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Availability: I can always find a 
station with at least one bike 
in a radius of  500 meters

Spread: after 10 time 
units, there exists a 
location l′ at a certain 
distance from location l 
where the number of 
infected individuals is 
more than 50  



Reliability: we can always  find 
a path of sensors such that all 
sensors have a battery level 
greater than 0.5

Spots: regions with low 
density of protein A are 
always surrounded by 
regions with high level of 
protein B  



How to specify such spatio-temporal 
behaviours in a formal and 

human-understandable language ?



How to monitor their onset efficiently?



Part 1 :  
• Space Model and traces
• Spatio- Temporal Reach and Escape Logic (STREL)

Part 2: 
• Monitoring 
• Applicability to different scenarios



Int roduct ion SSTL TSTL STREL

Monitoring Techinique
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Robust Monitoring

A robust STL monitor is a transducer that transform x into ρϕ (x, .)
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STL Monitor

Formula ϕ
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Quant. sat

Bool. sat

ρϕ (x, ·)/ χϕ (x, ·)

In practice

Trace: t ime words over alphabet R, linear interpolation

Input: x(·) (t i , x(t i )) i ∈N 0utput: ρϕ (x, ·) (r j , z(r j )) j ∈N

Continuity, and piecewise affine property preserved

Alexandre Donzé Robust Monitoring of STL EECS144 Fall 2013 20 / 52



Introduct ion SSTL TSTL STREL

Spatio-Temporal Monitoring

INPUTS

Spatial Configuration

Sp-TemporalTrajectory

Specification

F[ 0,T ]φ1S[ 0,d ]φ2

M ONIT ORING

ALGORITHM

OUTPUTS

Sp-Temporal Satisfaction

Spatial Satisfaction
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SSTL Syntax

' ∶= µ ¬' ' 1 ∧ ' 2 ' 1 U[ t1,t2] ' 2 [ d1,d2] ' ' 1 [ d1,d2] ' 2

In addit ion F [ t1, t2] ' ∶= U[ t1, t2] ' , G[ t1, t2] ' ∶= ¬F [ t1, t2] ¬' ,
'

[ d1,d2]
∶= ¬ ¬

[ d1,d2] ' .



Running Example: Wireless Sensor Network



Space Model, Signal and Traces



Spatial Configuration

We consider a discrete space described as a weighted (direct) graph

Reasons:

• many applications, like bike sharing systems, smart grid and sensor 
networks are naturally framed in a discrete spatial structure 

• in many circumstances continuous space is abstracted as a grid or as a 
mesh, e.g. numerical integration of PDEs 



Space Model   𝑆 = ⟨𝐿, 𝑊⟩

– L is a set of nodes that we call locations; 

– 𝑊 ⊆  𝐿 × ℝ ×  𝐿 is a proximity function associating a label 𝑤 ∈ ℝ 
to distinct pair ℓ1, ℓ2 ∈ 𝐿 . If (ℓ1, 𝑤, ℓ2) ∈ 𝑊, it means that there is an 
edge from ℓ1 to ℓ2 with weight 𝑤 ∈ ℝ

𝑤
ℓ1 

ℓ2 

ℓ3 



Example



Route    𝜏 = ℓ0ℓ1ℓ2 …

It is a infinite sequence s.t. ∀𝑖 ≥ 0 ∃ 𝑤 𝑠. 𝑡. ℓ𝑖 , 𝑤, ℓ𝑖+1 ∈ 𝑊  
     

       

       ℓ0ℓ1ℓ2ℓ1 … is a route

       ℓ0ℓ1ℓ2ℓ3 … is a not route

𝜏 𝑖  to denote the 𝑖 − 𝑡ℎ node 𝜏

𝜏(ℓ) to denote the first occurrence of ℓ ∈ 𝜏

ℓ0 
ℓ1 

ℓ2 
ℓ3 



Route Distance    𝑑𝜏
𝑓

[𝑖]

The distance 𝑑𝜏
𝑓

[𝑖] up to index 𝑖 is:      

𝑑𝜏
𝑓

ℓ = 𝑑𝜏
𝑓

[𝜏 ℓ ] 



Route Distance    𝑑𝜏
𝑓

[𝑖]

      

       𝑤𝑒𝑖𝑔ℎ𝑡(𝑥, 𝑦) = 𝑥 + 𝑦 

       ℎ𝑜𝑝𝑠(𝑥, 𝑦) = 𝑥 + 1 

      

𝑑ℓ0ℓ1ℓ2..
𝑤𝑒𝑖𝑔ℎ𝑡

2 = weight(𝑑ℓ1ℓ2..
𝑤𝑒𝑖𝑔ℎ𝑡

1  , 4) =  𝑑ℓ1ℓ2

𝑤𝑒𝑖𝑔ℎ𝑡
1  + 4 = … 

                    = weight(𝑑ℓ2..
𝑤𝑒𝑖𝑔ℎ𝑡

0  , 2) + 4 = 6 

ℓ𝑜 
ℓ1 

ℓ2 
ℓ3 

4

2



Location Distance    𝑑𝑆
𝑓

ℓ𝑖 , ℓ𝑗

𝑑𝑆
𝑓

ℓ𝑖 , ℓ𝑗 = min 𝑑𝜏 ℓ𝑗 𝜏 ∈ 𝑅𝑜𝑢𝑡𝑒𝑠(𝑆, ℓ𝑖)}

        𝑑𝑆
ℎ𝑜𝑝𝑠

ℓ0, ℓ2  = 2

ℓ𝑜 
ℓ1 

ℓ2 
ℓ3 



Location Distance

𝑑𝑆
𝑓

ℓ𝑖 , ℓ𝑗 = min 𝑑𝜏 ℓ𝑗 𝜏 ∈ 𝑅𝑜𝑢𝑡𝑒𝑠(𝑆, ℓ𝑖)}

        𝑑𝑆
ℎ𝑜𝑝𝑠

ℓ0, ℓ2  = 1

ℓ𝑜 
ℓ1 

ℓ2 
ℓ3 



Signal and Trace

Spatio-Temporal Signals       𝜎: 𝐿 → 𝕋 → 𝐷 

Spatio-Temporal Trace  𝒙: 𝐿 → 𝕋 → 𝐷𝑛

 𝑥(ℓ)  =  (𝜈𝐵  , 𝜈𝑇 ) 

 𝑥(ℓ, 𝑡)  =  (𝜈𝐵(𝑡) , 𝜈𝑇(𝑡) ) 



Dynamic Spatial Model 

𝑡𝑖 , 𝑆𝑖  for 𝑖 =  1, … , 𝑛  and 𝑆 𝑡 = 𝑆𝑖∀𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1)



STREL



Spatio- Temporal Reach and Escape Logic (STREL)

It is an extension of the Signal Temporal Logic with a number of 
spatial modal operators 

In addition, we can derive: 
• The disjunction operator: ∨ 
• the temporal operators: 𝐹𝐼 , 𝐺𝐼, 𝑂𝐼 , HI  
• the spatial operators: somewhere,  everywhere and surround  

STREL Syntax
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Reach: 
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3.1 Boolean and QuantitativeSemantics

Thelogic presents two semantics: aBoolean semantics, (S, x, `, t) ' , with themean-
ing that the spatio-temporal trace x in location ` at time t with spatial model S, sat-
isfies the formula ' and a quantitative semantics, ⇢( ' , S, x, `, t) , that can be used to
measure the quantitative level of satisfaction of a formula for a given trajectory. The
function ⇢is also called the robustness function. Therobustness is compatible with the
Boolean semantics since it satisfies the soundness property: if ⇢( ' ,S, x, `, t) > 0 then
(S, x, `, t) ' ; if ⇢( ' , S, x, `, t) < 0 then (S, x, `, t) ' . Furthermore it satisfies also
thecorrectness property, which shows that x measures how robust is thesatisfaction of
a trajectory with respect to perturbations. Werefer the reader to [36] for moredetails.

Fig.4. Exampleof spatial properties. `3 satisfiesyellowR h ops

[ 1,4]
pink while`4 doesnot. `9 satisfies

E
h ops

[ 3,∞ ]
or ange while `10 does not. `1 satisfies

h ops

[ 3,5]
pink and

h ops

[ 2,3]
yellow. All green points

satisfy gr een
h ops

[ 0,100]
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h ops

[ 2,3]
blue. The letters inside the nodes indicate the color and the

numbers indicate theenumeration of the locations.

Reach Thequantitativesemanticsof thereach operator is:⇢( ' 1R
f

[ d1 ,d2 ]
' 2, S, x, `, t) =

= max
⌧∈Rout es( S( t ) ,` )

max
` ′ ∈⌧∶ d

f
⌧[ ` ′ ] ∈[ d1 ,d2 ]

(min(⇢( ' 2, S, x, ` ′ , t) , min
j <⌧( ` ′ )

⇢( ' 1, S, x,⌧[ j ] , t)

TheBoolean semantics can bederived substituting min, max with ∨, ∧ and considering
the Boolean satisfaction instead or ⇢. (S, x, `, t) , a spatio-temporal trace x, in location

`, at time t, with a (dynamic) spatial model S, satisfies ' 1 R
f

[ d1 ,d2 ]
' 2 iff it satisfies

' 2 in a location ` ′ reachable from ` through a route⌧, with a length df
⌧[ ` ′ ] ∈ [d1, d2] ,

𝑆 , Ԧ𝑥 , ℓ, 𝑡  satisfies                              iff it satisfies 𝜑2 in a location ℓ′ 

reachable from ℓ through a route τ, with a length 𝑑𝜏
𝑓

(ℓ′) ∈ [𝑑1, 𝑑2] and such 
that 𝜏[0] = ℓ and all its elements with index less than 𝜏(ℓ′) satisfy 𝜑1
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Escape: 

𝑆 , Ԧ𝑥 , ℓ, 𝑡  satisfies  if and only there exists a route τ and a 

location ℓ′ ∈ 𝜏 such that 𝜏 0 = ℓ, 𝑑𝑆
𝑓

ℓ, ℓ′ ∈ 𝑑1 , 𝑑2 and all 

elements 𝜏[0], … 𝜏[𝑘] (with 𝜏(𝑙′)  =  𝑘) satisfy 𝜑



Escape: 
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Somewhere: 
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Everywhere: 
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𝑆 , Ԧ𝑥 , ℓ, 𝑡  satisfies                        iff all the locations 

ℓ′ reachable from ℓ via a path s.t. 

 𝑑𝑆
𝑓

ℓ, ℓ′ ∈ 𝑑1, 𝑑2 , satisfy 𝜑
 



Surround: 

𝑆 , Ԧ𝑥 , ℓ, 𝑡  iff there exists a 𝜑1-region that contains ℓ, all locations in 
that region satisfies 𝜑1 and are reachable from ℓ via a path with length 
less than 𝑑2 . 
All the locations that do not belong to the 𝜑1-region but are directly 
connected to a location of that region must satisfy 𝜑2 and be reached 
from ℓ via a path with length in the interval [d1, 𝑑2]. 



Surround: 
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Offline Monitoring Algorithm 

Spatial Boolean Satisfaction



Offline Monitoring Algorithm 

Spatial Quantitative  Satisfaction



Introduct ion SSTL TSTL STREL

Spatio-Temporal Monitoring

INPUTS

Spatial Configuration

Sp-TemporalTrajectory

Specification

F[ 0,T ]φ1S[ 0,d ]φ2

M ONIT ORING

ALGORITHM

OUTPUTS
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SSTL Syntax

' ∶= µ ¬' ' 1 ∧ ' 2 ' 1 U[ t1,t2] ' 2 [ d1,d2] ' ' 1 [ d1,d2] ' 2

In addit ion F [ t1, t2] ' ∶= U[ t1, t2] ' , G[ t1, t2] ' ∶= ¬F [ t1, t2] ¬' ,
'

[ d1,d2]
∶= ¬ ¬

[ d1,d2] ' .



Offline Monitoring Algorithm 

Spatial Boolean satisfaction 
Spatial Quant. satisfaction 

Spatial Boolean signals
Spatial Quant. signals 

Secondary signals

Primary signals



Computational consideration

• Temporal operators: like in STL monitoring [1] is linear in the length of 
the signal times the number of locations in the spatial model. 

• Spatial properties are more expensive, they are based on a variations 
of the classical Floyd-Warshall algorithm. 
The number of operations to perform is quadratic for the reach 
operator and cubic for the escape

[1] O. Maler, T. Ferrére, and D. Nickovic. Efficient Robust Monitoring for STL. In Proc.CAV 2010



Static Space and Regular Grid



The formation of Patterns 

The production of skin pigments that generate spots in animal furs:

Space model: a K×K grid treated as a graph,   cell 𝑖, 𝑗 ∈ 𝐿 =  {1, … , 𝐾} ×
{1, … , 𝐾} 

Spatio-Temporal Trajectory:  𝑥: 𝐿 −> 𝕋 → ℝ2  s.t.    𝑥 ℓ = (𝑥𝐴, 𝑥𝐵)



Spot formation property



The formation of Patterns 



Perturbation Property



Static Space and Stochastic Systems 



Application to Stochastic Systems

STREL can be applied on stochastic systems considering methodologies as 
Statistical Model Checking (SMC)

Stochastic process               where     is a trajectory space and 𝜇 is a probability 
measure on a σ-algebra of 

We approximate the satisfaction probability 𝑆(𝜑, 𝑡), i.e. the probability that a 
trajectory generated by the stochastic process      satisfies the formula φ.

We can do something similar with the 
quantitative semantics computing the 
robustness distribution



London Santander Cycles Hire network

- 733 bike stations (each with 20-40 slots) 

- a total population of 57,713 agents (users)         

picking up and returning bikes

We model it as a Population Continuous 

Time Markov Chain (PCTMC) with time-

dependent rates, using historic journey and 

bike availability data.

Prediction for 40 minutes.

Bike Sharing Systems (BSS)



Spatio-Temporal Trajectory:  𝑥: 𝐿 −> 𝕋 → ℤ2  s.t.    𝑥 𝑖, 𝑡 = 𝐵𝑖 𝑡 , 𝑆𝑖 𝑡

Space model  
• Locations: 𝐿 = {𝑏𝑖𝑘𝑒 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠},    

• Edges: ℓ𝑖 , 𝑤, ℓ𝑗 ∈ 𝑊 iff w = ∥ ℓ𝑖 − ℓ𝑗 ∥ < 1 𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟 

Bike Sharing Systems (BSS)



Availability of Bikes 
d = 0 d = 200m 

std in [0, 0.0158] , mean std = 0.0053. std in [0, 0.0158] , mean std = 0.0039.



Availability of Bikes 

d = 300 m d = 600m 

std in [0, 0.0142] , mean std = 0.0002.std in [0, 0.0151] , mean std = 0.0015.



Availability of Bikes 

Satisfaction probability of 

some BBS stations vs 
distance d=[0,1.0]



Bike Sharing Systems (BSS)

Average walking speed of 6.0 km/h, e.g. d = 0.5 km -> 𝑡𝑤  = 6 minutes

The results similar to the results of previous property



Dynamic Space



Mobile Ad-hoc sensor NETwork (MANET)

Connectivity Graph Proximity Graph 

Coordinator             Router              End-devices



Coordinator             Router              End-devices

Mobile Ad-hoc sensor NETwork (MANET)

Connectivity Graph Proximity Graph 



Mobile Ad-hoc sensor NETwork (MANET)

Space model  𝑆(𝑡)
• Locations: 𝐿 = {𝑑𝑒𝑣𝑖𝑐𝑒𝑠},    

• Edges: ℓ𝑖 , 𝑤, ℓ𝑗 ∈ 𝑊 iff w = ∥ ℓ𝑖 − ℓ𝑗 ∥ < min 𝑟𝑖 , 𝑟𝑗

Spatio-Temporal Trajectory:  𝑥: 𝐿 −> 𝕋 → ℤ ×  ℝ2  s.t.    
𝑥 𝑖, 𝑡 = 𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒, 𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

            𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒 = 1, 2, 3 for coordinator, rooter, and end_device
 



Connectivity  in a MANET 

“an end device is either connected to the coordinator or can reach it via a chain of routers”

“broken connection is restored within h time units”



Connectivity  in a MANET 

“an end device is either connected to the coordinator or can reach it via a chain of routers”

“broken connection is restored within h time units”

≤ 5



Boolean Satisfaction at each time step
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Delivery in a MANET 

“from a given location, we can find a path of (hops) length at least 5 such 

that all nodes along the path have a battery level greater than 0.5”



Reliability in a MANET 

“reliability  in  terms  of  battery  levels,  e.g. battery level above 0.5



Moonlight:  https://github.com/MoonLightSuite/MoonLight/wiki
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Mining Requirements:

 Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Guido Sanguinetti, System design of stochastic models using robustness of temporal 
properties. Theor. Comput. Sci. 587: 3-25 (2015)

 Jin, Deshmukh et al. Mining Requirements from Closed-loop Control Models (HSCC ’13, IEEE Trans. On Computer Aided Design ’15)

 Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical 
learning of temporal logic properties, FORMATS, 2014

 Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.i,Temporal logic based monitoring of assisted ventilation in 
intensive care patients, ISoLA, 2014. 

 Nenzi L., Silvetti S., Bartocci E., Bortolussi L. (2018) A Robust Genetic Algorithm for Learning Temporal Specifications from Data. QEST 
2018. LNCS, vol 11024. Springer, Cham.
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