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In the lectures, the formula

∞
∑

n=1

1

n2
=

π2

6
(1)

was derived using residues. Euler found this in 1735, 90 years before Cauchy
introduced residues. Even complex numbers where not commonly used in
Euler’s time.

So it is interesting and useful to see how Euler found this. His first
contribution was a sophisticated numerical computation. He computed the
sum to 20 decimal places. As an exercise, you can try to estimate, how many
terms of the series are needed for this, assuming that you just add the terms.

Now I will explain Euler’s proof. It is based on a new representation of
the sine function

sin z = z −
z3

6
+

z5

120
−

z7

5040
+ . . . . (2)

We know (and Euler knew) that this series converges for all values of z. In
modern language we say that sine is an entire function. Euler’s great idea
was to treat an entire function as a polynomial of infinite degree.

We know that every polynomial factors:

P (z) = c(z − z1)(z − z2) . . . (z − zn), (3)

where zk are the roots and c is a constant. Can we somehow extend this
factorization to entire functions, that is to polynomials of infinite degree ?
An entire function can have infinitely many roots, for example sin z has roots
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zk = kπ, where k is any integer. So one has to expect an infinite product in
the factorization.

Which brings the question: Can we make sense of infinite products? So
let us consider an infinite product of numbers

∞
∏

n=1

an. (4)

We can define partial products

pN =
N
∏

n=1

an,

and then define the infinite product as the limit of partial products when
n → ∞. If the limit exists, the product will be called convergent.

There is one little catch here: if one of the an equals zero, then all pN

with sufficiently large N will be zero, the limit evidently exists in this case,
no matter what ak with k > n are. This is not good, because we want to have
a notion of convergence which does not depend of the finitely many terms of
the product.

This and other considerations lead to the following definition:
The product (4) is called convergent if for some m the partial products

pm,N =
N
∏

n=m

have non-zero limit p, as N → ∞. This number a1a2 . . . am−1p is the value
of the infinite product.

So finitely many terms do not affect the convergence.
Now we have a simple necessary condition of convergence: an → 1. In-

deed, if pm,n tends to a non-zero limit, then

an =
pm,n+1

pm,n
→ 1.

This is similar to the necessary condition of convergence of a series: the term
of the series must tend to 0.

Now back to the product (3). Recall that the zeros of an entire function
have no accumulation points in the plane, so zk → ∞. Is it possible then for
the infinite product

(z − z1)(z − z2)(z − z3) . . .
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to converge? The answer is no, because (z − zk) → ∞.
However we can modify (3) in the following way:

c′
(

1 −
z

z1

)(

1 −
z

z2

)

. . . .

What we did is just divided each factor on −zk, and adjusted the constant c
in front accordingly.

Now (1 − z/zk) → 1 as k → ∞, and at least the necessary condition of
convergence will be satisfied.

As sin 0 = 0, we have to put the factor z separately, and thus we conjec-
ture that

sin z = cz
∞
∏

n=−∞,n 6=0

(

1 −
z

πn

)

. (5)

There is a little difficulty here: we defined convergence and partial sums for a
product with n from 1 to ∞, while in (5) we need a product over all integers
n.

One can take the same approach as we had for Laurent series, and define
convergence of such a product as a separate convergence of two products

∞
∏

n=1

(

1 −
z

πn

)

and
∞
∏

n=1

(

1 +
z

πn

)

.

But both these products diverge: the partial products of the first one tend
to zero, and the partial products for the second one tend to infinity. For
example, when z = 1, we have

N
∏

n=1

(

1 +
1

πn

)

> 1 +
N
∑

n=1

1

πn
,

and the right hand side is a partial sum of a divergent series.
Euler’s next idea is to group the terms with positive and negative n:

sin z = cz
∞
∏

n=1

(

1 −
z2

π2n2

)

.

As an exercise, try to prove that now the product in the right hand side
converges.
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It remains to find the value of c. But this is simple: divide both sides by
z, and let z → 0. Using that sin z/z → 1 as z → 0, we obtain

sin z = z
∞
∏

n=1

(

1 −
z2

π2n2

)

. (6)

Now Euler proposes to actually perform the multiplication on the right hand
side and compare with the power series (2). The term with z is certainly 1.
The term with z3 is

−z
∞
∑

n=1

z2

π2n2
.

Thus must be equal to −z3/6 in (2), so

∞
∑

n=1

1

π2n2
=

1

6
.

So formula (6) implies the formula for the sum of reciprocal squares. This is
the essence of Euler’s first proof.

But did we really prove (6)?
Suppose that the convergence of the right hand side for all z 6= πn is

justified. Then the right hand side is an entire function with the same roots
as sin, including multiplicity. Moreover, derivatives at 0 of the right and left
hand side match. Can we conclude that (6) is valid?

Euler himself returned to this problem again and again during his life...
He did many various checks of the formula (6) but I am not sure that any
of his proofs satisfies the modern requirements of rigor. He also gave many
alternative proofs of (1).

Exercises.
1. Prove

∞
∑

n=0

(−1)n

2n + 1
=

π

4
.

2. Prove
∞
∑

n=0

(−1)n

(2n + 1)3
=

π3

32
.

3. Prove
∞
∑

n=0

1

(2n + 1)2
=

π2

8
.
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All these come from Euler’s papers.

We will derive (6) from the partial fraction decomposition of cot, also
known to Euler.

cot z =
1

z
+

∞
∑

k=−∞, k 6=0

(

1

z − kπ
+

1

kπ

)

. (7)

To prove this by the method explained in the lectures, we choose as a contour
Cn a disc or a square centered at the origin which contains integers from −n
to n. Then, applying the residue theorem we obtain

1

2πi

∫

Cn

cot ζ

ζ − z
= cot z −

1

z
−

n
∑

k=−n, k 6=0

1

z − kπ
. (8)

Indeed the poles of the expression under the integral are:
ζ = z with residue cot z,
ζ = 0 with residue −1/z, and
ζ = πk with residues 1/(πk − z).
We would like to pass to the limit in (8) as n → ∞. However this is

not completely trivial: About cot we only know that it is bounded on the
contour, and this is not enough to show that the integral tends to 0. Also
the resulting series in the RHS will be divergent in the usual sense.

One possible way to fix the problem is the following. Using the formula
cot z−1/z → 0 as z → 0, we pass to the limit when z → 0 in (8). We obtain

1

2πi

∫

Cn

cot ζ

ζ − z
dζ =

n
∑

k=−n k 6=0

1

kπ
. (9)

Now subtract (9) from (8). We obtain

z

2πi

∫

Cn

cot ζ

ζ(ζ − z)
dζ = cot z −

1

z
−

n
∑

k=−n, k 6=0

(

1

z − kπ
+

1

kπ

)

. (10)

Now we can pass to the limit because the integral in the left hand side tends
to 0 and the series obtained in the right hand side converges! For convergence
of the series, notice that the expression in parentheses equals

z

kπ(z − kπ)
,

5



so for fixed z the absolute value is at most Ck−2, and the series converges.
So we obtain the expansion (7).

To derive (6), notice that

cot z =
(sin z)′

sin z
= (log sin z)′,

wherever log sin is defined. So we can integrate the series (7) along some
path, and then take exp of the result. Notice that the integral is not single
valued: every time we go around a pole 2πi is added. However when we
take exp of the result, all these 2πi are killed, so the result is well defined.
Choosing the beginning of the path of integration at 0, and taking 1/z to
the LHS when integrating, we obtain

sin z = Cz
∞
∏

k=−∞, k 6=0

(

1 −
z

πk

)

ez/(πk),

where C is the constant of integration. To find it we let z → 0 and use
sin z/z → 1. This gives C = 1. Grouping the terms with k and −k we
obtain (6).

Alternatively, we could group the terms with k and −k in (7), obtain

cot z =
1

z
+

∞
∑

k=1

2z

z2 − (kπ)2
.

Then we could integrate and take exp to obtain (6).
One can also group the terms with positive and negative k in (8), and

then prove that the integral tends to 0, however this last task is somewhat
subtle: the reason why it tends to 0 is that the parts on the upper and lower
half-circles almost cancel each other.
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