃𝑎𝑡ℎℳ|𝜌( Ԧ𝑥, 0, 𝜑) ∈ [𝑎, 𝑏]}



Statistical Model Checking (SMC)

STL

monitor

m
STL

monitor

STL

monitor
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Average robustness degree

Robustness Distribution                                                                            

Indicators 

• (the average robustness degree)

• and                                    (the conditional averages) 9
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 Requirement-based testing for closed-loop control models

 Falsification Analysis

 Parameter Synthesis

 Mining Specifications/Requirements from Models

 Online Monitoring

 …

The many uses of STL and its quantitative semantics
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 Testing and falsification 
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Example

Throttle

Brake

Gear

Speed

RPM

Inputs:

Outputs:

Simulink model of a Car Automatic Gear Transmission Systems 



Black Box Assumption

Throttle

Brake

Gear

Speed

RPM



 For simplicity, consider the composed plant model, controller and communication to be a 
model 𝑀 that is excited by an input signal 𝐮(𝑡) and produces some output signal 𝐲 𝑡
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Black Box Assumption
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 If plant model, software and communication is simple (e.g. linear models), 
then we can do formal analysis

 Most real-world examples have very complex plants, controllers and 
communication!

 Verification problem, in the most general case is undecidable

 it is proved to be impossible to construct an algorithm that always leads to 
a correct yes-or-no answer to the problem

Challenges with real-world systems
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 For simplicity, 𝐮 is a function from 𝕋 to ℝ𝑚; let the set of all possible 
functions representing input signals be 𝑈

 Verification Problem: 

 Prove the following: ∀𝐮 ∈ 𝑈: 𝐲 = 𝑀 𝐮 ⊨ 𝜑(𝐮, 𝐲)

 Falsification/Testing Problem: 

 Find a witness to the query: ∃𝐮 ∈ 𝑈 ∶ 𝐲 = 𝑀 𝐮 ⊭ 𝜑 𝐮, 𝐲

 These formulations are quite general, as we can include the following 
“model uncertainties” as input signals: Initial states, tunable parameters in 
both plant and controller, time-varying parameter values, noise, etc., 

Verification vs. Testing
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Falsification/Testing
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Falsification by optimization
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Use robustness as a cost function to minimize with Black-box/Global Optimizers 



 Falsification or testing attempts to find one or more 𝐮 signals such that 
¬𝜑(𝐮, 𝑀(𝐮)) is true.

 In verification, the set 𝕋 (the time domain) could be unbounded, in falsification or 
testing, the time domain is necessarily bounded, i.e. 𝕋 ⊆ [0, 𝑇], where 𝑇 is some 
finite numeric constant

 In verification the co-domain of 𝐮, could be an unbounded subset of ℝ𝑚, in 
falsification, we typically consider some compact subset of ℝ𝑚

 For the 𝑖𝑡ℎ input signal component, let 𝐷𝑖 denote its compact co-domain. Then 
the input signal 𝐮 : 𝕋 ->  𝐷1 × ⋯ × 𝐷𝑚, where 𝕋 ⊆ 0, 𝑇
In simple words: input signals range over bounded intervals and over a bounded 
time horizon

Falsification/Testing
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Falsification CPS

Goal:  
Find the inputs (1) which falsify the requirements (4)

Problems:
• Falsify with a low number of simulations                     Active Learning
• Functional Input Space                                                    Adaptive Parameterization



Given:

 Set of all such input signals : 𝑈

 Input signal 𝐮 :𝕋 → 𝐷1 × ⋯ × 𝐷𝑚, where 𝕋 ⊆ 0, 𝑇 , 𝐷𝑖 ⊂ ℝ compact set

 Model 𝑀 s.t. 𝑀 𝐮 = 𝐲,  𝐲: 𝕋 → ℝ𝑛

𝑀 maps 𝐮 to some signal 𝐲 with the same domain as 𝐮, and co-domain 
some subset of ℝ𝑛

 Property 𝜑 that can be evaluated to true/false over given 𝐮 and 𝐲

Check: ∃𝐮 ∈ 𝑈 ∶ 𝐲 = 𝑀 𝐮 ⊨ ¬𝜑 𝐮, 𝐲

Falsification re-framed
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 Properties/Specifications/Requirements are rarely monolithic formulas 
𝜑(𝐮, 𝐲)

 Typically specified as a pair: a pre-condition 𝜑𝐼 on the inputs, and a post-
condition 𝜑𝑂 on the outputs

 Verification problem then stated as:

 Prove that: ∀𝐮 ∈ 𝑈: 𝐮 ⊨ 𝜑𝐼 ∧ 𝐲 = 𝑀 𝐮 ⇒ 𝐲 ⊨ 𝜑𝑂

 Testing problem stated as:

 Find 𝑢 such that 𝐮 ⊨ 𝜑𝐼 ∧ 𝐲 = 𝑀 𝐮 ∧ 𝐲 ⊭ 𝜑𝑂

Input/Output Properties for Closed-loop Models

24



 Common practice in control theory to excite closed-loop models with input 
signals of certain special shapes

 Motivation comes from theory of linear systems, where a step-response or 
impulse-response are enough to characterize all behaviors of the system

 Such special shapes do not provide comprehensive information for 
nonlinear closed-loop systems, yet, it is still common to excite these systems 
with a few common patterns

 Frequently, input signal patterns come from engineering insights or 
application-specific domain expertise

Input Properties/Pre-conditions
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Common input patterns used for testing
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𝑢

𝑡

𝑢

𝑡

𝑢

𝑡

Step

Ramp

Impulse

𝑢

𝑡

Pulse Train

𝑢

𝑡

Multiple Steps

𝑢

𝑡

Sinusoid



 Each time-point in a signal is an independent dimension, i.e. the signal can 
change arbitrarily at each time-point in the signal

 Number of independent domains is infinite (e.g. consider a signal defined 
over rational time-points)

 Typical testing approach is to find a test-suite: This is a finite number of test 
input signals (satisfying 𝜑𝐼) and then obtain output behaviors using these 
signals as test inputs. 

 If each corresponding output signal satisfies the output property 𝜑0, then 
testing concludes, indicating that the model is correct for the given test-
suite (i.e. no output in the test-suite satisfies 𝜑0).

Testing in practice
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 Find a signal generator for the property 𝜑𝐼

Function that uses random-ness to generate an input signal that satisfies 
𝜑𝐼 (hopefully, an input signal different from previously generated ones!)

 Signal generation usually relies on defining a finite parameterization for the 
input signal

For the chosen class of signals, find parameters that define the shape

Define acceptable ranges for the parameters

Define a generation function that takes the parameter values as inputs and 
generates an input signal

Signal Generation

28



Finite Parameterization
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N Control points

N variable



Finite parameterization using control points
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Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 = ൞

𝑝0 if t0 ≤ 𝑡 < 𝑡1

𝑝1 if t1 ≤ 𝑡 < 𝑡2

𝑝2 if t2 ≤ 𝑡 < 𝑡3
Control points

Acceptable ranges on 
parameters (control points)

𝑡 

𝑝0

𝑝1

𝑝2

𝑝1

𝑝0

𝑝2

𝑡1 𝑡2 𝑡3 𝑡0 

𝑢

We can view this as values of 𝑢 
are picked for (fixed) time 
points (determined a priori), 
and then 𝑢(𝑡) is generated 
using constant interpolation

ℎ

ℓ

(ℓ, ℓ, ℎ)

(ℓ, ℓ, ℓ)

(ℓ, ℎ, ℓ)

(ℎ, ℓ, ℓ)

(ℎ, ℎ, ℎ)



Finite parameterization using control points
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Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 = ൞

𝑝0 if t0 ≤ 𝑡 < 𝑡1

𝑝1 if t1 ≤ 𝑡 < 𝑡2

𝑝2 if t2 ≤ 𝑡 < 𝑡3
Control points

Acceptable ranges on 
parameters (control points)

𝑡 

𝑝0

𝑝1

𝑝2

𝑝1

𝑝0

𝑝2

𝑡1 𝑡2 𝑡3 𝑡0 

𝑢

We can view this as values of 𝑢 
are picked for (fixed) time 
points (determined a priori), 
and then 𝑢(𝑡) is generated 
using constant interpolation

ℎ

ℓ

(ℓ, ℓ, ℎ)

(ℓ, ℓ, ℓ)

(ℓ, ℎ, ℓ)

(ℎ, ℓ, ℓ)

(ℎ, ℎ, ℎ)



Finite parameterization using linear interpolation
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Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 =

𝑝0 + (𝑡 − 𝑡0) ⋅
𝑝1 − 𝑝0

𝑡1 − 𝑡0
if t0 ≤ 𝑡 < 𝑡1

𝑝1 + 𝑡 − 𝑡1 ⋅
𝑝2 − 𝑝1

𝑡2 − 𝑡1
if t1 ≤ 𝑡 < 𝑡2

𝑝2 + 𝑡 − 𝑡2 ⋅
𝑝3 − 𝑝2

𝑡3 − 𝑡2
if t2 ≤ 𝑡 < 𝑡3

We can view this as values of 𝑢 are 
picked for (fixed) time points (determined 
a priori), and then 𝑢(𝑡) is generated 
using linear interpolation

𝑃 = 𝑝0, 𝑝1, 𝑝2, 𝑝3

𝑅𝑎𝑛𝑔𝑒 𝑃 ≔
ℓ, ℎ × ℓ, ℎ × ℓ, ℎ × [ℓ, ℎ]

Control points

Acceptable ranges 
on parameters 
(control points)

𝑡 

𝑝0

𝑝1

𝑝2

𝑡1 𝑡2 𝑡3 𝑡0 

𝑢

𝑝3

ℎ

ℓ



Finite parameterization using interpolation
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Linear

Spline

Piecewise constant

Piecewise cubic interpolation

λ = [20, 40, 10, 40, 10] t = [0, 5, 10, 15, 20]



Finite parameterization variable control point times
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Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 = ൞

𝑝0 if t0 ≤ 𝑡 < 𝑡0 + 𝑑𝑡0

𝑝1 if t1 ≤ 𝑡 < 𝑡1 + 𝑑𝑡1

𝑝2 if t2 ≤ 𝑡 < 𝑇 Control points

Acceptable 
ranges on 
parameter 
values

𝑡 

𝑝0

𝑝1

𝑝2

𝑡1 𝑡2 𝑇𝑡0 

𝑢

We can view this as values of 𝑢 
and time increments in 𝑢 are 
both picked, and then 𝑢(𝑡) is 
generated using constant 
interpolation

ℎ

ℓ

𝑑𝑡0 𝑑𝑡1 
𝑃 = 𝑝0, 𝑝1, 𝑝2, 𝑑𝑡0, 𝑑𝑡1

𝑅𝑎𝑛𝑔𝑒 𝑃 ≔
ℓ, ℎ × ℓ, ℎ × ℓ, ℎ ×

𝜏ℓ, 𝜏ℎ × [𝜏ℓ, 𝜏ℎ]
Acceptable 
ranges on time 
increments



 Signal Generation controlled by the testing algorithm
 Parameter space could be sampled all at once
 Parameter space could be sampled in a sequential fashion, e.g. using a method such as Markov Chain 

Monte Carlo
 Sampling scheme could be application-specific: uniform random, quasi-random (more evenly spread 

out), truncated normal, grid-based sampling (points from a fixed grid), etc.

Signal Generator
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Generate 
Signal

Sample 
Parameter 

Space

𝑅𝑎𝑛𝑔𝑒 𝑃 = ℓ𝑖, ℎ𝑖
|𝑃|

𝑡

𝑢



Black-box Optimization
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𝑀

Cost function 
𝐶(𝑢, 𝑀(𝑢))

Black-box 
Optimizer

 Given:

 Function 𝑀: 𝑈 → 𝑌 with unknown 
symbolic representation

 Ability to query the value of 𝑀 at any 
given u; query will return some 𝑦

 Cost function 𝐶: 𝑋 × 𝑌 → ℝ

 Objective of black-box optimizer

 Let  𝑥∗ = min
𝑥∈X 

𝐶(𝑥, 𝑓 𝑥 )

 Find ො𝑥 such that ‖ ො𝑥 − 𝑥∗‖ is small

 Let ෝ𝑥𝑖 be the best answer found by 
optimizer in its 𝑖𝑡ℎ iteration

 Ideally, lim
𝑖→∞

 ෝ𝑥𝑖 − 𝑥∗ = 0



Falsification using Optimization
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\

𝑢(𝑡)
𝑦(𝑡)

Minimize 
robustness


\

Compute 
Robustness

Parameter Space

HALT

𝜌 𝑦, 𝜑 < 0



 Given: a finite parameterization for input signals, a model that can be 
simulated and an STL property

 While the number of allowed iterations is not exhausted do:
pick values for the signal parameters
generate an input signal
run simulation with generated input signal to get output signal
compute robustness value of given property w.r.t. the input/output signals
 if robustness value is negative, HALT
pick a new set of values for the signal parameters based on certain 

heuristics

Step-by-step of how falsification works
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 Pick random sampling as a (not very good) strategy!

 Basic method: locally approximate the gradient of the function 𝜌 locally, and chose the 
direction of steepest descent (greedy heuristic to take you quickly close to a local 
optimum)

 Challenge 1: cost surface may not be convex, thus you could have many local optima

 Challenge 2: cost surface may be highly nonlinear and even discontinuous, using just 
gradient-based methods may not work well

 Heuristics rely on:
 combining gradient-based methods with perturbing the search strategy (e.g. simulated 

annealing, stochastic local search with random restarts)
 evolutionary strategies: Covariance Matrix Adaptation Evolution Strategy (CMA-ES), 

genetic algorithms etc.
 probabilistic techniques: Ant Colony Optimization, Cross-Entropy optimization, Bayesian

optimization

Picking new parameter values to explore
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Model

Throttle

Brake

Gear

Speed

RPM

Inputs:

Outputs:



Model

Throttle

Brake

Gear

Speed

RPM



Black Box Assumption

Throttle

Brake

Gear

Speed

RPM

• Less information
• A more general Approach (interesting for industries)



Falsification of CPS

Goal:  
Find the inputs (1) which falsify the requirements (4)

Problems:
• Falsify with a low number of simulations                     Active Learning
• Functional Input Space                                                    Adaptive Parameterization



Gaussian Processes
Definition

where 𝑚 =  (𝑚(𝑡1), 𝑚(𝑡2), . . . , 𝑚(𝑡𝑛)) is the vector mean

𝐾 ∈ ℝ𝑛×𝑛  is the covariance matrix, such that 𝐾𝑖𝑗  =  𝑘(𝑓(𝑡𝑖), 𝑓(𝑡𝑗)) 

Prediction

𝑓 ∼  𝐺𝑃(𝑚, 𝑘)  ⇐⇒  (𝑓(𝑡1), 𝑓(𝑡2), … , 𝑓(𝑡𝑛))  ∼  𝑁(𝑚, 𝐾) 



4
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Gaussian Process Regression

Under Gaussian noise                           
predictions have an analytic expression.

Gaussian Processes can be used for Bayesian prediction and classification tasks. 

Idea: put a GP prior on functions; condition on observed data (training set) (𝑥𝑖 , 𝑦𝑖); 
we compute a posterior distribution on functions; make predictions. 

Latent function: 𝑓 , GP ;  Noise model: 𝑝(𝑦𝑖|𝑓(𝑥𝑖))

Prediction (latent function 𝑓∗ at 𝑥∗)



Domain Estimation Problem

Finding the trajectories  which falsify the requirements, finding 𝒖 ∈ 𝐵  

B= {𝒖 ∈ U | 𝜌 𝜙, 𝒖, 0 < 0} ⊆ 𝑈

➢ Training Set:  K= {𝒖i, }𝜌(𝜙, 𝒖𝑖 , 0)) 𝑖≤𝑛 (the partial knowledge after n iterations)

➢ Gaussian Process: 𝜌𝐾 𝒖 ~ 𝐺𝑃(𝑚𝐾 𝒖 , 𝜎𝐾(𝒖)) (the partial model)

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

Idea: implementing an iterative sample strategy in order to increase the probability to 
sample a point in B, as the number of iterations increases. 



Domain Estimation Algorithm (DEA)

𝑢1

𝑢2

B= {𝒖 ∈ U | 𝜌 𝑀 𝒖 , 𝜙 }< 0



Domain Estimation Algorithm (DEA)

Training Set

𝑢1

𝑢2



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

𝑢1

𝑢2



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

𝑢1

𝑢2



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)



Domain Estimation Problem

Finding the trajectories  which falsify the requirements, finding 𝒖 ∈ 𝐵  

B = {𝒖 ∈ U | 𝜌 𝜙, 𝒖, 0 }< 0 ⊆ 𝑈

We call B the counterexample set and its elements counterexamples

If B is empty then 𝜌 𝜙, 𝒖, 0 ≥ 0

Solving the domain estimation problem could be extremely difficult because of the infinite 
dimensionality of the input space, which is a space of functions



Finite Parameterization

60

N Control points

N variable



Domain Estimation Problem

Finding the trajectories  which falsify the requirements, finding Ƹ𝑐  ∈ ෠𝐵

෠𝐵 = { Ƹ𝑐 ∈ 𝑈𝑛1
× · · · × 𝑈𝑛 𝑈

| 𝜌 𝜙, 𝑃𝒏 Ƹ𝑐 , 0 ) < 0 }

Where 𝑐𝑘  =  {(𝑡1
𝑘 , 𝑢𝑛

𝑘
𝑘

 ), . . . , (𝑡𝑛
𝑘

𝑘
, 𝑢𝑘𝑛

 )} and 𝑃𝒏  =  (𝑃𝑛1
, … , 𝑃𝑛 𝑈

)  

Piecewise linear or polynomial functions are known to be dense in the space of 
continuous functions!

Then,  B has at least one element ⇐⇒ ∃𝑛 ∈ ω|𝑈| , ෠𝐵 has at least one element. 
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N Control points

2N variable
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Model

Throttle

Brake

Gear

Speed

RPM

Inputs:

Outputs:

https://it.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html

https://it.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html


Falsification:

 Silvetti S., Policriti A., Bortolussi L. (2017) An Active Learning Approach to the Falsification of Black Box Cyber-Physical Systems. IFM 
2017. LNCS, vol 10510. Springer, Cham.

 Several excellent papers on the first development of falsification technology can be found on the web-site of S-TaLiRo : 
https://sites.google.com/a/asu.edu/s-taliro/references

 Jyotirmoy Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, and Vinayak S. Prabhu. 2017. Testing Cyber-Physical Systems 
through Bayesian Optimization. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 170 (September 2017)

 Deshmukh, Jyotirmoy, Xiaoqing Jin, James Kapinski, and Oded Maler. Stochastic Local Search for Falsification of Hybrid Systems. In 
International Symposium on Automated Technology for Verification and Analysis, pp. 500-517. 
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Parameter Synthesis



Problem
Given a model, depending on a set of parameters 𝜃 ∈ Θ, and a specification 𝜙 

(STL formula), find the parameter combination θ s.t. the system satisfies φ as 
more as possible

Solution Strategy

•  rephrase it as a optimisation problem (maximizing 𝜌) 

•  evaluate the function to optimise   

•  solve the optimisation problem 

Parameter Synthesis



Problem
Find the parameter configuration that maximizes E[Rφ](θ), of which we 

have few costly and noisy evaluations. 

Methodology

1. Sample {(θ(i),y(i)), i = 1,...,n}

2. Emulate (GP Regression): E[Rφ] ∼ GP(μ,k)

3. Optimize the emulation via GP-UCB algorithm, new θ(n+1) 

Parameter Synthesis
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1

Gaussian Process Regression

Under Gaussian noise                           
predictions have an analytic expression.

Gaussian Processes can be used for Bayesian prediction and classification tasks. 

Idea: put a GP prior on functions; condition on observed data (training set) (𝑥𝑖 , 𝑦𝑖); 
we compute a posterior distribution on functions; make predictions. 

Latent function: 𝑓 , GP ;  Noise model: 𝑝(𝑦𝑖|𝑓(𝑥𝑖))

Prediction (latent function 𝑓∗ at 𝑥∗)



(1) Sample
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Collection of the training set {(θ(i),y(i)), i = 1,...,m} for parameters values θ. 



(2) The GP Regression
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We have noisy observations y of the function value distributed around 
an unknown true value f (θ) with spherical Gaussian noise 
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We have noisy observations y of the function value distributed around 
an unknown true value f (θ) with spherical Gaussian noise 
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(3) The GP-UCB Algorithm
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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(3) The GP-UCB Algorithm
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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(3) The GP-UCB Algorithm
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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(3) The GP-UCB Algorithm

80

Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:



Parameter Synthesis:

 Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Guido Sanguinetti, System design of stochastic models using robustness of temporal 
properties. Theor. Comput. Sci. 587: 3-25 (2015)

 Bortolussi L., Silvetti S. (2018) Bayesian Statistical Parameter Synthesis for Linear Temporal Properties of Stochastic Models. TACAS 
2018. LNCS, vol 10806. Springer, Cham
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