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Fluctuation Relations

Probability of the reversed path

P̂[x̂ | x̂(0)] = P[x | x(0)] e−βQ
B[x]

Unconditional probabilities: Crooks’ relation

P̂[x̂] = P[x] e−β(W[x]−∆F )

Integral fluctuation relation: Jarzynski’s equality〈
e−βW

〉
= e−β∆F , with Zλ(0)

/
Zλ(tf ) = exp(β∆F )

Detailed fluctuation relation (aka Gallavotti-Cohen relation)

P̂[x̂] = P[x]e−∆Stot[x]/kB , with ∆Stot = ∆SB + ∆Ssys

SB[x] =
∑

αQBα [x]/Tα, ∆Ssys = kB log [p(x(0), t0)/p(x(tf ), tf )]



Are they useful?

Mechanical unfolding of biopolymers (Nucleic Acids, Proteins)

Experiments performed in non-reversible conditions

Out-of-equilibrium statistical mechanics can be used to evaluate
equilibrium properties of the molecules



A Rna hairpin

P̂ (−W ) = P (W )e−β(W−∆F ); P̂ (−W ∗) = P (W ∗)⇒W ∗ = ∆F

D. Collin et al, Nature 2005



System in a steady state
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]
At equilibrium T1 = TN
〈pipj〉 = 0 if i 6= j
〈qipj〉 = 0, ∀i, j
when T1 6= TN these variables are correlated
Let x = (q1, . . . qN , p1, . . . pN ), and Cij = 〈xixj〉
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Rieder, Lebowitz, Lieb, J. Math. Phys. (1967)



Heat exchanged by the i-th particle: Qi

Langevin equations of motion

dqi
dt

=
∂H

∂pi
= pi,

dpi
dt

= −∂H
∂qi

+ (−Γpi + ηi) (δ1,i + δN,i)

Q1 is our macroscopic observable

Qi =

∫ ∆t

t0

dqi
∂H

∂qi
+ dpi

∂H

∂pi
=

∫ ∆t

t0

dtpi(t) (−Γpi + ηi) (δ1,i + δN,i)

with Q1 and QN 6= 0, and Qi = 0, i = 2, . . . N − 1



Probability distribution P (Q1, t)

Exact result:∑
iQi = H({qi(∆t)}, {pi(∆t)})−H({qi(t0)}, {pi(t0)})

One expects

〈Q1〉 /t ∝ (T1 − TN ) in the long time limit
〈Q1〉 = −〈QN 〉

One can prove that, for any interaction potential and for t→∞

P (Q1) = P (−Q1)e−Q1/T̃ ,

where kB = 1, and T̃ ≡ (1/T1 − 1/TN )−1

This is a particular case of a more general relation, the
Gallavotti-Cohen relation



Simulations vs. exact solution
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t = 100, N = 10, T1 = 100, TN = 120, 105 simulated trajectories,
ζ = 10, k = 60
H. Fogedby, AI, J. Stat. Mec. 2012;
H. Fogedby, AI, J. Stat. Mec 2014



An electric circuit with viscous coupling

S. Ciliberto, et al. PRL 2013

(C1 + C)V̇1 = − V1

R1
+ CV̇2 + η1

(C2 + C)V̇2 = − V2

R2
+ CV̇1 + η2

where ηi is the usual white noise:
〈
ηiη
′
j

〉
= 2δij

Ti
Ri
δ(t− t′).



Nyquist effect

The potential difference across a dipole fluctuates because of the
thermal noise

CV̇ = −V
R

+ η

with
〈
η(t)η(t′)

〉
= 2

T

R
δ(t− t′)
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Thermodynamic quantities

Dissipated power in an electric circuit

P = V · I

Heat dissipated in resistor 1

Q1(t,∆t) =

∫ t+∆t

t
dt′CV1(t′)

dV2

dt′
− (C1 + C)V1(t′)

dV1

dt′

=

∫ t+∆t

t
dt′ V1(t′)

(
V1(t′)

R1
− η1(t′)

)
Analogous definition for Q2



aka FT for Q1 at t→∞: slow convergence
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A few definitions

∆Sbath: the entropy due to the heat exchanged with the reservoirs
up to the time ∆t

∆Sbath
∆t = Q1,∆t/T1 +Q2,∆t/T2

the reservoir entropy ∆Sbath
∆t is not the only component of the

total entropy production: entropy variation of the system?



A trajectory entropy

The system follows a stochastic trajectory through its phase space, the
dynamical variables are the voltages Vi(t).

Vi

t



A trajectory entropy

Vi

t

Following Seifert, PRL 2005, for such a system we can define a
time dependent trajectory entropy

Ssys(t) = −kB logP (V1(t), V2(t))

Thus, the system entropy variation reads

∆Ssys∆t = −kB log

[
P (V1(t+ ∆t), V2(t+ ∆t))

P (V1(t), V2(t))

]
.



These are measurable quantities

Qi can be measured as discussed earlier

P (V1, V2) can be easily sampled

Left: T1 = 296 K (eq.) right: T1 = 88 K

The system is in a steady state: P (V1, V2) does not change with t



Total entropy

Measure the voltages Vi at time t = 0 and t = ∆t, and thus obtain

∆Ssys∆t = −kB log

[
P (V1(∆t), V2(∆t))

P (V1(0), V2(0))

]
.

Measure the heats Q1 and Q2 flowing from/towards the reservoirs
in the time interval [0,∆t] and thus obtain

∆Sbath
∆t = Q1,∆t/T1 +Q2,∆t/T2

Define the total entropy as

∆Stot
∆t = ∆Sbath

∆t + ∆Ssys∆t



FT for the total entropy

The theory predicts that the following equality holds〈
exp(−∆Stot/kB)

〉
= 1,

We also know that the following FT holds for any trajectory x

P̂[x̂] = P[x]e−∆Stot[x]

which implies that P (∆Stot) should satisfy a fluctuation theorem
of the form

log[P (∆Stot)/P (−∆Stot)] = ∆Stot/kB, ∀∆t,∆T,



FT for the total entropy: experimental verification

〈
e
−∆Stot/kB

〉
= 1, Sym(∆Stot

) = log

[
P (∆Stot)

P (−∆Stot)

]
=

∆Stot

kB
, ∀∆t,∆T,
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single-electron tunnelling events



single-electron tunnelling events: FT



Thermal cyclic engines: classical system

Realization of a micrometre-sized stochastic heat engine
Working fluid: a single colloidal particle in a laser trap

U(x, t) =
k(t)

2
x2

V. Blickle and C. Bechinger Nat Phys (2012)



Motors and rotors of biological interests

Molecular motors are protein machines that convert chemical
energy into useful work

Example: Kinesin moves cargo inside cells along microtubules

Example: RNA polymerase, transcribes DNA sequences into
mRNA

Example: ATP-synthase. The motor is driven by a proton
gradient across the membrane.



Thermal cyclic engines: quantum system

A single-atom heat engine
Working fluid: a single calcium ion in a tapered ion trap

Johannes Roßnagel et al. Science (2016)



Quantum thermodynamics

Thermodynamics preceded quantum mechanics, and for many decades
the two theories developed separately.
The gap is now being bridged

How can process-dependent thermodynamic
quantities, such as work and heat, be meaningfully
defined and measured in quantum systems?

What are the efficiencies of quantum engines and
refrigerators? Are they better or worse than their
classical counterparts?

How do non-equilibrium fluctuation relations extend
to the quantum regime?

Which corrections to standard thermodynamic laws
and relations have to be made when considering
systems that couple strongly to their surroundings?
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Thermodynamic of Information

K. K. Maruyama, F. Nori,
and V. Vedral
The physics of Maxwell’s
demon and information.
Rev. Mod. Phys. 81, 1
(2009).



Landauer’s principle



Information engine

Brownian particle in U(x, λ) = k/2(x− λ)2, with
P (x, t = 0) = P eq(x, λ = −L)

first passage at x = h

extracted work w = 2khL



Tapes as information reservoirs

from PP, chapter 5



Cooling of trapped atoms with a Maxwell’s Demon

Adapted from M. G. Raizen, Science 324, 1403–1406 (2009)



Climbing a staircase with a Maxwell’s Demon


