
Doppler-free spectroscopy

1 Introduction

The invention of the laser in the 1960s revolutionized precision spectroscopy, making it
possible to study atomic and molecular structures with unprecedented resolution and ac-
curacy. Lasers, characterized by their narrow linewidth, tunability, and coherence, enabled
the observation of fine spectral features that were previously unresolved. This advancement
led to significant insights into the structure of atoms and molecules, establishing precision
spectroscopy as a vibrant field of research.

Laser spectroscopy also laid the groundwork for groundbreaking advancements in laser
cooling and atom trapping, culminating in the 1995 realization of Bose-Einstein condensation
in alkali gases. In laboratories working with trapped atomic atoms and molecules, Doppler-
free saturated absorption spectroscopy is widely employed as a key technique for locking
lasers to specific atomic transitions.

2 Qualitative picture for two-level atoms

Figure 1: Basic experimental arrangement for saturation spectroscopy.

The core of the experimental setup for Doppler-free saturation spectroscopy is shown
in Fig.1. Two counter-propagating laser beams, derived from a single laser source, pass
through an atomic vapor cell. The pump beam, which has high intensity, bleaches the atomic
gas by saturating the atomic transition, making the gas transparent at certain frequencies.
Meanwhile, the transmittance of the weaker probe beam, which typically has an intensity
about ten times lower, is measured using a photodiode to generate the spectroscopic signal.

Signal without the pump beam To understand the expected signals, consider a two-
level atom with a ground state |g⟩ and an excited state |e⟩. If only the probe beam passes
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Figure 2: Transmission signal for a probe beam without (top) and with (bottom) an intense
pump beam present.

through the vapor cell (with the pump beam blocked), the observed signal is a simple absorp-
tion line dominated by Doppler broadening (Fig2 top). This broadening arises because atoms
in the vapor move with a range of velocities, causing the observed transition frequencies to
shift according to the Doppler effect. The resulting absorption profile has a characteristic
Gaussian shape. At room temperature, the Doppler width is typically two orders of magni-
tude larger than the natural linewidth, which is the intrinsic frequency width of the atomic
transition.

Signal with the pump beam: The Lamb dip When the pump beam is added, a sharp,
narrow spike—known as the Lamb dip—appears in the probe beam’s transmission signal at
the resonance frequency ν = ν0 of the atomic transition (Fig2 bottom). This feature, first
explained by Willis Lamb, highlights the power of saturation spectroscopy.

For the Lamb dip to occur, we need atoms with zero velocity along the axis of the vapor
cell so that they can see the same frequency from both the pump and probe beams. Why?
Atoms moving in one direction experience a blue-shifted pump beam and a red-shifted probe
beam (or vice versa), meaning that the two beams are never resonant with the same atoms
unless their velocity component along the beam axis is zero. For zero-velocity atoms, the
intense pump beam excites a significant portion of the population to the excited state |e⟩.
These atoms absorb photons from the pump beam and decay back to the ground state |g⟩ via
spontaneous emission. At high pump intensities, the ground-state population is significantly
depleted, reducing the absorbance of the probe beam. This results in a sharp increase in
the probe beam’s transmission at ν = ν0, creating the Lamb dip. Note that at extremely
high pump intensities, the atomic transition becomes saturated, meaning that approximately
half of the atoms are in the ground state and half in the excited state, leading to no net
absorption of the probe beam. This is why we call this method saturated absorption.
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The width of the Lamb dip is significantly narrower than the Doppler width. If the laser
used in the experiment has a sufficiently small intrinsic linewidth, the Lamb dip can approach
the natural linewidth of the atomic transition, revealing fine details of the spectroscopic
feature.

3 Quantitative picture to describe saturated spectroscopy

In the previous section we gave a qualitative picture for saturated spectroscopy. Here we
want to provide a more quantitative picture.

4 Optical Depth

The intensity I of a single weak laser beam propagating through a vapor cell changes ac-
cording to Beer’s law:

dI

dx
= −α(ν)I, (1)

where α(ν) is the frequency-dependent extinction coefficient. For a single weak beam, to a
good approximation, α does not depend on the position. The overall transmission through
the vapor cell of length l is given by:

Iout = Iine
−α(ν)l = Iine

−τ(ν), (2)

where τ(ν) = α(ν)l is called the optical depth.
The contribution from a specific velocity class of atoms (v, v + dv) to the optical depth

τ(ν) can be expressed as:

dτ(ν, v) = lσ(ν, v)dn(v), (3)

where σ(ν, v) is the absorption cross-section, and dn(v) is the fraction of atoms within the
velocity range (v, v + dv).

Absorption Cross Section The absorption coefficient σ(ν, v) has a Lorentzian profile
with natural linewidth Γ and a Doppler-shifted resonance frequency:

σ(ν, v) = σ0
Γ2/4

(ν − ν0 + ν0v/c)2 + Γ2/4
, (4)

where σ0 is the on-resonance absorption cross-section, ν0 is the resonance frequency, v is
the velocity of the atoms along the laser propagation direction, c is the speed of light, Γ is
the natural linewidth of the atomic transition.

The value of σ0 depends on the nature of the atomic transition (e.g., dipole or quadrupole)
and the polarization of the incident light.
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Fraction of atoms with velocity v The fraction of atoms dn(v) belonging to a specific
velocity class follows a Boltzmann distribution:

dn(v) = n0

√
m

2πkBT
e−mv2/2kBTdv, (5)

where n0 is the total atomic density, m is the mass of the atom, T is the temperature, kB is
Boltzmann’s constant.

The density of atoms in the vapor cell is given by n0 = N/V , where N is the total
number of atoms and V is the volume of the vapor cell. By combining the relevant factors,
the differential contribution to the optical depth for a laser frequency ν and atomic velocity
v is given by:

dτ(ν, v) =
2

π

τ0ν0
σ0Γc

σ(ν, v)e−mv2/2kBTdv, (6)

where the overall normalization is chosen such that τ0 represents the optical depth at
resonance. Specifically:

τ0 =

∫
dτ(ν0, v), (7)

with the integral carried out over all velocity classes.

4.1 Effect of a pump beam

For Doppler-free saturation spectroscopy, we must account for the effect of an additional
strong pump beam. Due to the strong laser beam, a significant fraction of the atoms in the
vapor cell will occupy their excited state. Since atoms can only absorb light when they are
in the ground state, we must include a factor (Ng − Ne)/N in Equation (6), where Ng and
Ne represent the ground-state and excited-state populations, respectively.

4.2 Rate Equations

The populations of the two states evolve according to the following rate equations:

Ṅg = ΓNe − σΦ(Ng −Ne), (8)

Ṅe = −ΓNe + σΦ(Ng −Ne), (9)

where:

• The first term in each equation describes spontaneous emission,

• The second term describes stimulated absorption and emission.

Here, Φ = I/hν is the incident photon flux.
Since Ng + Ne = N remains constant, we can eliminate Ng from the equations. Substi-

tuting, the physics is fully described by the equation for Ne:
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Figure 3: Excited-state population Ne as a function of time. (a) shows an exponential decay
of population with Ne(t = 0) = N , in (b) the population in Ne increases exponentially in
time. In any case the population in the excited state satisfies Ne < N/2 for long times.

Ṅe = −(Γ + 2σΦ)Ne + σΦN. (10)

General solution of the population Dynamics The differential equation (10) is solved
as:

Ne(t) =

[
Ne(0)−

NσΦ

Γ + 2σΦ

]
e−(Γ+2σΦ)t +

NσΦ

Γ + 2σΦ
. (11)

Several examples of this general solution are shown in Fig.3.

Case 1: no radiation field In the absence of a radiation field, the population in the
excited state exhibits a purely exponential decay, given by:

Ne(t) = Ne(0)e
−Γt. (12)

Case 2: Weak pump beam When a weak light source is present, i.e., σΦ ≪ Γ, and
assuming that initially all atoms are in the ground state (Ne(0) = 0), the population in the
excited state grows as:

Ne(t) =
NσΦ

Γ

[
1− e−Γt

]
. (13)

After a characteristic time of Γ−1, the population reaches a steady-state value of:

Ne(∞) =
NσΦ

Γ
≪ N. (14)

Case 3: Strong pump beam For typical saturation spectroscopy (and in the experimen-
tal setup we are going to build), a very strong pump laser is used, satisfying σΦ ≫ Γ. In
this case, the excited state population approaches a fully saturated transition:
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Ne(t) =

[
Ne(0)−

N

2

]
e−2σΦt +

N

2
. (15)

As t → ∞, the system reaches a saturation value of:

Ne(∞) → N

2
. (16)

Here, saturation implies that half of the atomic population resides in the excited state.
Even with infinite power, it is not possible to exceed this limit in a two-level system.

4.3 Power Broadening in Laser Spectroscopy

A well-known phenomenon in laser spectroscopy is power broadening, which also appears in
the steady-state solutions of Eq. (11). In the limit where (Γ + 2σΦ)t ≫ 1, the steady-state
population in the excited state is given by:

Ne(∞)

N
=

σΦ

Γ + 2σΦ
. (17)

By substituting Eq. (4) and writing the frequency detuning as ∆ν = (ν − ν0 − ν0v/c)
(with the opposite sign due to the Doppler shift for the pump beam), we can rewrite the
expression for the population as:

Ne(∞)

N
=

σ0ΦΓ/4

∆ν2 + Γ2/4 + σ0ΦΓ/2
. (18)

This equation represents a Lorentzian function whose ”power-broadened” half-width de-
pends on the incident photon flux. Specifically, the half-width at half-maximum (HWHM)
is given by:

∆1/2 =
Γ

2

(
1 +

2σ0Φ

Γ

)1/2

. (19)

Introducing the saturation parameter s = Φ/Φsat, where Φsat = Γ/(2σ0), we can
express the population in the excited state as:

Ne =
s/2

1 + s+ 4∆2/Γ2
. (20)

This expression provides all the necessary ingredients to compute a saturated absorption
spectrum for a two-level atom.

The saturation intensity Isat can be expressed as:

Isat =
2π2hcΓ

3λ3
. (21)

For the D2 line in 87Rb with a natural linewidth of Γ = 6MHz, the saturation intensity
is approximately:

Isat ≈ 1.65mW/cm2. (22)
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Figure 4: Probe transmission as a function of laser frequency for different vapour densities.
(b) is a zoom into the region around ν0: for very high densities the saturated-absorption
peak vanishes

5 Calculated Saturated-Absorption Spectra

In the previous sections, we have seen that a saturated absorption spectrum is primarily
determined by two externally adjustable parameters: the pump intensity and the on-
resonance optical depth. The latter, assuming a fixed temperature and a specific atomic
species, is proportional to the vapor density inside the cell.

Figure 4 illustrates absorption spectra for different vapor densities in the cell:

• Low Densities: At low atomic densities, the probe absorption is weak and exhibits a
Gaussian profile.

• Intermediate Densities: As the density increases, both the absorption and the
profile width increase. The profile becomes broader and deeper but retains its Gaussian
shape.

• High Densities: At very high densities, the absorption saturates, and the profile
deviates from a Gaussian shape. Even far from resonance, the probe beam is almost
completely absorbed. However, on-resonance absorption is reduced due to the strong
pump beam, resulting in the appearance of the saturated absorption feature (e.g.,
the Lamb dip). For increasing densities, this feature becomes smaller and less pro-
nounced (see Fig. 4b).
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Figure 5: Saturated-absorption peak for fixed vapour density and varying pump beam in-
tensity. The effect of power broadening is clearly visible.

Effectively, increasing atomic density corresponds to an increase in the absolute number of
atoms in the ground state, which leads to greater absorption at ν = ν0 (on resonance).

Next, consider the effect of varying the pump beam intensity while holding the atomic
density fixed, as shown in Figure 5:

• Increasing Pump Intensity: Higher pump intensities enhance the saturation effect,
increasing both the height and width of the Lamb dip. This behavior reflects the
power broadening of the atomic transition.

Increasing the pump beam intensity causes stronger saturation and power broadening of
the absorption profile (Fig.5).

6 Multi-level atoms - Rubidium

Alkali atoms are the workhorse in many of today’s experiments involving the trapping,
cooling, and manipulation of atoms. Their popularity stems from several key advantages:

• Simple Level Structure: Alkali atoms have a relatively simple, hydrogen-like level
structure due to the presence of a single valence electron in the outer shell. This makes
them particularly suitable for precision experiments and theoretical modeling.

• Accessible Transition Frequencies: Unlike hydrogen, alkali atoms have transition
frequencies from the ground to the first excited state that typically lie in the visible
or near-infrared part of the spectrum. These wavelengths are easily accessible using
relatively inexpensive and reliable commercially available lasers.
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In this experiment, rubidium is used as the atomic species. Rubidium offers a transition
frequency at 780 nm, which is well within the range of standard diode lasers. This wavelength
can be conveniently generated by widely available and robust laser systems, making rubidium
an ideal choice for experiments requiring optical manipulation.

6.1 Fine-Structure Splitting

In the case of rubidium, the inner four electronic shells are filled, and only the single outer
(5s) valence electron determines the angular momentum configuration of the atom. The state

of the electron is completely described by its orbital angular momentum L⃗ and its spin S⃗.
These two angular momenta couple in the usual way to form the total angular momentum
J of the electron. Hence, J can take the values |L− S| ≤ J ≤ |L+ S|.

The coupling is driven by the so-called spin-orbit interaction, which can be written as:

Vso = Afs L⃗ · S⃗

This is a relativistic effect and can be derived from the Dirac equation for spin-1
2
parti-

cles. In simple terms, the spin-orbit coupling represents the magnetic interaction energy of
the electron’s spin in the magnetic field created by the relative motion of the nucleus and
the electron. For a detailed discussion, refer to any good book on (relativistic) quantum
mechanics.

The spin-orbit coupling results in what is known as fine-structure splitting for different
values of the total angular momentum J⃗ .

For alkali atoms, the electronic states are fully specified using the Russell-Saunders no-
tation n(2S+1)LJ , where n denotes the principal electronic quantum number. For rubidium
(Rb), n = 5, and the ground state is denoted as 52S1/2. The fine-structure splitting between
the first excited states 52P1/2 and 52P3/2 is 7123 GHz.

6.2 Hyperfine splitting

If the rubidium nucleus carried no spin, the 52S1/2, 5
2P1/2, and 52P3/2 energy levels would be

singlets with no external fields applied. However, this is not the case; there are two natural
isotopes of rubidium: 87Rb with a nuclear spin I = 3

2
and 85Rb with I = 5

2
, with 85Rb having

a higher abundance of 72%.
The non-vanishing nuclear spins have magnetic and (electric) quadrupolar moments asso-

ciated with them, leading to the so-called hyperfine splitting of the atomic energy levels.
The first contribution to the hyperfine splitting is the energy of the nuclear magnetic

(dipole) moment µ⃗nucl in the magnetic field B⃗el generated by the valence electron at the
position of the nucleus. This interaction can be expressed as:

Hhf = −µ⃗nucl · B⃗el (19)

Since µ⃗nucl is proportional to the nuclear spin I⃗, and B⃗el is proportional to the total
angular momentum of the valence electron J⃗ , the Hamiltonian can be rewritten as αI⃗ · J⃗ .
The parameter α is called the magnetic hyperfine structure constant and has units of energy,
that is I⃗ and J⃗ are taken to be dimensionless.
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The second contribution to the hyperfine splitting arises from the electrostatic interac-
tion between the valence electron and the non-vanishing electric quadrupole moment of the
nucleus. This interaction can be expressed in terms of the nuclear and electron angular
momenta I⃗ and J⃗ as follows:

Hhf
quadr =

β

2I(2I − 1)J(2J − 1)

[
3(I⃗ J⃗)2 +

3

2
(I⃗ J⃗)− I(I + 1)J(J + 1)

]
, (23)

where, in analogy to the magnetic case, β is called the electric quadrupole interaction con-
stant and has units of energy.

These two interactions lead to a coupling of the nuclear angular momentum I⃗ and the
electron angular momentum J⃗ to the total angular momentum F⃗ = I⃗ + J⃗ , where F can
take any value between |J − I| and J + I. Associated with this coupling is a splitting into
hyperfine levels, which are labeled by the hyperfine quantum number F . Electric dipole
transitions between hyperfine levels must obey the selection rules:

∆L = ±1 (21)

∆F = 0,±1 (but not 0 → 0) (22)

∆J = 0,±1 (23)

Using the definition for F⃗ and forming F⃗ · F⃗ , it is possible to write:

I⃗ · J⃗ =
F (F + 1)− J(J + 1)− I(I + 1)

2
=:

C

2

Hence, for given J and I, the frequencies νF of the various hyperfine levels are given by:

νF = νJ +
AC

2
+B

[
3C(C + 1)− 4I(I + 1)J(J + 1)

8I(2I − 1)J(2J − 1)

]
, (24)

where νJ is the frequency (energy) of the state n(2S + 1)LJ without the hyperfine inter-
action. In the above expression, A = α

ℏ and B = β
ℏ have units of Hz.

It turns out that for the 52S1/2 ground state of both 85Rb and 87Rb, the last term in
Eq. (24) is zero. Therefore, the hyperfine splitting in the ground state is characterized by
a single parameter A(52S1/2), which for 87Rb is A(52S1/2) = 3417.34MHz and for 85Rb is
A(52S1/2) = 1011.91MHz.

In contrast, for the first excited states 52P1/2 and 52P3/2, the hyperfine parameters A and
B are both different from zero and are typically on the order of a few tens of MHz, which is
much smaller than for the ground state.

Energy level diagrams of the states 52S1/2, 5
2P1/2, and 52P3/2 for both

85Rb and 87Rb are
shown in Fig.6.

It is the main goal of this experiment to measure the hyperfine constants A and B for
the state 52P3/2 of the two isotopes of rubidium.
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Figure 6: Level scheme for the 5S1/2 ↔ 5P3/2 transition in 85Rb and 87Rb.
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