
Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste

I Semestre 2024

Lecture 14-15: STL applications: testing and falsification,
parameter synthesis

[Many Slides due to J. Deshmukh, S. Silvetti]

2

Terminology

• Syntax: A set of syntactic rules that allow us to construct formulas from
specific ground terms

• Semantics: A set of rules that assign meanings to well-formed formulas
obtained by using above syntactic rules

• Model-checking/Verification: 𝑀 ⊨ 𝜙 ⟺ ∀𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀 𝑠 𝜑, 𝐱, 0 = 1

• Monitoring: computing 𝑠 for a single trace 𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀

• Statistical Model Checking: “doing statistics” on s 𝜑, 𝐱, 0 for a finite-
subset of 𝑡𝑟𝑎𝑐𝑒 𝑀

STL Monitor

3
An STL monitor is a transducer that transforms x into Boolean or a quantitative signal

4

Parametric Chemical Reaction Network (PCRN)

Population CTMC models, i.e. CTMC models in the biochemical reactions style.

𝑛

𝐗 = (𝑋𝑆1
, … , 𝑋𝑆𝑛

) ∈ ℕ,

𝑓(𝑿, 𝜽).

5

Example: SIR epidemic model

State vector:
Vector of parameters:

infection:

recover:

loss of immunity:

susceptible

recovered
infected

𝑆 + 𝐼 → 2𝐼 𝑓𝑖(𝑿, 𝜽) = 𝑘𝑖𝑋𝑆𝑋𝐼

𝜽 = (𝑘𝑖, 𝑘𝑟, 𝑘𝑙)

𝐼 → 𝑅

𝑅 → 𝑆

𝐗 = (𝑋𝑆, 𝑋𝐼, 𝑋𝑅)

𝑓𝑟(𝑿, 𝜽) = 𝑘𝑟𝑋𝐼

𝑓𝑙(𝑿, 𝜽) = 𝑘𝑙𝑋𝑅

ℳ𝜽

6

Example: SIRS epidemic model

Stochastic Semantics

𝑃(𝜑) = ℙ{𝐼𝜑(𝑋) = 1}: = 𝑃{ Ԧ𝑥 ∈ 𝑃𝑎𝑡ℎℳ|𝒳(Ԧ𝑥, 0, 𝜑) = 1}

ℙ{𝑅𝜑(𝑋) ∈ [𝑎, 𝑏]}: = 𝑃{ Ԧ𝑥 ∈ 𝑃𝑎𝑡ℎℳ|𝜌(Ԧ𝑥, 0, 𝜑) ∈ [𝑎, 𝑏]}

Statistical Model Checking (SMC)

STL

monitor

m
STL

monitor

STL

monitor

9

Average robustness degree

Robustness Distribution

Indicators

• (the average robustness degree)

• and (the conditional averages) 9

10

 Requirement-based testing for closed-loop control models

 Falsification Analysis

 Parameter Synthesis

 Mining Specifications/Requirements from Models

 Online Monitoring

 …

The many uses of STL and its quantitative semantics

11

 Testing and falsification

12

Example

Throttle

Brake

Gear

Speed

RPM

Inputs:

Outputs:

Simulink model of a Car Automatic Gear Transmission Systems

Black Box Assumption

Throttle

Brake

Gear

Speed

RPM

 For simplicity, consider the composed plant model, controller and communication to be a
model 𝑀 that is excited by an input signal 𝐮(𝑡) and produces some output signal 𝐲 𝑡

15

Black Box Assumption

16

 If plant model, software and communication is simple (e.g. linear models),
then we can do formal analysis

 Most real-world examples have very complex plants, controllers and
communication!

 Verification problem, in the most general case is undecidable

 it is proved to be impossible to construct an algorithm that always leads to
a correct yes-or-no answer to the problem

Challenges with real-world systems

17

 For simplicity, 𝐮 is a function from 𝕋 to ℝ𝑚; let the set of all possible
functions representing input signals be 𝑈

 Verification Problem:

 Prove the following: ∀𝐮 ∈ 𝑈: 𝐲 = 𝑀 𝐮 ⊨ 𝜑(𝐮, 𝐲)

 Falsification/Testing Problem:

 Find a witness to the query: ∃𝐮 ∈ 𝑈 ∶ 𝐲 = 𝑀 𝐮 ⊭ 𝜑 𝐮, 𝐲

 These formulations are quite general, as we can include the following
“model uncertainties” as input signals: Initial states, tunable parameters in
both plant and controller, time-varying parameter values, noise, etc.,

Verification vs. Testing

18

Falsification/Testing

19

Falsification by optimization

20

Use robustness as a cost function to minimize with Black-box/Global Optimizers

 Falsification or testing attempts to find one or more 𝐮 signals such that
¬𝜑(𝐮, 𝑀(𝐮)) is true.

 In verification, the set 𝕋 (the time domain) could be unbounded, in falsification or
testing, the time domain is necessarily bounded, i.e. 𝕋 ⊆ [0, 𝑇], where 𝑇 is some
finite numeric constant

 In verification the co-domain of 𝐮, could be an unbounded subset of ℝ𝑚, in
falsification, we typically consider some compact subset of ℝ𝑚

 For the 𝑖𝑡ℎ input signal component, let 𝐷𝑖 denote its compact co-domain. Then
the input signal 𝐮 : 𝕋 -> 𝐷1 × ⋯ × 𝐷𝑚, where 𝕋 ⊆ 0, 𝑇
In simple words: input signals range over bounded intervals and over a bounded
time horizon

Falsification/Testing

21

Falsification CPS

Goal:
Find the inputs (1) which falsify the requirements (4)

Problems:
• Falsify with a low number of simulations Active Learning
• Functional Input Space Adaptive Parameterization

Given:

 Set of all such input signals : 𝑈

 Input signal 𝐮 :𝕋 → 𝐷1 × ⋯ × 𝐷𝑚, where 𝕋 ⊆ 0, 𝑇 , 𝐷𝑖 ⊂ ℝ compact set

 Model 𝑀 s.t. 𝑀 𝐮 = 𝐲, 𝐲: 𝕋 → ℝ𝑛

𝑀 maps 𝐮 to some signal 𝐲 with the same domain as 𝐮, and co-domain
some subset of ℝ𝑛

 Property 𝜑 that can be evaluated to true/false over given 𝐮 and 𝐲

Check: ∃𝐮 ∈ 𝑈 ∶ 𝐲 = 𝑀 𝐮 ⊨ ¬𝜑 𝐮, 𝐲

Falsification re-framed

23

 Properties/Specifications/Requirements are rarely monolithic formulas
𝜑(𝐮, 𝐲)

 Typically specified as a pair: a pre-condition 𝜑𝐼 on the inputs, and a post-
condition 𝜑𝑂 on the outputs

 Verification problem then stated as:

 Prove that: ∀𝐮 ∈ 𝑈: 𝐮 ⊨ 𝜑𝐼 ∧ 𝐲 = 𝑀 𝐮 ⇒ 𝐲 ⊨ 𝜑𝑂

 Testing problem stated as:

 Find 𝑢 such that 𝐮 ⊨ 𝜑𝐼 ∧ 𝐲 = 𝑀 𝐮 ∧ 𝐲 ⊭ 𝜑𝑂

Input/Output Properties for Closed-loop Models

24

 Common practice in control theory to excite closed-loop models with input
signals of certain special shapes

 Motivation comes from theory of linear systems, where a step-response or
impulse-response are enough to characterize all behaviors of the system

 Such special shapes do not provide comprehensive information for
nonlinear closed-loop systems, yet, it is still common to excite these systems
with a few common patterns

 Frequently, input signal patterns come from engineering insights or
application-specific domain expertise

Input Properties/Pre-conditions

25

Common input patterns used for testing

26

𝑢

𝑡

𝑢

𝑡

𝑢

𝑡

Step

Ramp

Impulse

𝑢

𝑡

Pulse Train

𝑢

𝑡

Multiple Steps

𝑢

𝑡

Sinusoid

 Each time-point in a signal is an independent dimension, i.e. the signal can
change arbitrarily at each time-point in the signal

 Number of independent domains is infinite (e.g. consider a signal defined
over rational time-points)

 Typical testing approach is to find a test-suite: This is a finite number of test
input signals (satisfying 𝜑𝐼) and then obtain output behaviors using these
signals as test inputs.

 If each corresponding output signal satisfies the output property 𝜑0, then
testing concludes, indicating that the model is correct for the given test-
suite (i.e. no output in the test-suite satisfies 𝜑0).

Testing in practice

27

 Find a signal generator for the property 𝜑𝐼

Function that uses random-ness to generate an input signal that satisfies
𝜑𝐼 (hopefully, an input signal different from previously generated ones!)

 Signal generation usually relies on defining a finite parameterization for the
input signal

For the chosen class of signals, find parameters that define the shape

Define acceptable ranges for the parameters

Define a generation function that takes the parameter values as inputs and
generates an input signal

Signal Generation

28

Finite Parameterization

29

N Control points

N variable

Finite parameterization using control points

30

Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 = ൞

𝑝0 if t0 ≤ 𝑡 < 𝑡1

𝑝1 if t1 ≤ 𝑡 < 𝑡2

𝑝2 if t2 ≤ 𝑡 < 𝑡3
Control points

Acceptable ranges on
parameters (control points)

𝑡

𝑝0

𝑝1

𝑝2

𝑝1

𝑝0

𝑝2

𝑡1 𝑡2 𝑡3 𝑡0

𝑢

We can view this as values of 𝑢
are picked for (fixed) time
points (determined a priori),
and then 𝑢(𝑡) is generated
using constant interpolation

ℎ

ℓ

(ℓ, ℓ, ℎ)

(ℓ, ℓ, ℓ)

(ℓ, ℎ, ℓ)

(ℎ, ℓ, ℓ)

(ℎ, ℎ, ℎ)

Finite parameterization using control points

31

Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 = ൞

𝑝0 if t0 ≤ 𝑡 < 𝑡1

𝑝1 if t1 ≤ 𝑡 < 𝑡2

𝑝2 if t2 ≤ 𝑡 < 𝑡3
Control points

Acceptable ranges on
parameters (control points)

𝑡

𝑝0

𝑝1

𝑝2

𝑝1

𝑝0

𝑝2

𝑡1 𝑡2 𝑡3 𝑡0

𝑢

We can view this as values of 𝑢
are picked for (fixed) time
points (determined a priori),
and then 𝑢(𝑡) is generated
using constant interpolation

ℎ

ℓ

(ℓ, ℓ, ℎ)

(ℓ, ℓ, ℓ)

(ℓ, ℎ, ℓ)

(ℎ, ℓ, ℓ)

(ℎ, ℎ, ℎ)

Finite parameterization using linear interpolation

32

Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 =

𝑝0 + (𝑡 − 𝑡0) ⋅
𝑝1 − 𝑝0

𝑡1 − 𝑡0
if t0 ≤ 𝑡 < 𝑡1

𝑝1 + 𝑡 − 𝑡1 ⋅
𝑝2 − 𝑝1

𝑡2 − 𝑡1
if t1 ≤ 𝑡 < 𝑡2

𝑝2 + 𝑡 − 𝑡2 ⋅
𝑝3 − 𝑝2

𝑡3 − 𝑡2
if t2 ≤ 𝑡 < 𝑡3

We can view this as values of 𝑢 are
picked for (fixed) time points (determined
a priori), and then 𝑢(𝑡) is generated
using linear interpolation

𝑃 = 𝑝0, 𝑝1, 𝑝2, 𝑝3

𝑅𝑎𝑛𝑔𝑒 𝑃 ≔
ℓ, ℎ × ℓ, ℎ × ℓ, ℎ × [ℓ, ℎ]

Control points

Acceptable ranges
on parameters
(control points)

𝑡

𝑝0

𝑝1

𝑝2

𝑡1 𝑡2 𝑡3 𝑡0

𝑢

𝑝3

ℎ

ℓ

Finite parameterization using interpolation

33

Linear

Spline

Piecewise constant

Piecewise cubic interpolation

λ = [20, 40, 10, 40, 10] t = [0, 5, 10, 15, 20]

Finite parameterization variable control point times

34

Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 = ൞

𝑝0 if t0 ≤ 𝑡 < 𝑡0 + 𝑑𝑡0

𝑝1 if t1 ≤ 𝑡 < 𝑡1 + 𝑑𝑡1

𝑝2 if t2 ≤ 𝑡 < 𝑇 Control points

Acceptable
ranges on
parameter
values

𝑡

𝑝0

𝑝1

𝑝2

𝑡1 𝑡2 𝑇𝑡0

𝑢

We can view this as values of 𝑢
and time increments in 𝑢 are
both picked, and then 𝑢(𝑡) is
generated using constant
interpolation

ℎ

ℓ

𝑑𝑡0 𝑑𝑡1
𝑃 = 𝑝0, 𝑝1, 𝑝2, 𝑑𝑡0, 𝑑𝑡1

𝑅𝑎𝑛𝑔𝑒 𝑃 ≔
ℓ, ℎ × ℓ, ℎ × ℓ, ℎ ×

𝜏ℓ, 𝜏ℎ × [𝜏ℓ, 𝜏ℎ]
Acceptable
ranges on time
increments

 Signal Generation controlled by the testing algorithm
 Parameter space could be sampled all at once
 Parameter space could be sampled in a sequential fashion, e.g. using a method such as Markov Chain

Monte Carlo
 Sampling scheme could be application-specific: uniform random, quasi-random (more evenly spread

out), truncated normal, grid-based sampling (points from a fixed grid), etc.

Signal Generator

35

Generate
Signal

Sample
Parameter

Space

𝑅𝑎𝑛𝑔𝑒 𝑃 = ℓ𝑖, ℎ𝑖
|𝑃|

𝑡

𝑢

Black-box Optimization

36

𝑀

Cost function
𝐶(𝑢, 𝑀(𝑢))

Black-box
Optimizer

 Given:

 Function 𝑀: 𝑈 → 𝑌 with unknown
symbolic representation

 Ability to query the value of 𝑀 at any
given u; query will return some 𝑦

 Cost function 𝐶: 𝑋 × 𝑌 → ℝ

 Objective of black-box optimizer

 Let 𝑥∗ = min
𝑥∈X

𝐶(𝑥, 𝑓 𝑥)

 Find ො𝑥 such that ‖ ො𝑥 − 𝑥∗‖ is small

 Let ෝ𝑥𝑖 be the best answer found by
optimizer in its 𝑖𝑡ℎ iteration

 Ideally, lim
𝑖→∞

 ෝ𝑥𝑖 − 𝑥∗ = 0

Falsification using Optimization

37

\

𝑢(𝑡)
𝑦(𝑡)

Minimize
robustness

\

Compute
Robustness

Parameter Space

HALT

𝜌 𝑦, 𝜑 < 0

 Given: a finite parameterization for input signals, a model that can be
simulated and an STL property

 While the number of allowed iterations is not exhausted do:
pick values for the signal parameters
generate an input signal
run simulation with generated input signal to get output signal
compute robustness value of given property w.r.t. the input/output signals
 if robustness value is negative, HALT
pick a new set of values for the signal parameters based on certain

heuristics

Step-by-step of how falsification works

38

 Pick random sampling as a (not very good) strategy!

 Basic method: locally approximate the gradient of the function 𝜌 locally, and chose the
direction of steepest descent (greedy heuristic to take you quickly close to a local
optimum)

 Challenge 1: cost surface may not be convex, thus you could have many local optima

 Challenge 2: cost surface may be highly nonlinear and even discontinuous, using just
gradient-based methods may not work well

 Heuristics rely on:
 combining gradient-based methods with perturbing the search strategy (e.g. simulated

annealing, stochastic local search with random restarts)
 evolutionary strategies: Covariance Matrix Adaptation Evolution Strategy (CMA-ES),

genetic algorithms etc.
 probabilistic techniques: Ant Colony Optimization, Cross-Entropy optimization, Bayesian

optimization

Picking new parameter values to explore

39

Model

Throttle

Brake

Gear

Speed

RPM

Inputs:

Outputs:

Model

Throttle

Brake

Gear

Speed

RPM

Black Box Assumption

Throttle

Brake

Gear

Speed

RPM

• Less information
• A more general Approach (interesting for industries)

Falsification of CPS

Goal:
Find the inputs (1) which falsify the requirements (4)

Problems:
• Falsify with a low number of simulations Active Learning
• Functional Input Space Adaptive Parameterization

Gaussian Processes
Definition

where 𝑚 = (𝑚(𝑡1), 𝑚(𝑡2), . . . , 𝑚(𝑡𝑛)) is the vector mean

𝐾 ∈ ℝ𝑛×𝑛 is the covariance matrix, such that 𝐾𝑖𝑗 = 𝑘(𝑓(𝑡𝑖), 𝑓(𝑡𝑗))

Prediction

𝑓 ∼ 𝐺𝑃(𝑚, 𝑘) ⇐⇒ (𝑓(𝑡1), 𝑓(𝑡2), … , 𝑓(𝑡𝑛)) ∼ 𝑁(𝑚, 𝐾)

4
5

Gaussian Process Regression

Under Gaussian noise
predictions have an analytic expression.

Gaussian Processes can be used for Bayesian prediction and classification tasks.

Idea: put a GP prior on functions; condition on observed data (training set) (𝑥𝑖 , 𝑦𝑖);
we compute a posterior distribution on functions; make predictions.

Latent function: 𝑓 , GP ; Noise model: 𝑝(𝑦𝑖|𝑓(𝑥𝑖))

Prediction (latent function 𝑓∗ at 𝑥∗)

Domain Estimation Problem

Finding the trajectories which falsify the requirements, finding 𝒖 ∈ 𝐵

B= {𝒖 ∈ U | 𝜌 𝜙, 𝒖, 0 < 0} ⊆ 𝑈

➢ Training Set: K= {𝒖i, }𝜌(𝜙, 𝒖𝑖 , 0)) 𝑖≤𝑛 (the partial knowledge after n iterations)

➢ Gaussian Process: 𝜌𝐾 𝒖 ~ 𝐺𝑃(𝑚𝐾 𝒖 , 𝜎𝐾(𝒖)) (the partial model)

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

Idea: implementing an iterative sample strategy in order to increase the probability to
sample a point in B, as the number of iterations increases.

Domain Estimation Algorithm (DEA)

𝑢1

𝑢2

B= {𝒖 ∈ U | 𝜌 𝑀 𝒖 , 𝜙 }< 0

Domain Estimation Algorithm (DEA)

Training Set

𝑢1

𝑢2

Domain Estimation Algorithm (DEA)

Sample a new point
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

Domain Estimation Algorithm (DEA)

Sample a new point
accordingly to:

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

𝑢1

𝑢2

Domain Estimation Algorithm (DEA)

Sample a new point
accordingly to:

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

𝑢1

𝑢2

Domain Estimation Algorithm (DEA)

Sample a new point
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

Domain Estimation Algorithm (DEA)

Sample a new point
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

Domain Estimation Algorithm (DEA)

Sample a new point
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

Domain Estimation Algorithm (DEA)

Sample a new point
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

Domain Estimation Algorithm (DEA)

Sample a new point
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

Domain Estimation Algorithm (DEA)

Sample a new point
accordingly to:

𝑢1

𝑢2

𝑃 𝜌𝐾 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚𝐾(𝒖)

𝜎𝐾(𝒖)
)

Domain Estimation Problem

Finding the trajectories which falsify the requirements, finding 𝒖 ∈ 𝐵

B = {𝒖 ∈ U | 𝜌 𝜙, 𝒖, 0 }< 0 ⊆ 𝑈

We call B the counterexample set and its elements counterexamples

If B is empty then 𝜌 𝜙, 𝒖, 0 ≥ 0

Solving the domain estimation problem could be extremely difficult because of the infinite
dimensionality of the input space, which is a space of functions

Finite Parameterization

60

N Control points

N variable

Domain Estimation Problem

Finding the trajectories which falsify the requirements, finding Ƹ𝑐 ∈ 𝐵

𝐵 = { Ƹ𝑐 ∈ 𝑈𝑛1
× · · · × 𝑈𝑛 𝑈

| 𝜌 𝜙, 𝑃𝒏 Ƹ𝑐 , 0) < 0 }

Where 𝑐𝑘 = {(𝑡1
𝑘 , 𝑢𝑛

𝑘
𝑘

), . . . , (𝑡𝑛
𝑘

𝑘
, 𝑢𝑘𝑛

)} and 𝑃𝒏 = (𝑃𝑛1
, … , 𝑃𝑛 𝑈

)

Piecewise linear or polynomial functions are known to be dense in the space of
continuous functions!

Then, B has at least one element ⇐⇒ ∃𝑛 ∈ ω|𝑈| , 𝐵 has at least one element.

Adaptive Parameterization

62

N Control points

2N variable

Tests Case & Results

64

Model

Throttle

Brake

Gear

Speed

RPM

Inputs:

Outputs:

https://it.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html

https://it.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html

Falsification:

 Silvetti S., Policriti A., Bortolussi L. (2017) An Active Learning Approach to the Falsification of Black Box Cyber-Physical Systems. IFM
2017. LNCS, vol 10510. Springer, Cham.

 Several excellent papers on the first development of falsification technology can be found on the web-site of S-TaLiRo :
https://sites.google.com/a/asu.edu/s-taliro/references

 Jyotirmoy Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, and Vinayak S. Prabhu. 2017. Testing Cyber-Physical Systems
through Bayesian Optimization. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 170 (September 2017)

 Deshmukh, Jyotirmoy, Xiaoqing Jin, James Kapinski, and Oded Maler. Stochastic Local Search for Falsification of Hybrid Systems. In
International Symposium on Automated Technology for Verification and Analysis, pp. 500-517.

Bibliography

66

https://sites.google.com/a/asu.edu/s-taliro/references

 Parameter synthesis

67

Parameter Synthesis

68

Parameter Synthesis

Problem
Given a model, depending on a set of parameters 𝜃 ∈ Θ, and a specification 𝜙

(STL formula), find the parameter combination θ s.t. the system satisfies φ as
more as possible

Solution Strategy

• rephrase it as a optimisation problem (maximizing 𝜌)

• evaluate the function to optimise

• solve the optimisation problem

Parameter Synthesis

Problem
Find the parameter configuration that maximizes E[Rφ](θ), of which we

have few costly and noisy evaluations.

Methodology

1. Sample {(θ(i),y(i)), i = 1,...,n}

2. Emulate (GP Regression): E[Rφ] ∼ GP(μ,k)

3. Optimize the emulation via GP-UCB algorithm, new θ(n+1)

Parameter Synthesis

7
1

Gaussian Process Regression

Under Gaussian noise
predictions have an analytic expression.

Gaussian Processes can be used for Bayesian prediction and classification tasks.

Idea: put a GP prior on functions; condition on observed data (training set) (𝑥𝑖 , 𝑦𝑖);
we compute a posterior distribution on functions; make predictions.

Latent function: 𝑓 , GP ; Noise model: 𝑝(𝑦𝑖|𝑓(𝑥𝑖))

Prediction (latent function 𝑓∗ at 𝑥∗)

(1) Sample

7
2

Collection of the training set {(θ(i),y(i)), i = 1,...,m} for parameters values θ.

(2) The GP Regression

7
3

We have noisy observations y of the function value distributed around
an unknown true value f (θ) with spherical Gaussian noise

Simone Silvetti - PhD Thesis Outline

(2) The GP Regression

74

We have noisy observations y of the function value distributed around
an unknown true value f (θ) with spherical Gaussian noise

Simone Silvetti - PhD Thesis Outline

(3) The GP-UCB Algorithm

75

Balance Exploration and Exploitation: we maximise the 95% upper

quantile of the distribution:

Simone Silvetti - PhD Thesis Outline

(3) The GP-UCB Algorithm

76

Balance Exploration and Exploitation: we maximise the 95% upper

quantile of the distribution:

Simone Silvetti - PhD Thesis Outline

(3) The GP-UCB Algorithm

77

Balance Exploration and Exploitation: we maximise the 95% upper

quantile of the distribution:

Simone Silvetti - PhD Thesis Outline

(3) The GP-UCB Algorithm

78

Balance Exploration and Exploitation: we maximise the 95% upper

quantile of the distribution:

Simone Silvetti - PhD Thesis Outline

(3) The GP-UCB Algorithm

79

Balance Exploration and Exploitation: we maximise the 95% upper

quantile of the distribution:

Simone Silvetti - PhD Thesis Outline

(3) The GP-UCB Algorithm

80

Balance Exploration and Exploitation: we maximise the 95% upper

quantile of the distribution:

Parameter Synthesis:

 Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Guido Sanguinetti, System design of stochastic models using robustness of temporal
properties. Theor. Comput. Sci. 587: 3-25 (2015)

 Bortolussi L., Silvetti S. (2018) Bayesian Statistical Parameter Synthesis for Linear Temporal Properties of Stochastic Models. TACAS
2018. LNCS, vol 10806. Springer, Cham

Bibliography

81

	Slide 1: Cyber-Physical Systems
	Slide 2: Terminology
	Slide 3: STL Monitor
	Slide 4: Parametric Chemical Reaction Network (PCRN)
	Slide 5: Example: SIR epidemic model
	Slide 6: Example: SIRS epidemic model
	Slide 7
	Slide 8: Statistical Model Checking (SMC)
	Slide 9: Average robustness degree
	Slide 10
	Slide 11: The many uses of STL and its quantitative semantics
	Slide 12
	Slide 13: Example
	Slide 14: Black Box Assumption
	Slide 15: Black Box Assumption
	Slide 16
	Slide 17: Challenges with real-world systems
	Slide 18: Verification vs. Testing
	Slide 19: Falsification/Testing
	Slide 20: Falsification by optimization
	Slide 21: Falsification/Testing
	Slide 22
	Slide 23: Falsification re-framed
	Slide 24: Input/Output Properties for Closed-loop Models
	Slide 25: Input Properties/Pre-conditions
	Slide 26: Common input patterns used for testing
	Slide 27: Testing in practice
	Slide 28: Signal Generation
	Slide 29: Finite Parameterization
	Slide 30: Finite parameterization using control points
	Slide 31: Finite parameterization using control points
	Slide 32: Finite parameterization using linear interpolation
	Slide 33: Finite parameterization using interpolation
	Slide 34: Finite parameterization variable control point times
	Slide 35: Signal Generator
	Slide 36: Black-box Optimization
	Slide 37: Falsification using Optimization
	Slide 38: Step-by-step of how falsification works
	Slide 39: Picking new parameter values to explore
	Slide 40: Model
	Slide 41: Model
	Slide 42: Black Box Assumption
	Slide 43: Falsification of CPS
	Slide 44: Gaussian Processes
	Slide 45: Gaussian Process Regression
	Slide 46: Domain Estimation Problem
	Slide 48: Domain Estimation Algorithm (DEA)
	Slide 49: Domain Estimation Algorithm (DEA)
	Slide 50: Domain Estimation Algorithm (DEA)
	Slide 51: Domain Estimation Algorithm (DEA)
	Slide 52: Domain Estimation Algorithm (DEA)
	Slide 53: Domain Estimation Algorithm (DEA)
	Slide 54: Domain Estimation Algorithm (DEA)
	Slide 55: Domain Estimation Algorithm (DEA)
	Slide 56: Domain Estimation Algorithm (DEA)
	Slide 57: Domain Estimation Algorithm (DEA)
	Slide 58: Domain Estimation Algorithm (DEA)
	Slide 59: Domain Estimation Problem
	Slide 60: Finite Parameterization
	Slide 61: Domain Estimation Problem
	Slide 62: Adaptive Parameterization
	Slide 64: Tests Case & Results
	Slide 65: Model
	Slide 66: Bibliography
	Slide 67
	Slide 68: Parameter Synthesis
	Slide 69: Parameter Synthesis
	Slide 70: Parameter Synthesis
	Slide 71: Gaussian Process Regression
	Slide 72: (1) Sample
	Slide 73: (2) The GP Regression
	Slide 74: (2) The GP Regression
	Slide 75: (3) The GP-UCB Algorithm
	Slide 76: (3) The GP-UCB Algorithm
	Slide 77: (3) The GP-UCB Algorithm
	Slide 78: (3) The GP-UCB Algorithm
	Slide 79: (3) The GP-UCB Algorithm
	Slide 80: (3) The GP-UCB Algorithm
	Slide 81: Bibliography

