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Terminology

• Syntax: A set of syntactic rules that allow us to construct formulas from 
specific ground terms 

• Semantics: A set of rules that assign meanings to well-formed formulas 
obtained by using above syntactic rules 

• Model-checking/Verification: 𝑀 ⊨ 𝜙 ⟺ ∀𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀 𝑠 𝜑, 𝐱, 0 = 1

• Monitoring: computing 𝑠 for a single trace 𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀

• Statistical Model Checking: “doing statistics” on s 𝜑, 𝐱, 0 for a finite-
subset of 𝑡𝑟𝑎𝑐𝑒 𝑀



STL Monitor
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An STL monitor is a transducer that transforms x into Boolean or a quantitative signal
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Parametric Chemical Reaction Network (PCRN)

Population CTMC models, i.e. CTMC models in the biochemical reactions style. 

𝑛

𝐗 = (𝑋𝑆1
, … , 𝑋𝑆𝑛

) ∈ ℕ,

𝑓(𝑿, 𝜽).
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Example: SIR epidemic model

State vector: 
Vector of parameters:

infection:                    

recover:          

loss of immunity:

susceptible

recovered
infected

𝑆 + 𝐼 → 2𝐼 𝑓𝑖(𝑿, 𝜽) = 𝑘𝑖𝑋𝑆𝑋𝐼

𝜽 = (𝑘𝑖, 𝑘𝑟, 𝑘𝑙)

𝐼 → 𝑅

𝑅 → 𝑆

𝐗 = (𝑋𝑆, 𝑋𝐼, 𝑋𝑅)

𝑓𝑟(𝑿, 𝜽) = 𝑘𝑟𝑋𝐼

𝑓𝑙(𝑿, 𝜽) = 𝑘𝑙𝑋𝑅

ℳ𝜽
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Example: SIRS epidemic model



Stochastic Semantics

𝑃(𝜑) = ℙ{𝐼𝜑(𝑋) = 1}: = 𝑃{ Ԧ𝑥 ∈ 𝑃𝑎𝑡ℎℳ|𝒳( Ԧ𝑥, 0, 𝜑) = 1}

ℙ{𝑅𝜑(𝑋) ∈ [𝑎, 𝑏]}: = 𝑃{ Ԧ𝑥 ∈ 𝑃𝑎𝑡ℎℳ|𝜌( Ԧ𝑥, 0, 𝜑) ∈ [𝑎, 𝑏]}



Statistical Model Checking (SMC)

STL

monitor

m
STL

monitor

STL

monitor
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Average robustness degree

Robustness Distribution                                                                            

Indicators 

• (the average robustness degree)

• and                                    (the conditional averages) 9
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 Requirement-based testing for closed-loop control models

 Falsification Analysis

 Parameter Synthesis

 Mining Specifications/Requirements from Models

 Online Monitoring

 …

The many uses of STL and its quantitative semantics
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 Testing and falsification 
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Example

Throttle

Brake

Gear

Speed

RPM

Inputs:

Outputs:

Simulink model of a Car Automatic Gear Transmission Systems 



Black Box Assumption

Throttle

Brake

Gear

Speed

RPM



 For simplicity, consider the composed plant model, controller and communication to be a 
model 𝑀 that is excited by an input signal 𝐮(𝑡) and produces some output signal 𝐲 𝑡
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Black Box Assumption
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 If plant model, software and communication is simple (e.g. linear models), 
then we can do formal analysis

 Most real-world examples have very complex plants, controllers and 
communication!

 Verification problem, in the most general case is undecidable

 it is proved to be impossible to construct an algorithm that always leads to 
a correct yes-or-no answer to the problem

Challenges with real-world systems
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 For simplicity, 𝐮 is a function from 𝕋 to ℝ𝑚; let the set of all possible 
functions representing input signals be 𝑈

 Verification Problem: 

 Prove the following: ∀𝐮 ∈ 𝑈: 𝐲 = 𝑀 𝐮 ⊨ 𝜑(𝐮, 𝐲)

 Falsification/Testing Problem: 

 Find a witness to the query: ∃𝐮 ∈ 𝑈 ∶ 𝐲 = 𝑀 𝐮 ⊭ 𝜑 𝐮, 𝐲

 These formulations are quite general, as we can include the following 
“model uncertainties” as input signals: Initial states, tunable parameters in 
both plant and controller, time-varying parameter values, noise, etc., 

Verification vs. Testing
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Falsification/Testing
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Falsification by optimization
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Use robustness as a cost function to minimize with Black-box/Global Optimizers 



 Falsification or testing attempts to find one or more 𝐮 signals such that 
¬𝜑(𝐮, 𝑀(𝐮)) is true.

 In verification, the set 𝕋 (the time domain) could be unbounded, in falsification or 
testing, the time domain is necessarily bounded, i.e. 𝕋 ⊆ [0, 𝑇], where 𝑇 is some 
finite numeric constant

 In verification the co-domain of 𝐮, could be an unbounded subset of ℝ𝑚, in 
falsification, we typically consider some compact subset of ℝ𝑚

 For the 𝑖𝑡ℎ input signal component, let 𝐷𝑖 denote its compact co-domain. Then 
the input signal 𝐮 : 𝕋 ->  𝐷1 × ⋯ × 𝐷𝑚, where 𝕋 ⊆ 0, 𝑇
In simple words: input signals range over bounded intervals and over a bounded 
time horizon

Falsification/Testing
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Falsification CPS

Goal:  
Find the inputs (1) which falsify the requirements (4)

Problems:
• Falsify with a low number of simulations                     Active Learning
• Functional Input Space                                                    Adaptive Parameterization



Given:

 Set of all such input signals : 𝑈

 Input signal 𝐮 :𝕋 → 𝐷1 × ⋯ × 𝐷𝑚, where 𝕋 ⊆ 0, 𝑇 , 𝐷𝑖 ⊂ ℝ compact set

 Model 𝑀 s.t. 𝑀 𝐮 = 𝐲,  𝐲: 𝕋 → ℝ𝑛

𝑀 maps 𝐮 to some signal 𝐲 with the same domain as 𝐮, and co-domain 
some subset of ℝ𝑛

 Property 𝜑 that can be evaluated to true/false over given 𝐮 and 𝐲

Check: ∃𝐮 ∈ 𝑈 ∶ 𝐲 = 𝑀 𝐮 ⊨ ¬𝜑 𝐮, 𝐲

Falsification re-framed
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 Properties/Specifications/Requirements are rarely monolithic formulas 
𝜑(𝐮, 𝐲)

 Typically specified as a pair: a pre-condition 𝜑𝐼 on the inputs, and a post-
condition 𝜑𝑂 on the outputs

 Verification problem then stated as:

 Prove that: ∀𝐮 ∈ 𝑈: 𝐮 ⊨ 𝜑𝐼 ∧ 𝐲 = 𝑀 𝐮 ⇒ 𝐲 ⊨ 𝜑𝑂

 Testing problem stated as:

 Find 𝑢 such that 𝐮 ⊨ 𝜑𝐼 ∧ 𝐲 = 𝑀 𝐮 ∧ 𝐲 ⊭ 𝜑𝑂

Input/Output Properties for Closed-loop Models
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 Common practice in control theory to excite closed-loop models with input 
signals of certain special shapes

 Motivation comes from theory of linear systems, where a step-response or 
impulse-response are enough to characterize all behaviors of the system

 Such special shapes do not provide comprehensive information for 
nonlinear closed-loop systems, yet, it is still common to excite these systems 
with a few common patterns

 Frequently, input signal patterns come from engineering insights or 
application-specific domain expertise

Input Properties/Pre-conditions
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Common input patterns used for testing
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𝑢

𝑡

𝑢

𝑡

𝑢

𝑡

Step

Ramp

Impulse

𝑢

𝑡

Pulse Train

𝑢

𝑡

Multiple Steps

𝑢

𝑡

Sinusoid



 Each time-point in a signal is an independent dimension, i.e. the signal can 
change arbitrarily at each time-point in the signal

 Number of independent domains is infinite (e.g. consider a signal defined 
over rational time-points)

 Typical testing approach is to find a test-suite: This is a finite number of test 
input signals (satisfying 𝜑𝐼) and then obtain output behaviors using these 
signals as test inputs. 

 If each corresponding output signal satisfies the output property 𝜑0, then 
testing concludes, indicating that the model is correct for the given test-
suite (i.e. no output in the test-suite satisfies 𝜑0).

Testing in practice
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 Find a signal generator for the property 𝜑𝐼

Function that uses random-ness to generate an input signal that satisfies 
𝜑𝐼 (hopefully, an input signal different from previously generated ones!)

 Signal generation usually relies on defining a finite parameterization for the 
input signal

For the chosen class of signals, find parameters that define the shape

Define acceptable ranges for the parameters

Define a generation function that takes the parameter values as inputs and 
generates an input signal

Signal Generation

28



Finite Parameterization
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N Control points

N variable



Finite parameterization using control points
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Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 = ൞

𝑝0 if t0 ≤ 𝑡 < 𝑡1

𝑝1 if t1 ≤ 𝑡 < 𝑡2

𝑝2 if t2 ≤ 𝑡 < 𝑡3
Control points

Acceptable ranges on 
parameters (control points)

𝑡 

𝑝0

𝑝1

𝑝2

𝑝1

𝑝0

𝑝2

𝑡1 𝑡2 𝑡3 𝑡0 

𝑢

We can view this as values of 𝑢 
are picked for (fixed) time 
points (determined a priori), 
and then 𝑢(𝑡) is generated 
using constant interpolation

ℎ

ℓ

(ℓ, ℓ, ℎ)

(ℓ, ℓ, ℓ)

(ℓ, ℎ, ℓ)

(ℎ, ℓ, ℓ)

(ℎ, ℎ, ℎ)



Finite parameterization using control points
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Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 = ൞

𝑝0 if t0 ≤ 𝑡 < 𝑡1

𝑝1 if t1 ≤ 𝑡 < 𝑡2

𝑝2 if t2 ≤ 𝑡 < 𝑡3
Control points

Acceptable ranges on 
parameters (control points)

𝑡 

𝑝0

𝑝1

𝑝2

𝑝1

𝑝0

𝑝2

𝑡1 𝑡2 𝑡3 𝑡0 

𝑢

We can view this as values of 𝑢 
are picked for (fixed) time 
points (determined a priori), 
and then 𝑢(𝑡) is generated 
using constant interpolation

ℎ

ℓ

(ℓ, ℓ, ℎ)

(ℓ, ℓ, ℓ)

(ℓ, ℎ, ℓ)

(ℎ, ℓ, ℓ)

(ℎ, ℎ, ℎ)



Finite parameterization using linear interpolation

32

Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 =

𝑝0 + (𝑡 − 𝑡0) ⋅
𝑝1 − 𝑝0

𝑡1 − 𝑡0
if t0 ≤ 𝑡 < 𝑡1

𝑝1 + 𝑡 − 𝑡1 ⋅
𝑝2 − 𝑝1

𝑡2 − 𝑡1
if t1 ≤ 𝑡 < 𝑡2

𝑝2 + 𝑡 − 𝑡2 ⋅
𝑝3 − 𝑝2

𝑡3 − 𝑡2
if t2 ≤ 𝑡 < 𝑡3

We can view this as values of 𝑢 are 
picked for (fixed) time points (determined 
a priori), and then 𝑢(𝑡) is generated 
using linear interpolation

𝑃 = 𝑝0, 𝑝1, 𝑝2, 𝑝3

𝑅𝑎𝑛𝑔𝑒 𝑃 ≔
ℓ, ℎ × ℓ, ℎ × ℓ, ℎ × [ℓ, ℎ]

Control points

Acceptable ranges 
on parameters 
(control points)

𝑡 

𝑝0

𝑝1

𝑝2

𝑡1 𝑡2 𝑡3 𝑡0 

𝑢

𝑝3

ℎ

ℓ



Finite parameterization using interpolation
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Linear

Spline

Piecewise constant

Piecewise cubic interpolation

λ = [20, 40, 10, 40, 10] t = [0, 5, 10, 15, 20]



Finite parameterization variable control point times
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Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 = ൞

𝑝0 if t0 ≤ 𝑡 < 𝑡0 + 𝑑𝑡0

𝑝1 if t1 ≤ 𝑡 < 𝑡1 + 𝑑𝑡1

𝑝2 if t2 ≤ 𝑡 < 𝑇 Control points

Acceptable 
ranges on 
parameter 
values

𝑡 

𝑝0

𝑝1

𝑝2

𝑡1 𝑡2 𝑇𝑡0 

𝑢

We can view this as values of 𝑢 
and time increments in 𝑢 are 
both picked, and then 𝑢(𝑡) is 
generated using constant 
interpolation

ℎ

ℓ

𝑑𝑡0 𝑑𝑡1 
𝑃 = 𝑝0, 𝑝1, 𝑝2, 𝑑𝑡0, 𝑑𝑡1

𝑅𝑎𝑛𝑔𝑒 𝑃 ≔
ℓ, ℎ × ℓ, ℎ × ℓ, ℎ ×

𝜏ℓ, 𝜏ℎ × [𝜏ℓ, 𝜏ℎ]
Acceptable 
ranges on time 
increments



 Signal Generation controlled by the testing algorithm
 Parameter space could be sampled all at once
 Parameter space could be sampled in a sequential fashion, e.g. using a method such as Markov Chain 

Monte Carlo
 Sampling scheme could be application-specific: uniform random, quasi-random (more evenly spread 

out), truncated normal, grid-based sampling (points from a fixed grid), etc.

Signal Generator
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Generate 
Signal

Sample 
Parameter 

Space

𝑅𝑎𝑛𝑔𝑒 𝑃 = ℓ𝑖, ℎ𝑖
|𝑃|

𝑡

𝑢



Black-box Optimization
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𝑀

Cost function 
𝐶(𝑢, 𝑀(𝑢))

Black-box 
Optimizer

 Given:

 Function 𝑀: 𝑈 → 𝑌 with unknown 
symbolic representation

 Ability to query the value of 𝑀 at any 
given u; query will return some 𝑦

 Cost function 𝐶: 𝑋 × 𝑌 → ℝ

 Objective of black-box optimizer

 Let  𝑥∗ = min
𝑥∈X 

𝐶(𝑥, 𝑓 𝑥 )

 Find ො𝑥 such that ‖ ො𝑥 − 𝑥∗‖ is small

 Let ෝ𝑥𝑖 be the best answer found by 
optimizer in its 𝑖𝑡ℎ iteration

 Ideally, lim
𝑖→∞

 ෝ𝑥𝑖 − 𝑥∗ = 0



Falsification using Optimization
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\

𝑢(𝑡)
𝑦(𝑡)

Minimize 
robustness


\

Compute 
Robustness

Parameter Space

HALT

𝜌 𝑦, 𝜑 < 0



 Given: a finite parameterization for input signals, a model that can be 
simulated and an STL property

 While the number of allowed iterations is not exhausted do:
pick values for the signal parameters
generate an input signal
run simulation with generated input signal to get output signal
compute robustness value of given property w.r.t. the input/output signals
 if robustness value is negative, HALT
pick a new set of values for the signal parameters based on certain 

heuristics

Step-by-step of how falsification works
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 Pick random sampling as a (not very good) strategy!

 Basic method: locally approximate the gradient of the function 𝜌 locally, and chose the 
direction of steepest descent (greedy heuristic to take you quickly close to a local 
optimum)

 Challenge 1: cost surface may not be convex, thus you could have many local optima

 Challenge 2: cost surface may be highly nonlinear and even discontinuous, using just 
gradient-based methods may not work well

 Heuristics rely on:
 combining gradient-based methods with perturbing the search strategy (e.g. simulated 

annealing, stochastic local search with random restarts)
 evolutionary strategies: Covariance Matrix Adaptation Evolution Strategy (CMA-ES), 

genetic algorithms etc.
 probabilistic techniques: Ant Colony Optimization, Cross-Entropy optimization, Bayesian

optimization

Picking new parameter values to explore
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Model

Throttle

Brake

Gear

Speed

RPM

Inputs:

Outputs:



Model

Throttle

Brake

Gear

Speed

RPM



Black Box Assumption

Throttle

Brake

Gear

Speed

RPM

• Less information
• A more general Approach (interesting for industries)



Falsification of CPS

Goal:  
Find the inputs (1) which falsify the requirements (4)

Problems:
• Falsify with a low number of simulations                     Active Learning
• Functional Input Space                                                    Adaptive Parameterization



Gaussian Processes
Definition

where 𝑚 =  (𝑚(𝑡1), 𝑚(𝑡2), . . . , 𝑚(𝑡𝑛)) is the vector mean

𝐾 ∈ ℝ𝑛×𝑛  is the covariance matrix, such that 𝐾𝑖𝑗  =  𝑘(𝑓(𝑡𝑖), 𝑓(𝑡𝑗)) 

Prediction

𝑓 ∼  𝐺𝑃(𝑚, 𝑘)  ⇐⇒  (𝑓(𝑡1), 𝑓(𝑡2), … , 𝑓(𝑡𝑛))  ∼  𝑁(𝑚, 𝐾) 
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Gaussian Process Regression

Under Gaussian noise                           
predictions have an analytic expression.

Gaussian Processes can be used for Bayesian prediction and classification tasks. 

Idea: put a GP prior on functions; condition on observed data (training set) (𝑥𝑖 , 𝑦𝑖); 
we compute a posterior distribution on functions; make predictions. 

Latent function: 𝑓 , GP ;  Noise model: 𝑝(𝑦𝑖|𝑓(𝑥𝑖))

Prediction (latent function 𝑓∗ at 𝑥∗)



Domain Estimation Problem

Finding the trajectories  which falsify the requirements, finding 𝒖 ∈ 𝐵  

B= {𝒖 ∈ U | 𝜌 𝜙, 𝒖, 0 < 0} ⊆ 𝑈

➢ Training Set:  K= {𝒖i, }𝜌(𝜙, 𝒖𝑖 , 0)) 𝑖≤𝑛 (the partial knowledge after n iterations)

➢ Gaussian Process: 𝜌𝐾 𝒖 ~ 𝐺𝑃(𝑚𝐾 𝒖 , 𝜎𝐾(𝒖)) (the partial model)

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

Idea: implementing an iterative sample strategy in order to increase the probability to 
sample a point in B, as the number of iterations increases. 



Domain Estimation Algorithm (DEA)

𝑢1

𝑢2

B= {𝒖 ∈ U | 𝜌 𝑀 𝒖 , 𝜙 }< 0



Domain Estimation Algorithm (DEA)

Training Set

𝑢1

𝑢2



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

𝑢1

𝑢2



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

𝑢1

𝑢2



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)



Domain Estimation Problem

Finding the trajectories  which falsify the requirements, finding 𝒖 ∈ 𝐵  

B = {𝒖 ∈ U | 𝜌 𝜙, 𝒖, 0 }< 0 ⊆ 𝑈

We call B the counterexample set and its elements counterexamples

If B is empty then 𝜌 𝜙, 𝒖, 0 ≥ 0

Solving the domain estimation problem could be extremely difficult because of the infinite 
dimensionality of the input space, which is a space of functions



Finite Parameterization

60

N Control points

N variable



Domain Estimation Problem

Finding the trajectories  which falsify the requirements, finding Ƹ𝑐  ∈ 𝐵

𝐵 = { Ƹ𝑐 ∈ 𝑈𝑛1
× · · · × 𝑈𝑛 𝑈

| 𝜌 𝜙, 𝑃𝒏 Ƹ𝑐 , 0 ) < 0 }

Where 𝑐𝑘  =  {(𝑡1
𝑘 , 𝑢𝑛

𝑘
𝑘

 ), . . . , (𝑡𝑛
𝑘

𝑘
, 𝑢𝑘𝑛

 )} and 𝑃𝒏  =  (𝑃𝑛1
, … , 𝑃𝑛 𝑈

)  

Piecewise linear or polynomial functions are known to be dense in the space of 
continuous functions!

Then,  B has at least one element ⇐⇒ ∃𝑛 ∈ ω|𝑈| , 𝐵 has at least one element. 



Adaptive Parameterization
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N Control points

2N variable



Tests Case & Results
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Model

Throttle

Brake

Gear

Speed

RPM

Inputs:

Outputs:

https://it.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html

https://it.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html


Falsification:

 Silvetti S., Policriti A., Bortolussi L. (2017) An Active Learning Approach to the Falsification of Black Box Cyber-Physical Systems. IFM 
2017. LNCS, vol 10510. Springer, Cham.

 Several excellent papers on the first development of falsification technology can be found on the web-site of S-TaLiRo : 
https://sites.google.com/a/asu.edu/s-taliro/references

 Jyotirmoy Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, and Vinayak S. Prabhu. 2017. Testing Cyber-Physical Systems 
through Bayesian Optimization. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 170 (September 2017)

 Deshmukh, Jyotirmoy, Xiaoqing Jin, James Kapinski, and Oded Maler. Stochastic Local Search for Falsification of Hybrid Systems. In 
International Symposium on Automated Technology for Verification and Analysis, pp. 500-517. 
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Parameter Synthesis



Problem
Given a model, depending on a set of parameters 𝜃 ∈ Θ, and a specification 𝜙 

(STL formula), find the parameter combination θ s.t. the system satisfies φ as 
more as possible

Solution Strategy

•  rephrase it as a optimisation problem (maximizing 𝜌) 

•  evaluate the function to optimise   

•  solve the optimisation problem 

Parameter Synthesis



Problem
Find the parameter configuration that maximizes E[Rφ](θ), of which we 

have few costly and noisy evaluations. 

Methodology

1. Sample {(θ(i),y(i)), i = 1,...,n}

2. Emulate (GP Regression): E[Rφ] ∼ GP(μ,k)

3. Optimize the emulation via GP-UCB algorithm, new θ(n+1) 

Parameter Synthesis
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Gaussian Process Regression

Under Gaussian noise                           
predictions have an analytic expression.

Gaussian Processes can be used for Bayesian prediction and classification tasks. 

Idea: put a GP prior on functions; condition on observed data (training set) (𝑥𝑖 , 𝑦𝑖); 
we compute a posterior distribution on functions; make predictions. 

Latent function: 𝑓 , GP ;  Noise model: 𝑝(𝑦𝑖|𝑓(𝑥𝑖))

Prediction (latent function 𝑓∗ at 𝑥∗)



(1) Sample
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Collection of the training set {(θ(i),y(i)), i = 1,...,m} for parameters values θ. 



(2) The GP Regression
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We have noisy observations y of the function value distributed around 
an unknown true value f (θ) with spherical Gaussian noise 
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(2) The GP Regression
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We have noisy observations y of the function value distributed around 
an unknown true value f (θ) with spherical Gaussian noise 
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(3) The GP-UCB Algorithm
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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(3) The GP-UCB Algorithm
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:



Parameter Synthesis:

 Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Guido Sanguinetti, System design of stochastic models using robustness of temporal 
properties. Theor. Comput. Sci. 587: 3-25 (2015)

 Bortolussi L., Silvetti S. (2018) Bayesian Statistical Parameter Synthesis for Linear Temporal Properties of Stochastic Models. TACAS 
2018. LNCS, vol 10806. Springer, Cham
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