
Design Patterns 
and Refactoring

Dario Campagna

Head of Research and Development



Each pattern is a three-part 
rule, which express a relation 
between a certain context, a 
problem and a solution.

Christopher Alexander



Descriptions of communicating objects and classes that are 
customized to solve a general design problem in a particular 
context.

▪ Presents 23 patterns 
▪ Discuss alternative patterns to consider 
▪ Defines families of related patterns

Design Patterns



Design Patterns classification

See https://refactoring.guru/design-patterns.

Purpose
Creational Structural Behavioral

Scope

Class Factory Method Adapter (class) Interpreter 
Template Method

Object

Abstract Factory 
Builder 
Prototype 
Singleton

Adapter (object) 
Bridge 
Composite 
Decorator 
Facade 
Flyweight 
Proxy

Chain of Responsibility 
Command 
Iterator 
Mediator 
Memento 
Observer 
State 
Strategy 
Visitor

https://refactoring.guru/design-patterns


Patterns convey many useful design ideas.

▪ Designing object-oriented software is hard 
▪ Designing reusable object-oriented software is even harder 
▪ Good solution that worked in the past can be reused 
▪ Record experience in designing object-oriented software

Why Design Patterns?



Motivation 
▪ User interface toolkit supporting multiple 

look-and-feels. 
▪ Application that needs to be portable and 

hence encapsulate platform dependencies.

Applicability 
▪ A system that should be independent from 

object creation, composition, representation. 
▪ A system that should be configured with one 

of multiple families of objects. 
▪ …

Abstract Factory
Provide an interface for creating families of related or dependent objects without specifying 
their concrete classes.



What does this code do?
public interface MessageStrategy {
public void sendMessage();

}

public abstract class AbstractStrategyFactory {
public abstract MessageStrategy createStrategy(MessageBody mb);

}

public class MessageBody {

Object payload;

public Object getPayload() {
return payload;
}

public void configure(Object obj) {
payload = obj;
}

public void send(MessageStrategy ms) {
ms.sendMessage();
}

}

public class DefaultFactory extends AbstractStrategyFactory {

private DefaultFactory() {;}
static DefaultFactory instance;

public static AbstractStrategyFactory getInstance() {
if (instance==null) instance = new DefaultFactory();
return instance;

}

public MessageStrategy createStrategy(final MessageBody mb) {
return new MessageStrategy() {
MessageBody body = mb;

public void sendMessage() {
Object obj = body.getPayload();
System.out.println((String)obj);

}
};

}
}

public class HelloWorld {

public static void main(String[] args) {
MessageBody mb = new MessageBody();
mb.configure("Hello World!");
AbstractStrategyFactory asf = DefaultFactory.getInstance();
MessageStrategy strategy = asf.createStrategy(mb);
mb.send(strategy);

}
}

From https://developers.slashdot.org/comments.pl?sid=33602&cid=3636102.

https://developers.slashdot.org/comments.pl?sid=33602&cid=3636102


This “Hello World” code is…

1. Flexible

2. Complex 

3. Poorly designed

public interface MessageStrategy { 
public void sendMessage(); 

} 

public abstract class AbstractStrategyFactory 
{ 

public abstract MessageStrategy 
createStrategy(MessageBody mb); 

} 

public class MessageBody { 

Object payload; 

public Object getPayload() { 
return payload; 
} 

public void configure(Object obj) { 
payload = obj; 
} 

public void send(MessageStrategy ms) { 
ms.sendMessage(); 
} 

} 

public class DefaultFactory extends 
AbstractStrategyFactory { 

private DefaultFactory() {;} 
static DefaultFactory instance; 

public static AbstractStrategyFactory 
getInstance() { 

if (instance==null) instance = new 
DefaultFactory(); 
return instance; 

} 

public MessageStrategy createStrategy(final 
MessageBody mb) { 

return new MessageStrategy() { 
MessageBody body = mb; 

public void sendMessage() { 
Object obj = body.getPayload(); 
System.out.println((String)obj); 

} 
}; 

} 
} 

public class HelloWorld { 

public static void main(String[] args) { 
MessageBody mb = new MessageBody(); 
mb.configure("Hello World!"); 
AbstractStrategyFactory asf = 
DefaultFactory.getInstance(); 
MessageStrategy strategy = 
asf.createStrategy(mb); 
mb.send(strategy); 

} 
}



More complicated that it 
needs to be

Higher learning costs Reduced productivity

Over-engineered code
A consequence of pattern overuse



Refactoring can help us do that by focusing our attention on…

▪ Removing duplication 
▪ Simplifying logic 
▪ Communicating intention 
▪ Increasing flexibility

Pattern should be used wisely



Our design patterns capture 
many of the structures that 
results from refactoring… 
Design patterns thus provide 
targets for your refactorings.

The authors of “Design Patterns”



Patterns are where you want 
to be; refactorings are ways 
to get there from somewhere 
else.

Martin Fowler in “Refactoring”



A book about the marriage of refactoring with patterns. 

Suggests that using patterns to improve an existing design is 
better than using patterns early in a new design.

▪ Catalog of 27 refactorings. 
▪ Examples of different ways to implement the same pattern. 
▪ Advice for when to refactor to, towards, or away from patterns.

Refactoring to Patterns

https://www.industriallogic.com/xp/refactoring/index.html


You refactor the code to 
implement a Design 
Pattern.

You take some steps toward a 
Design Pattern and stop when 
you made a good enough 
design improvement.

If your design has not 
improved, you backtrack 
or refactor in another 
direction.

To Towards Away

Refactoring to, towards, and away from Patterns
Directions of refactoring


