
Python introduction 28/55

All variables in a program may not be accessible at all locations in that program. This
depends on where you have declared a variable.

The scope of a variable determines the portion of the program where you can access a
particular identifier. There are two basic scopes of variables in Python:

 Global variables
 Local variables

Scope of variables

Python introduction 29/55

Variables that are defined inside a function body have a local scope,
those defined outside have a global scope.

This means that local variables can be accessed only inside the function in which they
are declared,
whereas global variables can be accessed throughout the program body by all functions.
When you call a function, the variables declared inside it are brought into scope.

Example (try):
#!/usr/bin/python

total = 0; # This is global variable.
Function definition is here
def sum(arg1, arg2):
 # Add both the parameters and return them."
 total = arg1 + arg2; # Here total is local variable.
 print "Inside the function local total : ", total
 return total;

Now you can call sum function
sum(10, 20);
print "Outside the function global total : ", total

Global vs. local variables

Output calling the script:

Inside the function local total : 30
Outside the function global total : 0

Python introduction 30/55

All parameters (arguments) of functions in Python are passed by reference:
if you change what a parameter refers to within a function,
then the change also reflects back in the calling function.

Example:
#!/usr/bin/python

Function definition is here
def changeme(mylist):
 "This changes a passed list into this function"
 mylist.append([1,2,3,4]);
 print "Values inside the function:\n ", mylist
 return

Now you can call changeme function
mylist = [10,20,30];
changeme(mylist);
print "Values outside the function: \n", mylist

Pass function arguments by reference vs. value

Output:

Values inside the function:
[10, 20, 30, [1, 2, 3, 4]]

Values outside the function:
[10, 20, 30, [1, 2, 3, 4]]

Python introduction 31/55

!/usr/bin/python
Function definition is here
def changelist(mylist):
 "This changes a passed list into this function"
 mylist = [1,2,3,4]; # This assig new reference in mylist
 print "Values inside the function: ", mylist
 return

Function call
mylist = [10,20,30];
changelist(mylist);
print "Values outside the function: ", mylist

The parameter mylist is local to the function changelist. Changing mylist within the
function does not affect mylist outside the function.

Output:
Values inside the function: [1, 2, 3, 4]
Values outside the function: [10, 20, 30]

Be careful duplicating variable names

Python introduction 32/55

Anonymous functions are not declared in the standard manner by using the def keyword.
The lambda keyword is used to create small anonymous functions.

● Lambda forms can take any number of arguments but return just one value in the
form of an expression.

● They cannot contain commands or multiple expressions.
● An anonymous function cannot be a direct call to print because lambda requires an

expression
● Lambda functions have their own local namespace and cannot access variables

other than those in their parameter list and those in the global namespace.
● Although it appears that lambda's are a one-line version of a function, they are not

equivalent to inline statements in C or C++, whose purpose is by passing function
stack allocation during invocation for performance reasons.

Syntax

The syntax of lambda functions contains only a single statement, which is as follows:

lambda [arg1 [,arg2,.....argn]]:expression

The Anonymous Functions

Python introduction 33/55

#!/usr/bin/python

Function definition is here
sum = lambda arg1, arg2: arg1 + arg2;

Now you can call sum as a function
print "Value of total : ", sum(10, 20)
print "Value of total : ", sum(20, 20)

When the above code is executed, it produces the following result:

Value of total : 30
Value of total : 40

Example: The Anonymous Functions

Python introduction 34/55

The statement return [expression] exits a function,
optionally passing back an expression to the caller.
A return statement with no arguments is the same as return None.

Example of return value

#!/usr/bin/python
Function definition is here
def sum(arg1, arg2):
 # Add both the parameters and return them."
 total = arg1 + arg2
 print "Inside the function : ", total
 return total;

Now you can call sum function
total = sum(10, 20);
print "Outside the function : ", total

When the above code is executed, it produces the following result −
Inside the function : 30
Outside the function : 30

return statement

