Announcements

= HW
= Project

272SM: Introduction to Artificial Intelligence
Multi-agent decision making

Instructor: Tatjana Petrov

University of Trieste, Italy

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Non-Deterministic Search

Example: Grid World

= A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

= Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |fthereisawallinthe direction the agent would have
been taken, the agent stays put

= The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

" Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

An MDP is defined by:

m Asetofstatess € S
m AsetofactionsacA
= A transition function T(s, a, s’)

= Probability that a from s leads to s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, ')
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= WEe'll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St+1 = 3/|St — StaAt — Ay, Si—1 = St—1,At—1, ...50 = So)

Andrey Markov
P(Siy1 = 8|St = s, A = ay) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy t*:S - A
= A policy &t gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Expectimax didn’t compute entire policies
= |t computed the action for a single state only

Optimal Policies

Example: Racing

Example: Racing

= A robot car wants to travel far, quickly
= Three states: Cool, Warm, Overheated
= Two actions: Slow, Fast

= Going faster gets double reward 0-5

Slow

Overheated

Example: Racing

S a S' T(s,a,s’) | R(s,a,s’)
Slow 1.0 +1
Fast 0.5 +2
Fast 0.5 +2
Slow 0.5 +1
0.5 +1
Fast 10
Slow 0.5 +1 . Slow y 10
| 0.5 A = !
FaSt 10 —10 Warm)
> ===
P Fast 05 +2
~| (end) 1.0 0 o
3 ' Overheated

+2

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

(s,a,s’) called a transition
T(s,a,s’) =P(s’|s,a)

R(s,a,5") 'éj\

Utilities of Sequences

Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1, 2, 2] or [2,3,4]

= Now or later? [0, 0, 1] or [1,0,0]

Discounting

" [t’s reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially

x]v(
v @9

1 gl v

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

= Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3])=1*1+0.5*2 + 0.25*3
= U([1,2,3]) < U([3,2,1])

Stationary Preferences*

O .
¥ @

* Theorem: if we assume stationary preferences:

[al,ag, .] — [bl,bg, .]

0

r,a1,az,...] = [r,b1,ba,. .]

" Then: there are only two ways to define utilities

= Additive utility: U([rg,71,72,...]) =r0+7r1 +10+ -

» Discounted utility: U([rg,71,72,...]) =g+ yr1 + v2ro---

Quiz: Discounting

Given: 10 1

a b C d =
= Actions: East, West, and Exit (only available in exit states a, €e)

= Transitions: deterministic

Quiz 1: For y =1, what is the optimal policy? 10

Quiz 2: For y=0.1, what is the optimal policy? 10

Quiz 3: For which y are West and East equally good when in state d?

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

= Discounting:use0<y<1

Ullros o)) = 3 Aty < Bma/(1 =)
t=0

= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

= Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount y) s,

= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

= The value (utility) of a state s:

V*(s) = expected utility starting in s and sis a
acting optimally state
a (s,a)isa
= The value (utility) of a g-state (s,a): P < g-state
Q’(s,a) = expected utility starting out e N
having taken action a from state s and > (s,a,8') is a
’ transition

(thereafter) acting optimally

= The optimal policy:
n"(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise =0

Discount =1
Living reward = 0

Snapshot of Demo — Gridworld Q Values

s
S -

R

E

Snapshot of Demo — Gridworld V Values

Cridworld Display

Y
.

Y

VALUES AFTER 100 ITERATIONS Noise = 0.2

Discount =1
Living reward =0

Snapshot of Demo — Gridworld Q Values

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

MKI

WWWW ‘

Snapshot of Demo — Gridworld V Values

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =-0.1

Snapshot of Demo — Gridworld Q Values

T

Noise =
O-VALUES AFTER 100 ITERATIONS Discount = 0.9
Livi

Values of States

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
= This is just what expectimax computed!

= Recursive definition of value: ,
Vi(s) = maxQ*(s, a)

Values of States

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
= This is just what expectimax computed!

= Recursive definition of value: ,
Vi(s) = maxQ*(s, a)

Q*(s,a) =) T(s,a, s") {R(s, a,s') + ’}/V*(S,)]

V*(s) = mC?XZT(S, a,s) [R(S,CL, s + ’)/V*(S,)}

Racing Search Tree

Racing Search Tree

mmm

NN SRR RN

A

VAT CREMEERI TR TR TR T

Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
guantities once

Problem: Tree goes on forever fl fl m fl fl m fl m

= |dea: Do a depth-limited oy RN RN

computation, but with increasing
depths until change is small Hﬁﬂ Hﬁﬂ Hﬁﬂ
= Note: deep parts of the tree

eventually don’t matterify<1 THITRIN IR TR TIRELL THTIRLLL

Computing Time-Limited Values

T T I O O BRI B A I O

VT || O Y | VT | O O Y | VO O e

ORI CUCRNEPRRE CHENAT TR LILRNE TR

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps
= Equivalently, it's what a depth-k expectimax would give from s

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

0.72)» 1.00

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=4

Cridworld Display

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=5

Cridworld Display

0.51 »| 0.72 »| 0.84) 1.00

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Cridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Value Iteration

Value Iteration

= Start with V,(s) = 0: no time steps left means an expected reward sum of zero

" Given vector of V,(s) values, do one ply of expectimax from each state:

Value Iteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vig1(s) < mC?XZT(s, a,s) {R(s,a,) + f}/Vk(s')}

Repeat until convergence

Complexity of each iteration: O(S%A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value Iteration

a s' T(s,a,s’) | R(s,a,s’)
Slow 1.0 +1

Fast 0.5 +2

Fast 0.5 +2

Slow 0.5 +1

Slow 0.5 +1

Fast 1.0 -10

(end) 1.0 0

Assume no discount!

S

Vig1(s) + mé”:lXZT(s, a,s) [R(s, a,s’) + ’ka(s’)]

Example: Value Iteration

Overheated

Assume no discount!

Vo [0 0 0 J Vig1(s) < max > T(s,a,s") |R(s,a,s") + 7 Vi(s)]

S

Convergence®

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,, can be viewed as depth
k+1 expectimax results in nearly identical search trees

* The difference is that on the bottom layer, V,,, has actual
rewards while V| has zeros

" That last layer is at best all Ry;ax

= |tis at worst Ry, / \ /

= But everything is discounted by yk that far out
= SoV,andV,,; are at most yk max|R| different
= So as kincreases, the values converge

Next Time: Policy-Based Methods

	Slide 1: Announcements
	Slide 2: 272SM: Introduction to Artificial Intelligence
	Slide 3: Non-Deterministic Search
	Slide 4: Example: Grid World
	Slide 5: Grid World Actions
	Slide 6: Markov Decision Processes
	Slide 7: What is Markov about MDPs?
	Slide 8: Policies
	Slide 9: Optimal Policies
	Slide 10: Example: Racing
	Slide 11: Example: Racing
	Slide 12: Example: Racing
	Slide 13: Racing Search Tree
	Slide 14: MDP Search Trees
	Slide 15: Utilities of Sequences
	Slide 16: Utilities of Sequences
	Slide 17: Discounting
	Slide 18: Discounting
	Slide 19: Stationary Preferences*
	Slide 20: Quiz: Discounting
	Slide 21: Infinite Utilities?!
	Slide 22: Recap: Defining MDPs
	Slide 23: Solving MDPs
	Slide 24: Optimal Quantities
	Slide 25: Snapshot of Demo – Gridworld V Values
	Slide 26: Snapshot of Demo – Gridworld Q Values
	Slide 27: Snapshot of Demo – Gridworld V Values
	Slide 28: Snapshot of Demo – Gridworld Q Values
	Slide 29: Snapshot of Demo – Gridworld V Values
	Slide 30: Snapshot of Demo – Gridworld Q Values
	Slide 31: Snapshot of Demo – Gridworld V Values
	Slide 32: Snapshot of Demo – Gridworld Q Values
	Slide 33: Values of States
	Slide 34: Values of States
	Slide 35: Racing Search Tree
	Slide 36: Racing Search Tree
	Slide 37: Racing Search Tree
	Slide 38: Computing Time-Limited Values
	Slide 39: Time-Limited Values
	Slide 40: k=0
	Slide 41: k=1
	Slide 42: k=2
	Slide 43: k=3
	Slide 44: k=4
	Slide 45: k=5
	Slide 46: k=6
	Slide 47: k=7
	Slide 48: k=8
	Slide 49: k=9
	Slide 50: k=10
	Slide 51: k=11
	Slide 52: k=12
	Slide 53: k=100
	Slide 54: Value Iteration
	Slide 55: Value Iteration
	Slide 56: Value Iteration
	Slide 57: Example: Value Iteration
	Slide 58: Example: Value Iteration
	Slide 59: Convergence*
	Slide 60: Next Time: Policy-Based Methods

