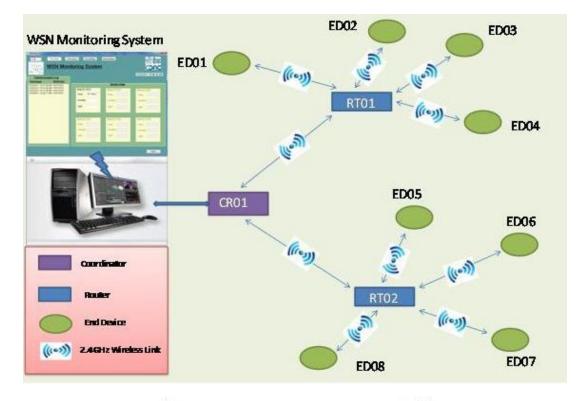
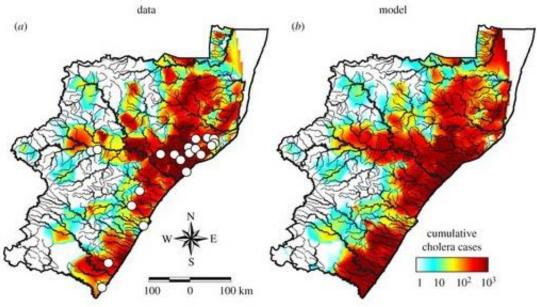
Cyber-Physical Systems

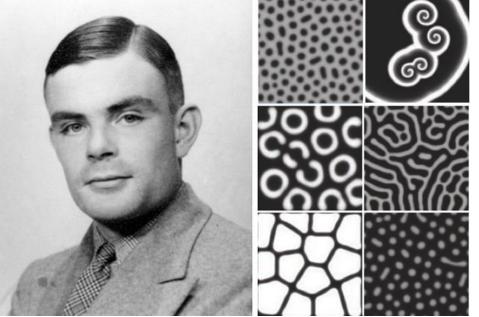
Laura Nenzi

Università degli Studi di Trieste I Semestre 2024

Lecture 15: Spatio-Temporal Reach and Escape Logic

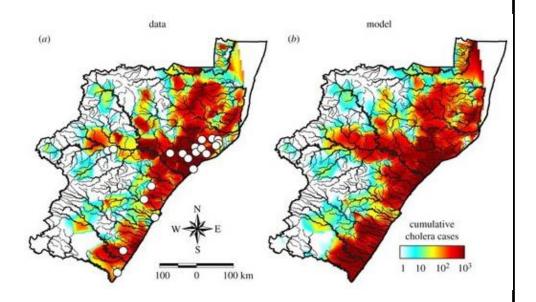


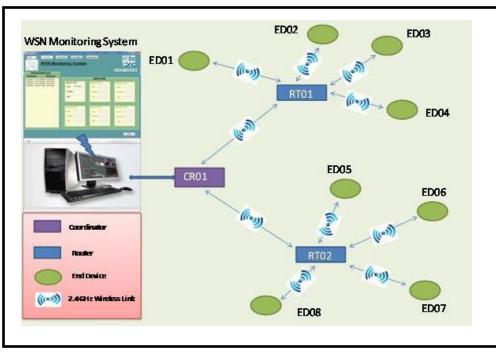




Availability: I can always find a station with at least one bike in a radius of 500 meters

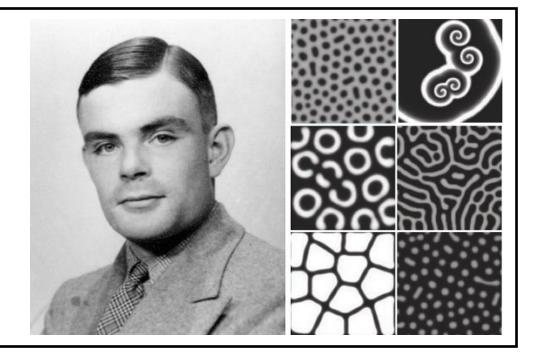
Spread: after 10 time units, there exists a location I' at a certain distance from location I where the number of infected individuals is more than 50





Reliability: we can always find a path of sensors such that all sensors have a battery level greater than 0.5

Spots: regions with low density of protein A are always surrounded by regions with high level of protein B



How to specify such spatio-temporal behaviours in a formal and human-understandable language ?

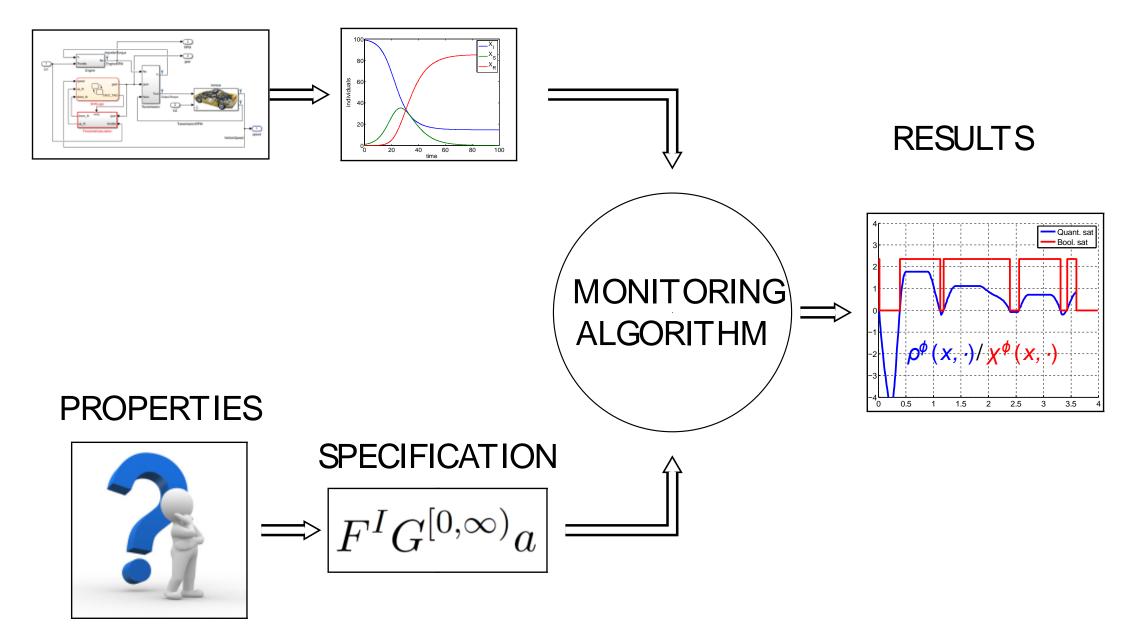
How to monitor their onset efficiently?

<u>Part 1</u>:

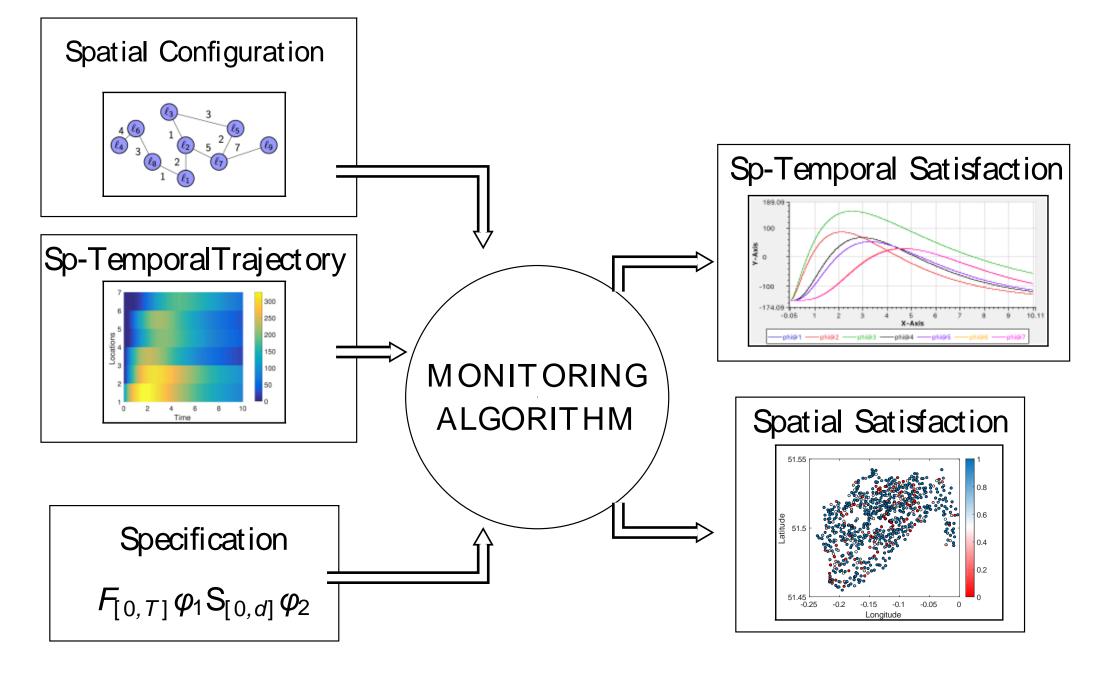
- Space Model and traces
- Spatio- Temporal Reach and Escape Logic (STREL)

<u>Part 2</u>:

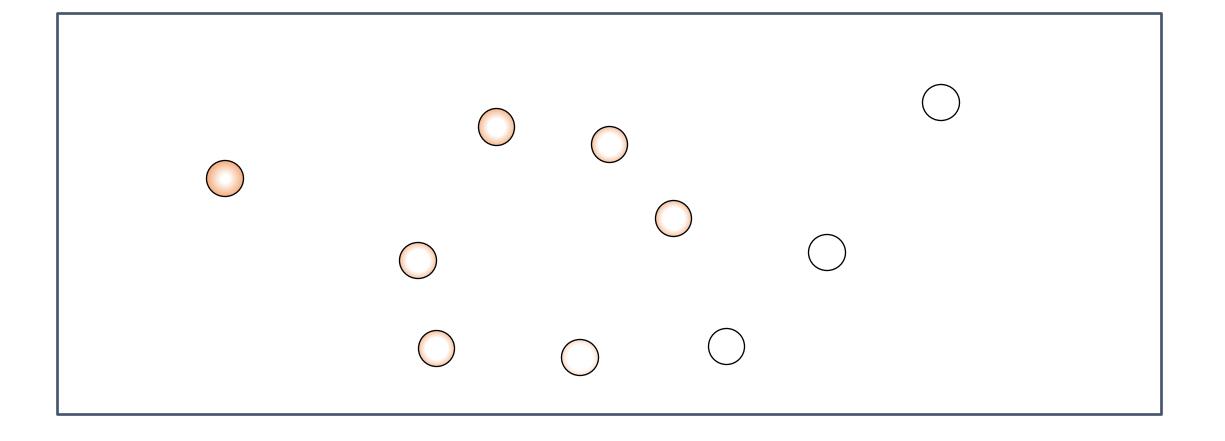
- Monitoring
- Applicability to different scenarios



OUTPUTS



Running Example: Wireless Sensor Network



Space Model, Signal and Traces

Spatial Configuration

We consider a discrete space described as a weighted (direct) graph

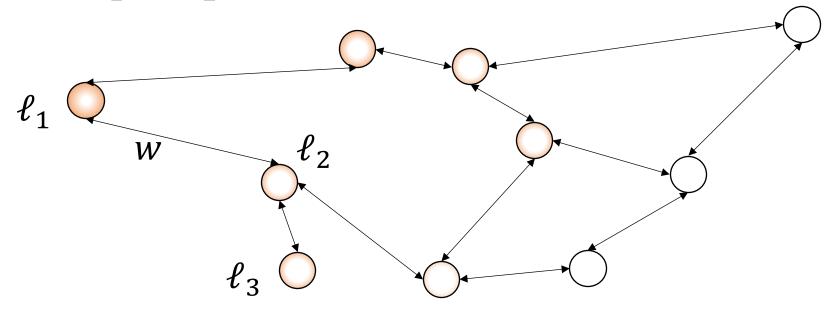
Reasons:

- many applications, like bike sharing systems, smart grid and sensor networks are naturally framed in a discrete spatial structure
- in many circumstances continuous space is abstracted as a grid or as a mesh, e.g. numerical integration of PDEs

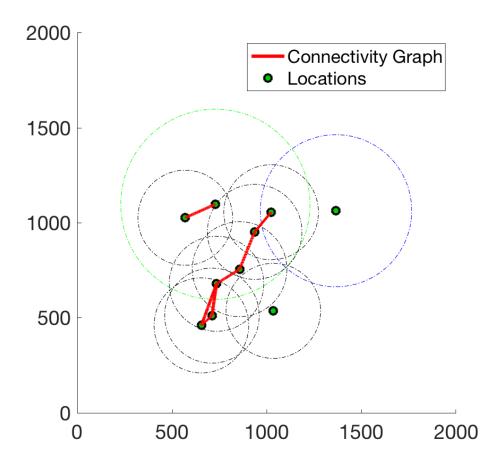
Space Model
$$S = \langle L, W \rangle$$

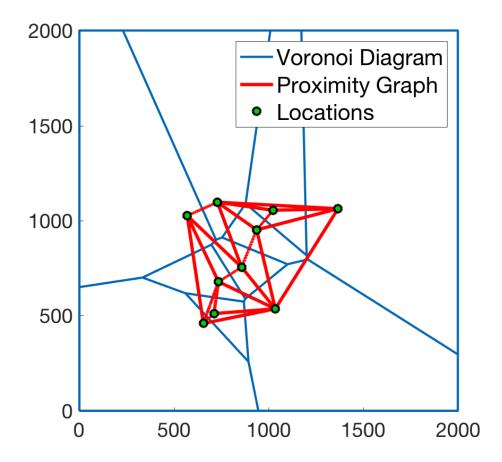
L is a set of nodes that we call locations;

 $-W \subseteq L \times \mathbb{R} \times L$ is a proximity function associating a label $w \in \mathbb{R}$ to distinct pair $\ell_1, \ell_2 \in L$. If $(\ell_1, w, \ell_2) \in W$, it means that there is an edge from ℓ_1 to ℓ_2 with weight $w \in \mathbb{R}$



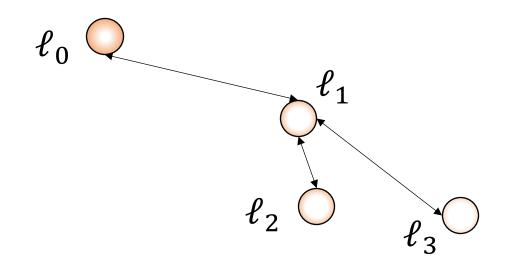
Example





Route
$$\tau = \ell_0 \ell_1 \ell_2 \dots$$

It is a infinite sequence s.t. $\forall i \ge 0 \exists w s.t.(\ell_i, w, \ell_{i+1}) \in W$



 $\ell_0 \ell_1 \ell_2 \ell_1 \dots$ is a route

 $\ell_0 \ell_1 \ell_2 \ell_3 \dots$ is a not route

 $\tau[i]$ to denote the i - th node τ $\tau(\ell)$ to denote the first occurrence of $\ell \in \tau$

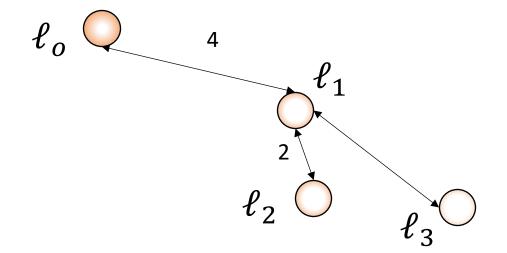
Route Distance
$$d^f_{\tau}[i]$$

The distance $d_{\tau}^{f}[i]$ up to index *i* is:

$$d_{\tau}^{f}[i] = \begin{cases} 0 & i = 0\\ f(d_{\tau[1..]}^{f}[i-1], w) & (i > 0) \text{ and } \tau[0] \stackrel{w}{\mapsto} \tau[1] \end{cases}$$

$$d^f_{\tau}(\ell) = d^f_{\tau}[\tau(\ell)]$$

Route Distance
$$d^f_{\tau}[i]$$



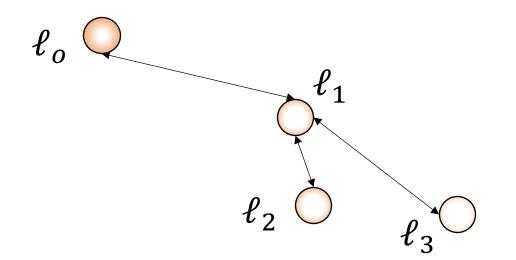
weight(x, y) = x + y

hops(x, y) = x + 1

$$\begin{aligned} d_{\ell_0\ell_1\ell_2..}^{weight}[2] &= \text{weight}(d_{\ell_1\ell_2..}^{weight}[1], 4) = d_{\ell_1\ell_2}^{weight}[1] + 4 = ... \\ &= \text{weight}(d_{\ell_2..}^{weight}[0], 2) + 4 = 6 \end{aligned}$$

Location Distance
$$d_S^f[\ell_i, \ell_j]$$

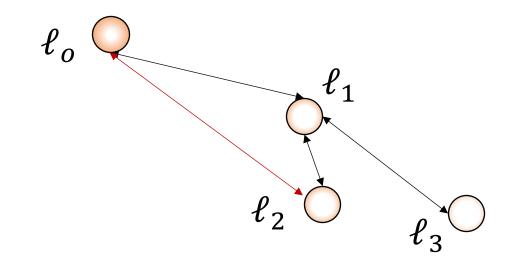
$$d_{S}^{f}[\ell_{i}, \ell_{j}] = \min\{d_{\tau}[\ell_{j}] \mid \tau \in Routes(S, \ell_{i})\}$$



$$d_S^{hops}[\ell_0, \ell_2] = \mathbf{2}$$

Location Distance

$$d_{S}^{f}[\ell_{i}, \ell_{j}] = \min\{d_{\tau}[\ell_{j}] | \tau \in Routes(S, \ell_{i})\}$$



$$d_S^{hops}[\ell_0, \ell_2] = \mathbf{1}$$

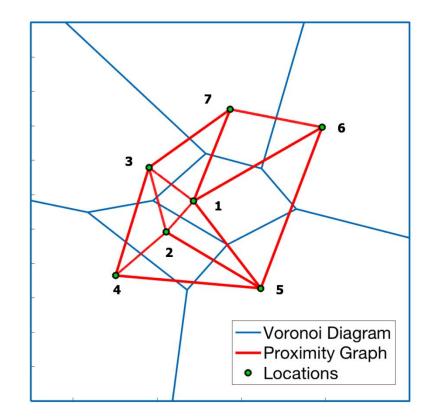
Signal and Trace

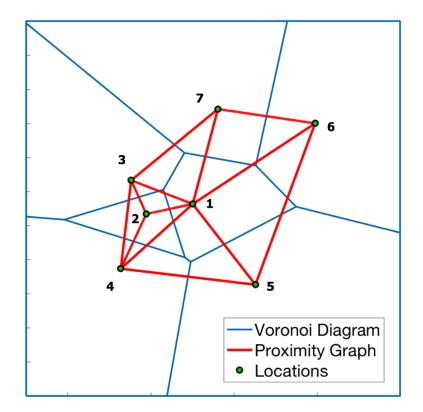
Spatio-Temporal Signals $\sigma: L \to \mathbb{T} \to D$

Spatio-Temporal Trace $\vec{x}: L \to \mathbb{T} \to D^n$

$$\begin{aligned} x(\ell) &= (\nu_B, \nu_T) \\ x(\ell, t) &= (\nu_B(t), \nu_T(t)) \end{aligned}$$

 (t_i, S_i) for i = 1, ..., n and $S(t) = S_i \forall t \in [t_i, t_{i+1})$





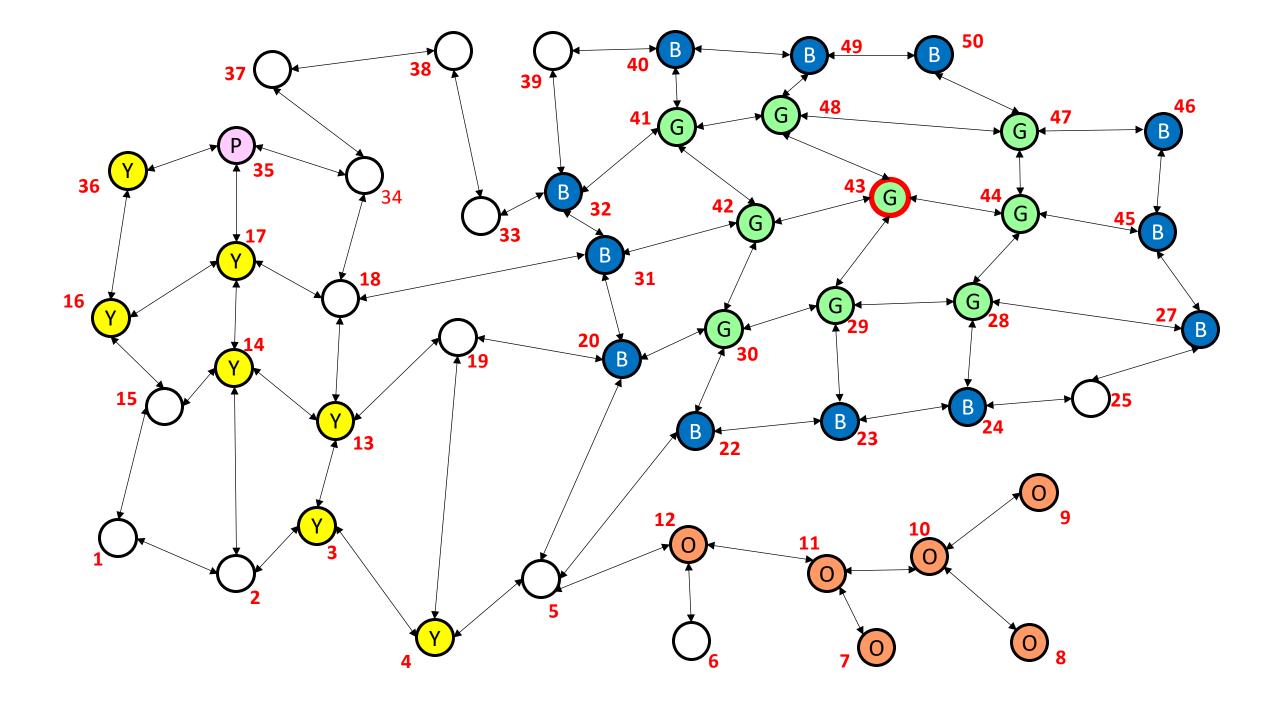
Spatio-Temporal Reach and Escape Logic (STREL)

It is an extension of the Signal Temporal Logic with a number of spatial modal operators

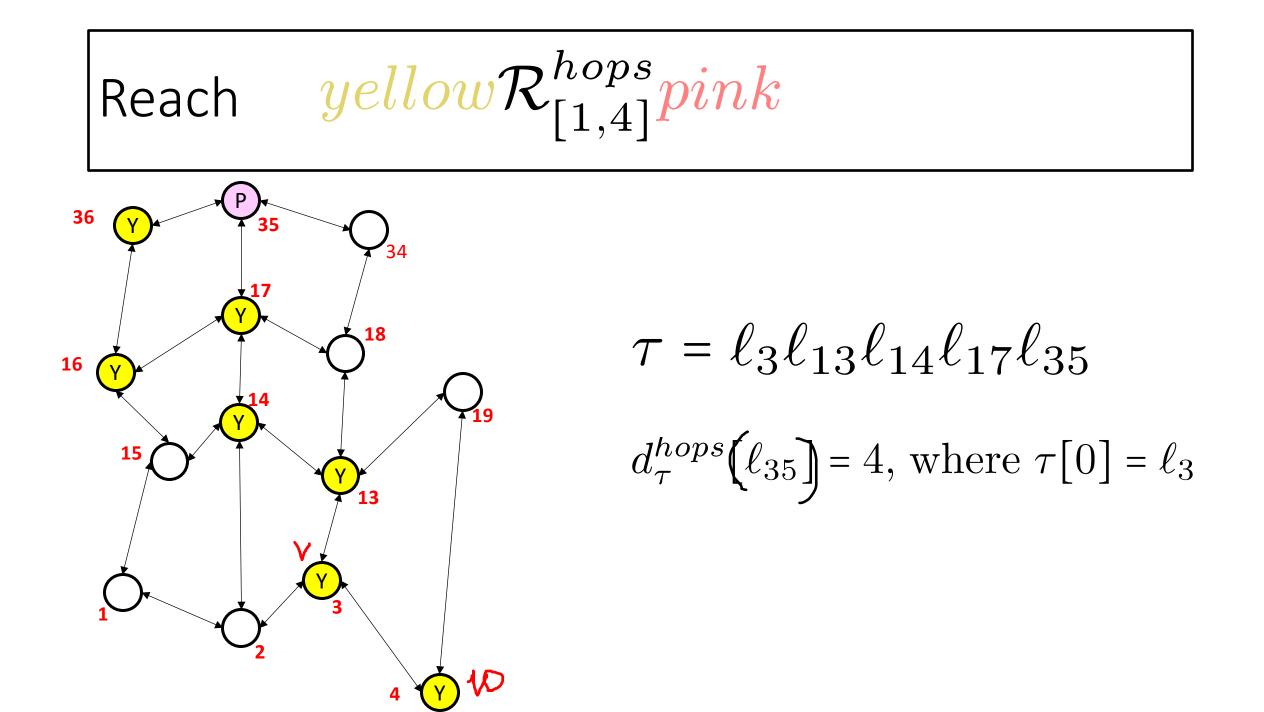
STREL Syntax $\varphi \coloneqq true \mid \mu \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \operatorname{U}_I \varphi_2 \mid \varphi_1 \operatorname{S}_I \varphi_2 \mid \varphi_1 \operatorname{\mathcal{R}}_d^f \varphi_2 \mid \mathcal{E}_d^f \varphi$

In addition, we can derive:

- The disjunction operator: V
- the temporal operators: F_I , G_I , O_I , H_I
- the spatial operators: somewhere, everywhere and surround



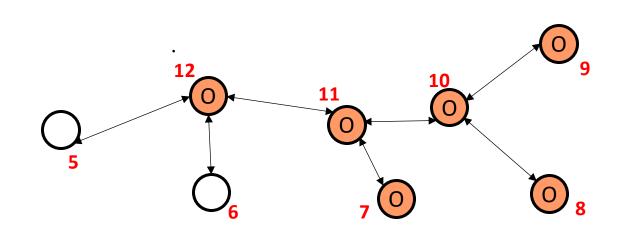
 (S, \vec{x}, ℓ, t) satisfies ${}'_1 \mathsf{R}^f_{[d_1, d_2]} {}'_2$ iff it satisfies φ_2 in a location ℓ' reachable from ℓ through a route τ , with a length $d^f_{\tau}(\ell') \in [d_1, d_2]$ and such that $\tau[0] = \ell$ and all its elements with index less than $\tau(\ell')$ satisfy φ_1



Escape:
$$\mathcal{E}^f_{\left[d_1,d_2
ight]} arphi$$

 (S, \vec{x}, ℓ, t) satisfies $\mathcal{E}_{[d_1, d_2]}^f \varphi$ if and only there exists a route τ and a location $\ell' \in \tau$ such that $\tau[0] = \ell, d_S^f[\ell, \ell'] \in [d_1, d_2]$ and all elements $\tau[0], \dots, \tau[k]$ (with $\tau(\ell') = k$) satisfy φ

Escape:
$$\mathcal{E}^{hops}_{[3,\infty]}$$
orange



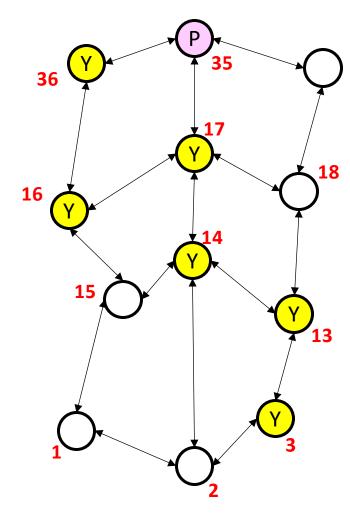
$$\tau = \ell_{9}\ell_{10}\ell_{11}\ell_{12}$$

$$\tau[0] = \ell_{9}, \ \tau[3] = \ell_{12}$$

$$d_{S}^{hops}[\ell_{9}, \ell_{12}] = 3$$

Somewhere:

 $\bigotimes_{\left[d_1,d_2\right]}^{J}\varphi$

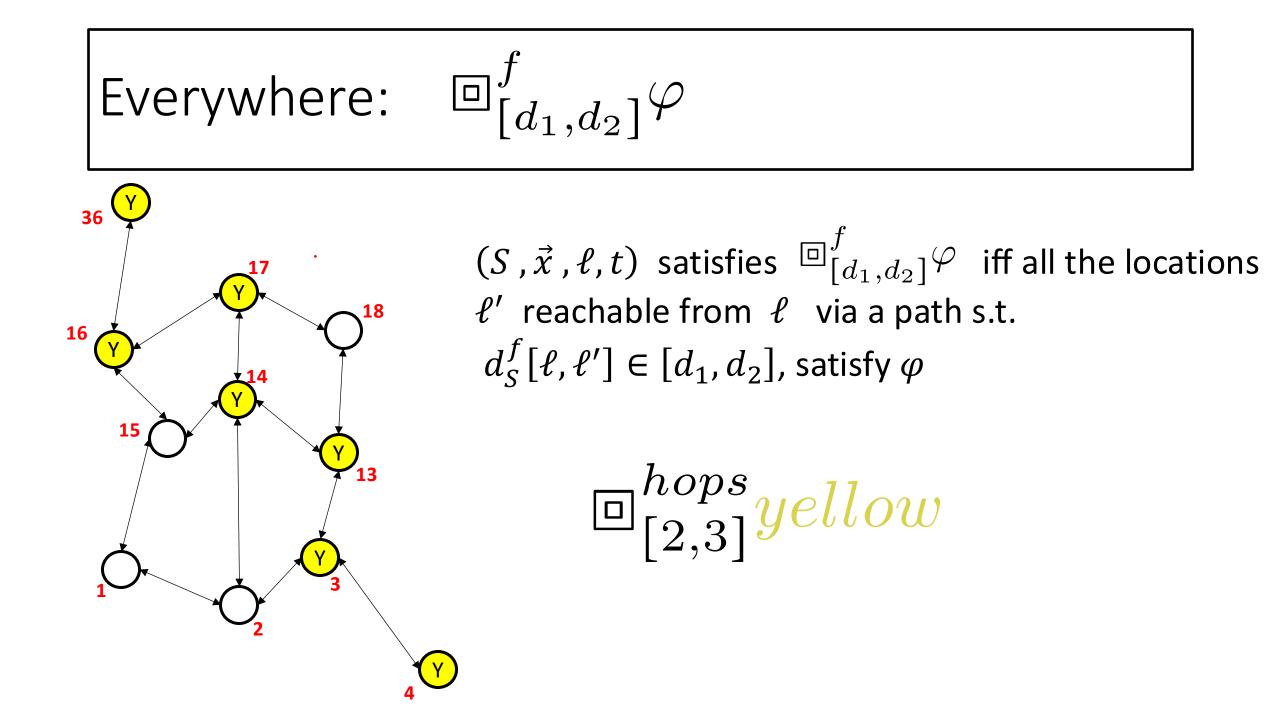


 (S, \vec{x}, ℓ, t) satisfies $\bigotimes_{[d_1, d_2]}^{f} \varphi$ iff there exists a location ℓ' reachable from ℓ , and a s.t. $d_S^f[\ell, \ell'] \in [d_1, d_2]$, that satisfies φ

 $\bigotimes_{[3,5]}^{hops} pink$

 $\tau[0] = \ell_1, \, \tau[k] = \ell_{35}$ $\tau = \ell_1 \dots \ell_{35}$

 $d_{\tau}^{hops}(k) \in [3,5]$

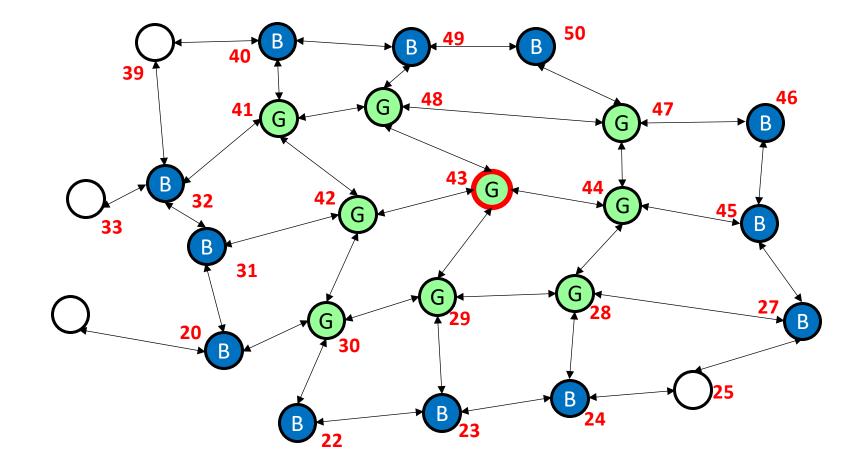


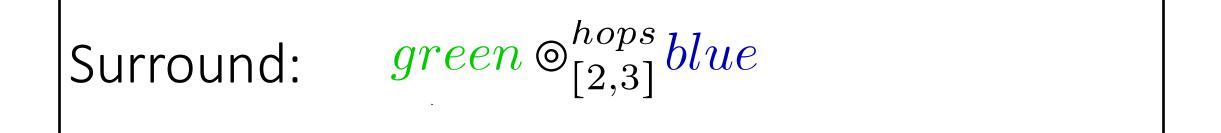
Surround:
$$arphi_1 igotimes_{\left[d_1,d_2
ight]}^f arphi_2$$

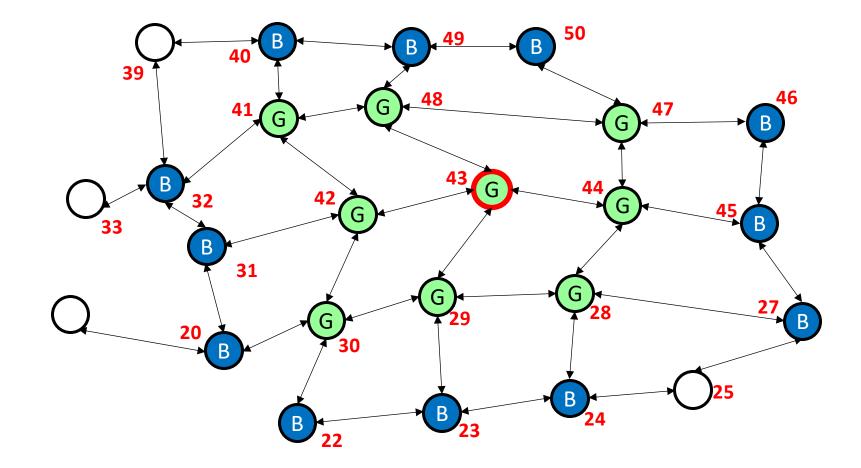
 (S, \vec{x}, ℓ, t) iff there exists a φ_1 -region that contains ℓ , all locations in that region satisfies φ_1 and are reachable from ℓ via a path with length less than d_2 .

All the locations that do not belong to the φ_1 -region but are directly connected to a location of that region must satisfy φ_2 and be reached from ℓ via a path with length in the interval $[d_1, d_2]$.

Surround: $green \otimes_{[0,100]}^{hops} blue$



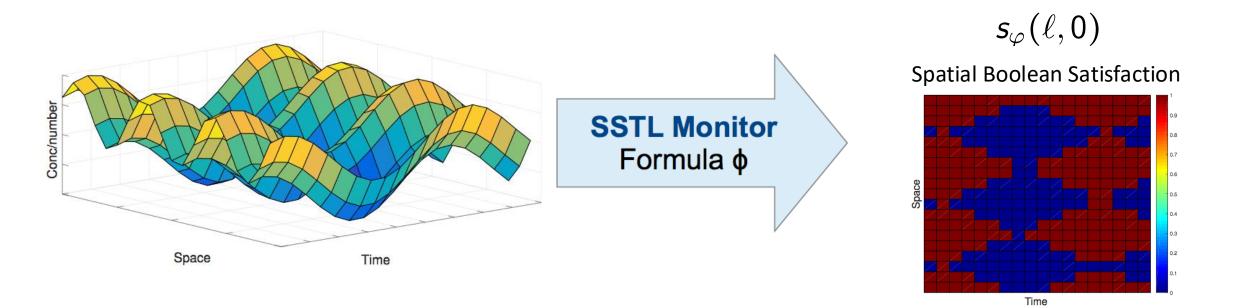




Offline Monitoring Algorithm

Spatial Boolean Signal

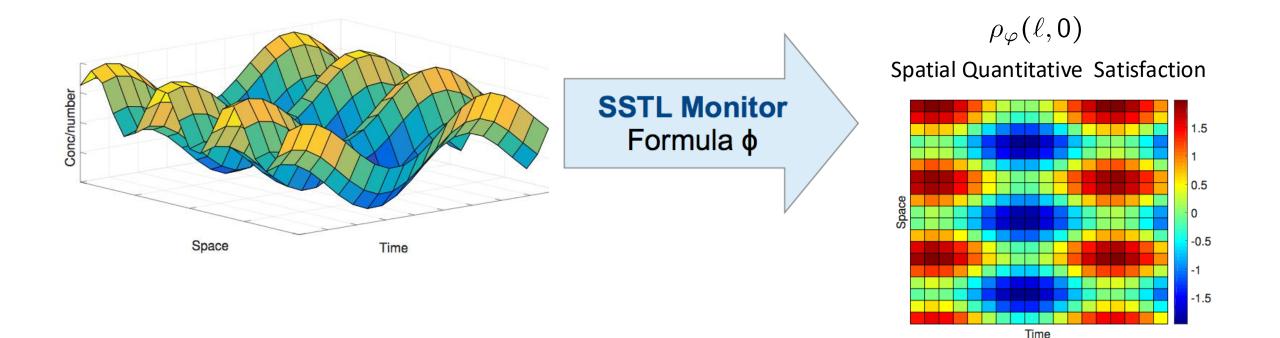
 $s_{\varphi}: L \rightarrow [0, T] \rightarrow \{0, 1\}$ such that $s_{\varphi}(\ell, t) = 1 \Leftrightarrow (S, \vec{x}, \ell, t) \vDash \varphi$



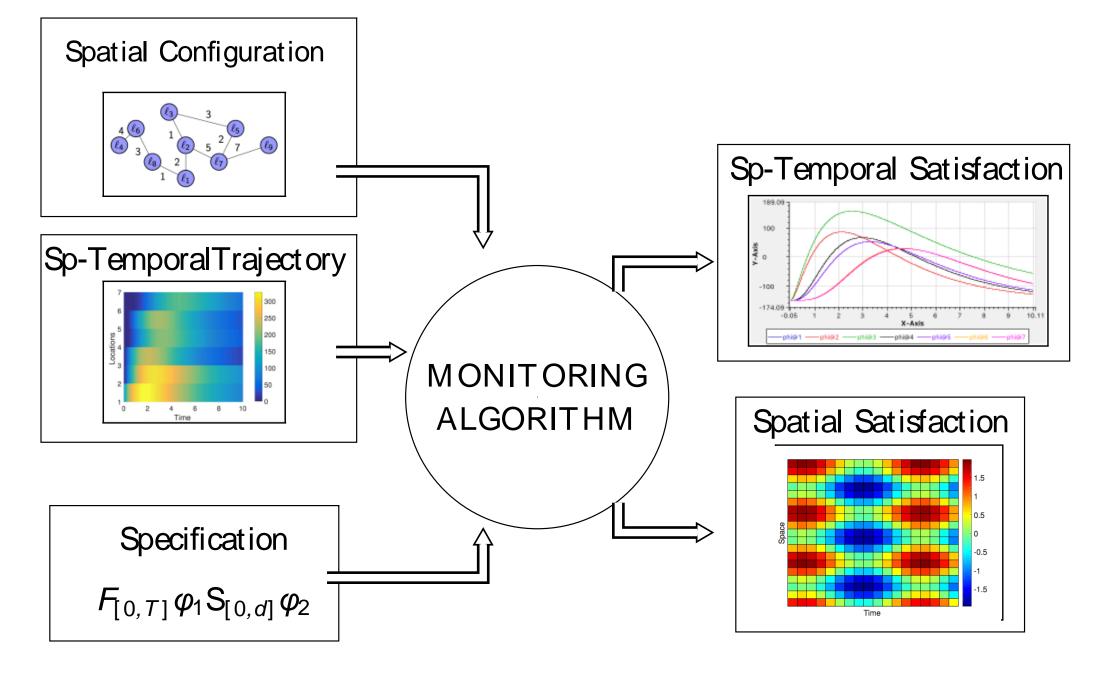
Offline Monitoring Algorithm

Spatial Quantitative Signal

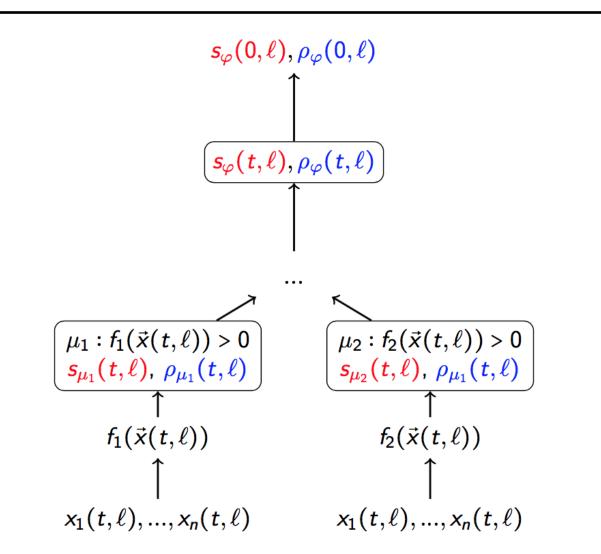
 $\rho_{\varphi}: L \to [0, T] \to \mathbb{R} \cup \pm \infty \quad \text{such that} \quad \rho_{\varphi}(\ell, t) = \rho(S, \vec{x}, \ell, t)$



OUTPUTS



Offline Monitoring Algorithm



Spatial Boolean satisfaction Spatial Quant. satisfaction

Spatial Boolean signals Spatial Quant. signals

Secondary signals

Primary signals

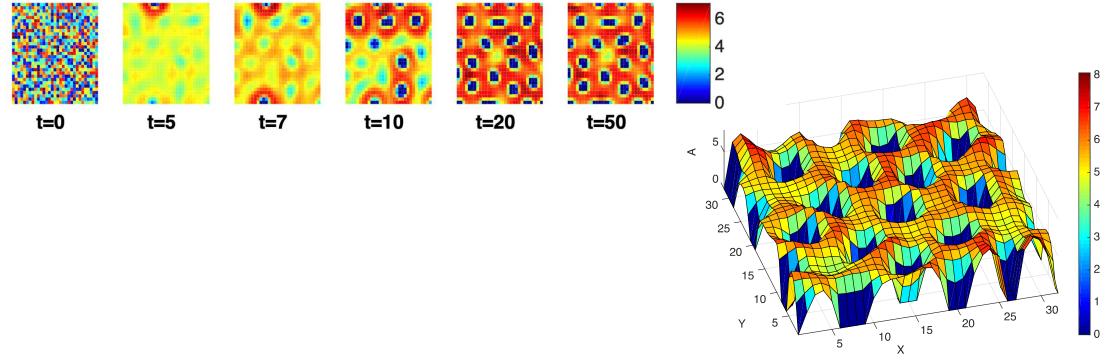
Computational consideration

- Temporal operators: like in STL monitoring [1] is **linear** in the length of the signal times the number of locations in the spatial model.
- Spatial properties are more expensive, they are based on a variations of the classical Floyd-Warshall algorithm. The number of operations to perform is **quadratic** for the reach operator and **cubic** for the escape

Static Space and Regular Grid

The formation of Patterns

The production of skin pigments that generate spots in animal furs:

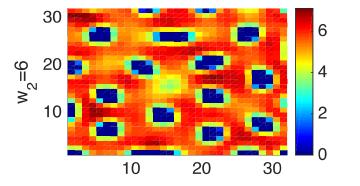


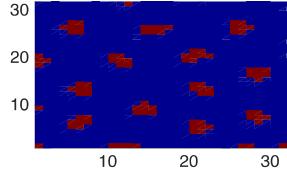
Space model: a K×K grid treated as a graph, cell $(i, j) \in L = \{1, ..., K\}$ × {1, ..., *K*}

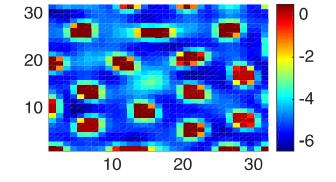
Spatio-Temporal Trajectory: $x: L \to \mathbb{T} \to \mathbb{R}^2$ s.t. $x(\ell) = (x_A, x_B)$

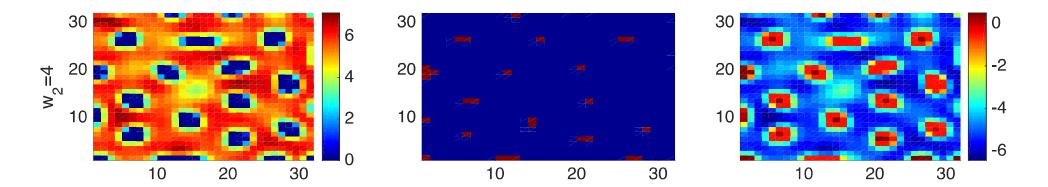
Spot formation property

$$\phi_{spot_{form}} = F_{[19,20]}G((A \le 0.5) \otimes_{[1,w_2]}^{hops} (A > 0.5))$$









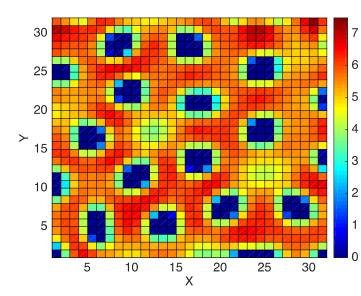
 $x_A(50,\ell)$

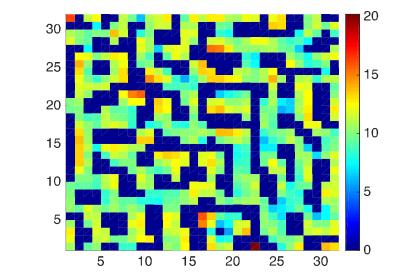
Boolean sat.

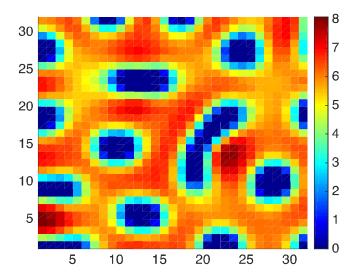
Quantitative sat.

The formation of Patterns

$$\phi_{pattern} := \square^{hops} \otimes^{hops}_{[0,15]} \phi_{spot_{form}}$$





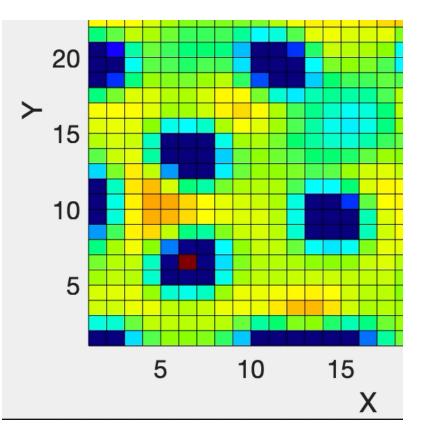


Perturbation Property

$$\phi_{\text{pert}} := (x_A \ge 10) \land (\phi_{absorb} \otimes_{[1,2]}^{hops} \phi_{no_effect})$$

$$\phi_{absorb} = F_{[0,1]} G_{[0,10]} (x_A < 3);$$

$$\phi_{noeffect} := G_{[0,20]} (x_A < 3)$$



Static Space and Stochastic Systems

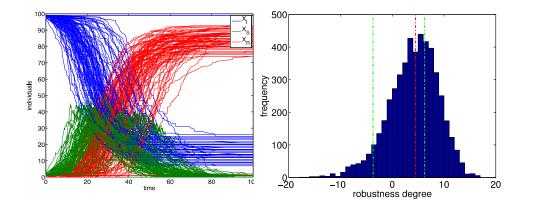
Application to Stochastic Systems

STREL can be applied on stochastic systems considering methodologies as Statistical Model Checking (SMC)

Stochastic process $M = (T, A, \mu)$ where T is a trajectory space and μ is a probability measure on a σ -algebra of T

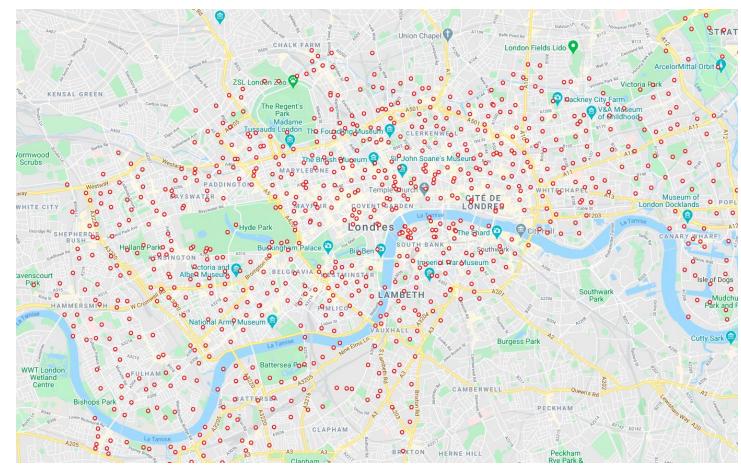
We approximate the satisfaction probability $S(\varphi, t)$, i.e. the probability that a trajectory generated by the stochastic process \mathcal{M} satisfies the formula φ .

We can do something similar with the quantitative semantics computing the robustness distribution



Bike Sharing Systems (BSS)

London Santander Cycles Hire network



- 733 bike stations (each with 20-40 slots)
- a total population of 57,713 agents (users) picking up and returning bikes

We model it as a Population Continuous Time Markov Chain (PCTMC) with timedependent rates, using historic journey and bike availability data.

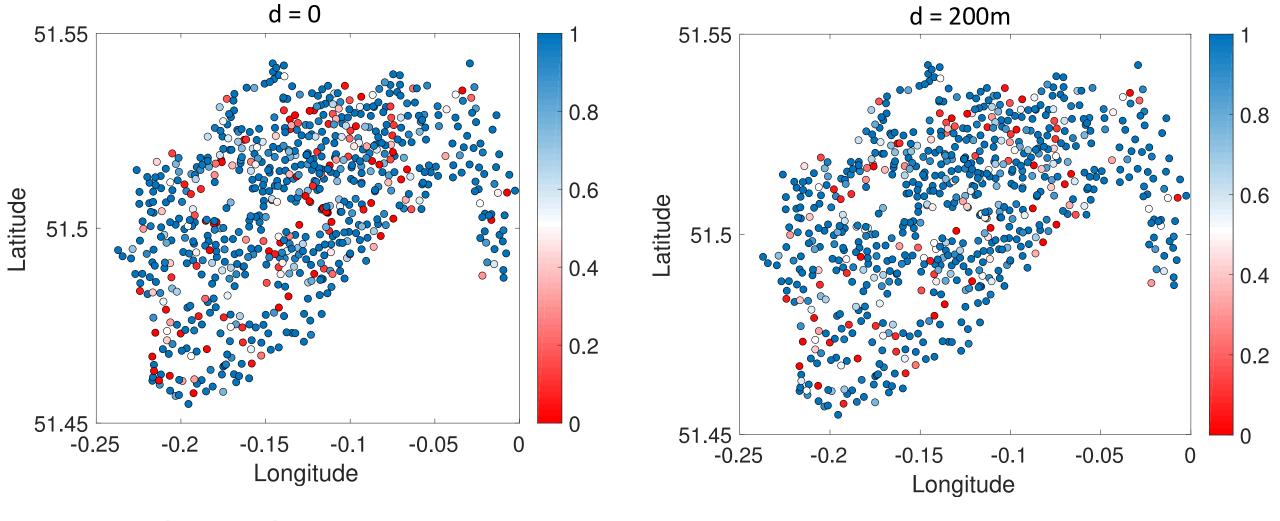
Prediction for 40 minutes.

Bike Sharing Systems (BSS)

Spatio-Temporal Trajectory: $x: L \to \mathbb{T} \to \mathbb{Z}^2$ s.t. $x(i, t) = (B_i(t), S_i(t))$

Space model

- Locations: $L = \{bike \ stations\},\$
- Edges: $(\ell_i, w, \ell_j) \in W$ iff $w = || \ell_i \ell_j || < 1$ kilometer

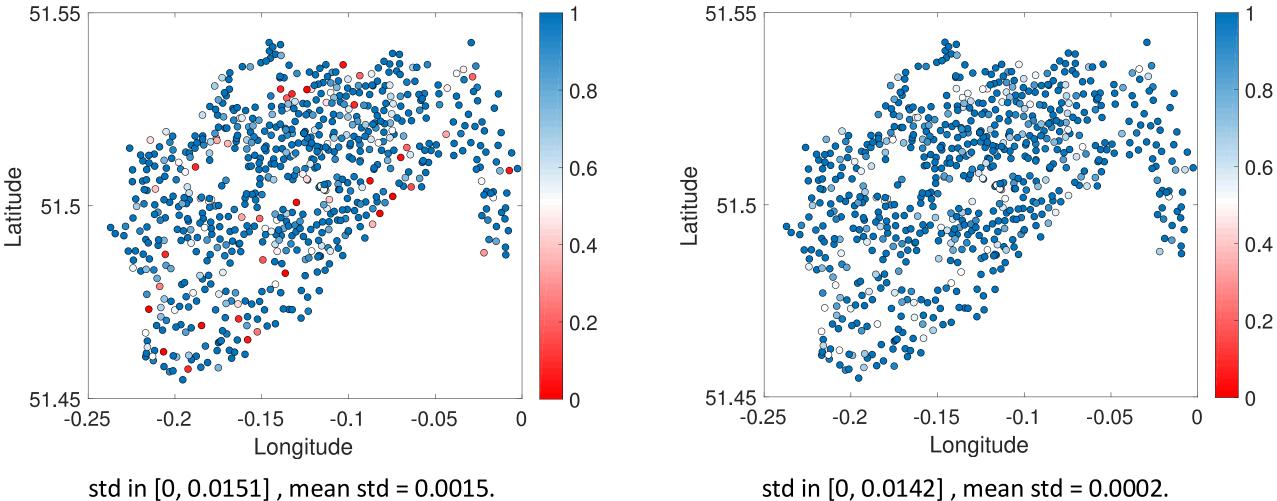


std in [0, 0.0158] , mean std = 0.0053.

std in [0, 0.0158], mean std = 0.0039.

Availability of Bikes $\phi_1 = G\{ \bigotimes_{[0,d]}^{weight}(B > 0) \land \bigotimes_{[0,d]}^{weight}(S > 0) \}$

d = 300 m

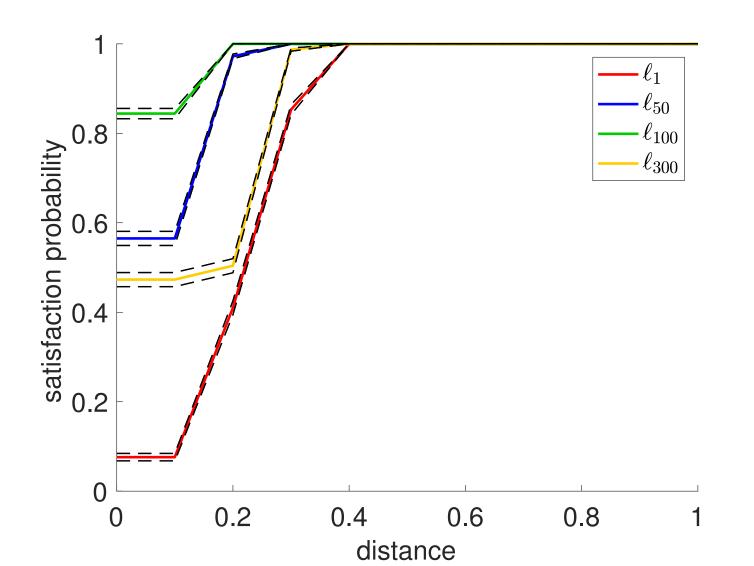


std in [0, 0.0142], mean std = 0.0002.

d = 600m

Availability of Bikes $\phi_1 = G\{\bigotimes_{[0,d]}^{weight}(B > 0) \land \bigotimes_{[0,d]}^{weight}(S > 0)\}$

Satisfaction probability of some BBS stations vs distance d=[0,1.0]



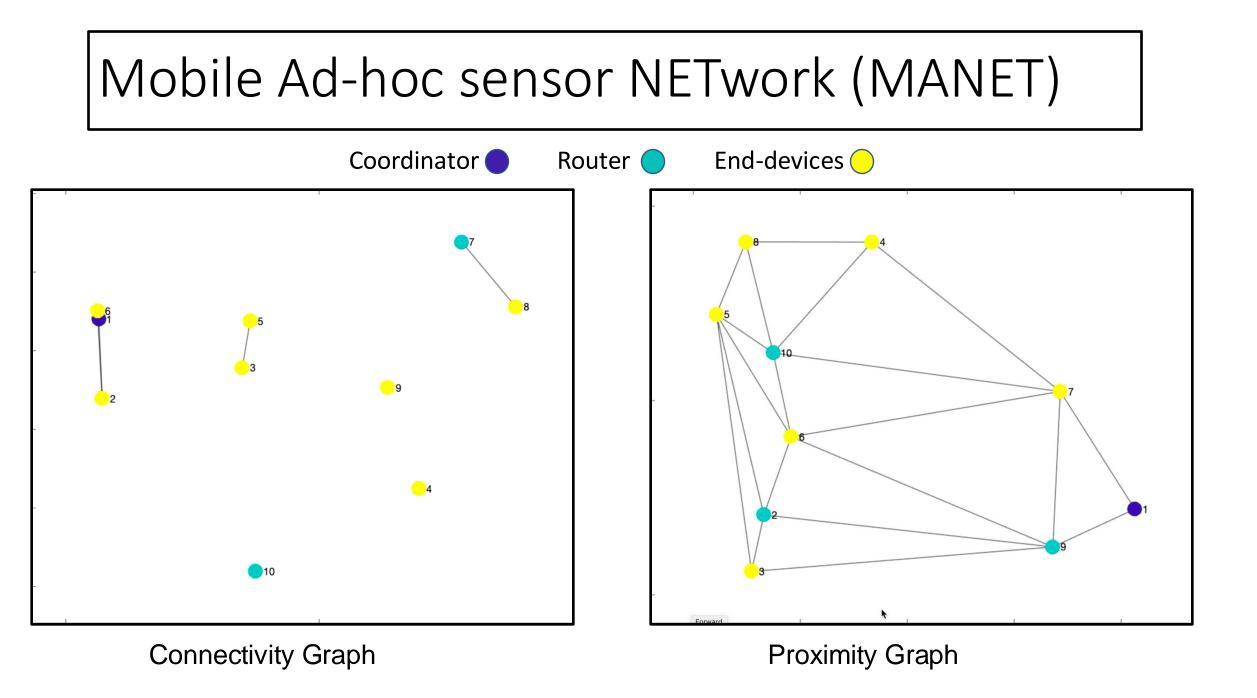
Bike Sharing Systems (BSS)

$$\psi_1 = \mathcal{G}\left\{ \bigotimes_{[0,d]}^{weight} \left(\mathcal{F}_{[t_w,t_w]} B > 0 \right) \land \bigotimes_{[0,d]}^{weight} \left(\mathcal{F}_{[t_w,t_w]} S > 0 \right) \right\}$$

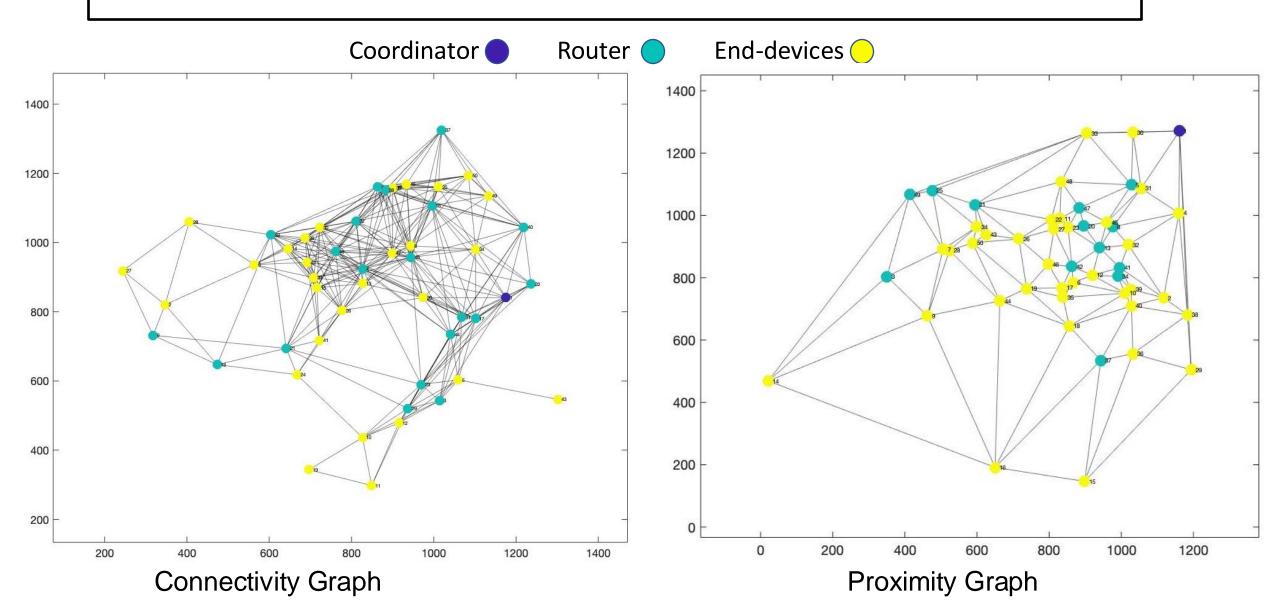
Average walking speed of 6.0 km/h, e.g. d = 0.5 km -> t_w = 6 minutes

The results similar to the results of previous property

Dynamic Space



Mobile Ad-hoc sensor NETwork (MANET)



Mobile Ad-hoc sensor NETwork (MANET)

Space model S(t)

- Locations: $L = \{ devices \},\$
- Edges: $(\ell_i, w, \ell_j) \in W$ iff $w = || \ell_i \ell_j || < \min(r_i, r_j)$

Spatio-Temporal Trajectory: $x: L \to \mathbb{T} \to \mathbb{Z} \times \mathbb{R}^2$ s.t. x(i,t) = (nodeType, battery, temperature)nodeType = 1, 2, 3 for coordinator, rooter, and end_device

Connectivity in a MANET

"an end device is either connected to the coordinator or can reach it via a chain of routers"

"broken connection is restored within h time units"

Connectivity in a MANET

"an end device is either connected to the coordinator or can reach it via a chain of routers"

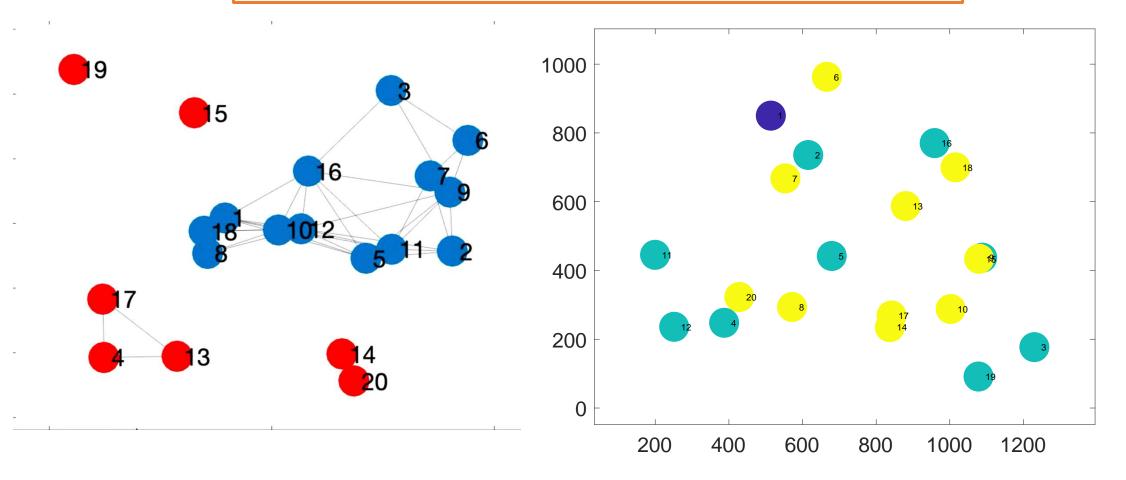
$$\phi_{connect} = device \mathcal{R}^{hop}_{[0,1]}(router \mathcal{R}^{hop}coord)$$

"broken connection is restored within h time units"

$$\phi_{connect_restore} = \mathbf{G}(\neg \phi_{connect} \rightarrow \mathbf{F}_{[0,h]} \phi_{connect})$$

Boolean Satisfaction at each time step

$$\phi_{connect} = device \mathcal{R}^{hop}_{[0,1]}(router \mathcal{R}^{hop}coord)$$



Delivery in a MANET

"from a given location, we can find a path of (hops) length at least 5 such that all nodes along the path have a battery level greater than 0.5"

$$\psi_3 = \mathcal{E}^{hops}_{[5,\infty]}(battery > 0.5)$$

Reliability in a MANET

"reliability in terms of battery levels, e.g. battery level above 0.5

$$\phi_{reliable_router} = ((battery > 0.5) \land router) \mathcal{R}^{hop} coord$$

$$\phi_{reliable_connect} = device \mathcal{R}_{[0,1]}^{hop}(\phi_{reliable_router})$$

Moonlight: https://github.com/MoonLightSuite/MoonLight/wiki

	🗘 Why	GitHub? ∽ Team	Enterprise	Explore \vee Marketpla	ce Pric	cing \sim		Search		Sign ir	Sign	qr		
MoonLig	ghtSuite / Moo	onLight							 Watch 	7	☆ Star	4	ి Fork	
<> Code	() Issues 2	រ៉ុា Pull requests	Actions	Projects 1	🛛 Wiki	() Security	Insights							

Home

Simone edited this page on 1 Jul - 30 revisions

MoonLight [build passing] (codecov 39%)	Pages 6				
MoonLight is a light-weight Java-tool for monitoring temporal, spatial and spatio-temporal properties of distributed complex systems, as <i>Cyber-Physical Systems</i> and <i>Collective Adaptive Systems</i> . It supports the specification of properties written with the <i>Reach and Escape Logic</i> (STREL). STREL is a linear-time temporal	 Moonlight Script Syntax Matlab Installation Getting Started Python License Clone this wiki locally				
logic, in particular, it extends the Signal Temporal Logic (STL) with a number of spatial operators that permit to described complex spatial behaviors as being surround, reaching target locations, and escaping from specific regions.					
MoonLightis implemented in Java, but it features also a MATLAB interface that allows the monitoring of spatio-temporal signals generated within the MATLAB framework. A Python Interface is under development.					
Getting Started	https://github.com/Moor	Ľ			
First, you need to download JAVA (version 8) and set the environmental variable					
JAVA_HOME= path to JAVA home directory					

Then you need to get or generate the executable for Python or MATLAB.

First, you need to clone our repository

\$ git clone https://github.com/MoonLightSuite/MoonLight.git

or download it (link).

Then you need to compile it by executing the following Gradle tasks in the console

```
(atomicExpression)
             ! Formula
2
             Formula & Formula
3
             Formula | Formula
4
             Formula -> Formula
5
            Formula until [a b] Formula
6
            Formula since [a b] Formula
\overline{7}
            eventually [a b] Formula
8
             globally [a b] Formula
9
             once [a b] Formula
10
             historically [a b] Formula
11
             escape(distanceExpression)[a b] Formula
12
             Formula reach (distanceExpression)[a b] Formula
13
             somewhere(distanceExpression) [a b] Formula
14
             everywhere (distanceExpression) [a b] Formula
15
             {Formula}
16
```

Bibliography

Mining Requirements:

- Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Guido Sanguinetti, System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587: 3-25 (2015)
- Jin, Deshmukh et al. Mining Requirements from Closed-loop Control Models (HSCC '13, IEEE Trans. On Computer Aided Design '15)
- Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic properties, FORMATS, 2014
- Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.i, Temporal logic based monitoring of assisted ventilation in intensive care patients, ISoLA, 2014.
- Nenzi L., Silvetti S., Bartocci E., Bortolussi L. (2018) A Robust Genetic Algorithm for Learning Temporal Specifications from Data. QEST 2018. LNCS, vol 11024. Springer, Cham.