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Abstract

Background: The hard clam Mercenaria mercenaria is an important seafood species widely exploited along the
eastern coasts of the United States and play a crucial role in coastal ecology and economy. Severe hard clam
mortalities have been associated with the protistan parasite QPX (Quahog Parasite Unknown). QPX infection
establishes in pallial organs with the lesions typically characterized as nodules, which represent inflammatory
masses formed by hemocyte infiltration and encapsulation of parasites. QPX infection is known to induce host
changes on both the whole-organism level and at specific lesion areas, which imply systemic and focal defense
responses, respectively. However, little is known about the molecular mechanisms underlying these alterations.

Results: RNA-seq was performed using Illumina Hiseq 2000 (641 Million 100 bp reads) to characterize M. mercenaria
focal and systemic immune responses to QPX. Transcripts were assembled and the expression levels were
compared between nodule and healthy tissues from infected clams, and between these and tissues from healthy
clams. De novo assembly reconstructed a consensus transcriptome of 62,980 sequences that was functionally-
annotated. A total of 3,131 transcripts were identified as differentially expressed in different tissues. Results
allowed the identification of host immune factors implicated in the systemic and focal responses against QPX
and unraveled the pathways involved in parasite neutralization. Among transcripts significantly modulated
upon host-pathogen interactions, those involved in non-self recognition, signal transduction and defense
response were over-represented. Alterations in pathways regulating hemocyte focal adhesion, migration and
apoptosis were also demonstrated.

Conclusions: Our study is the first attempt to thoroughly characterize M. mercenaria transcriptome and
identify molecular features associated with QPX infection. It is also one of the first studies contrasting focal
and systemic responses to infections in invertebrates using high-throughput sequencing. Results identified
the molecular signatures of clam systemic and focal defense responses, to collectively mediate immune
processes such as hemocyte recruitment and local inflammation. These investigations improve our understanding of
bivalve immunity and provide molecular targets for probing the biological bases of clam resistance towards QPX.
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Background
The hard clam, Mercenaria mercenaria, is an ecologic-
ally- and economically-important marine bivalve species
that thrives along the northeastern coasts of the United
States and Maritime Canada. In the past few decades,
the hard clam industry has been severely impacted by a
protistan parasite called QPX (Quahog Parasite Un-
known), which is responsible for mortality episodes in
both wild and cultured clam populations [1–7]. QPX is
believed to be an opportunistic pathogen and has been
detected in a wide variety of environmental substrates
including sediments, marine aggregates and other or-
ganic matrices [8–10]. Interestingly, previous reports
highlight the ability of QPX to sustain very low abun-
dance in clams without causing disease outbreaks until
it encounters hosts with reduced immunity or following
shifts of environmental conditions that add to the viru-
lence of the parasite, under which conditions QPX can
take advantage to establish infection sometimes leading
to severe clam mortality events [4, 11].
Lesions caused by QPX, usually associated with the

presence of nodules, are commonly found in pallial tis-
sues, such as alongside the inner rim of the mantle or at
the base of the siphon [1, 2]. These places are widely
considered as the portal of entry for QPX cells acquired
from the surrounding environment during suspension-
feeding [5, 7]. The QPX nodules represent inflammatory
masses containing both parasite cells and abundant clam
hemocytes, resulting from a series of comprehensive
host immune responses induced by the infection that
leads to massive focal hemocyte infiltration, parasite en-
capsulation and partial necrosis of the affected area [1].
Like other invertebrates, the hard clam lacks the specific
immune responses and their defense mechanism mainly
relies on the effectors of innate immunity, which is medi-
ated by circulating hemocytes and highly diversified
humoral antimicrobial factors. These cellular and humoral
immune components work in a synergistic way to initiate
the recognition, segregation and ultimately elimination of
pathogens and other non-self entities [12, 13]. The
launching of innate immune responses involves myriad
cellular and humoral events modulated not only at the in-
fection sites (focally) but also at a larger, whole-organism
scale (systemically). In general, the focal response repre-
sents the alterations driven by direct host-pathogen inter-
actions at the infection sites where direct cell-cell (e.g.,
molecular patterns) interactions mediate the response;
while the systemic response reflects overall modifications
within the host as a result of the ongoing infection and is
mainly associated with dynamic changes of circulating he-
mocytes and their secreted immune mediators.
Most of the previous investigations have solely focused

on the systemic response of M. mercenaria against QPX
during the infection events, where changes in cellular

and humoral immune parameters (e.g., anti-QPX activity
and lysozyme activity in clam plasma, hemocyte phago-
cytic activity, reactive oxygen species (ROS) production,
etc.) as well as expression of a limited number of
immune-related genes in tissues and circulating hemo-
cytes were assessed [11, 14–16]. In contrast, no previous
studies have focused on the characterization of clam
focal response at the infection sites. Given the fact that
QPX disease is usually focal with formation of well-
delimited lesions, the study of clam immune responses
at the infection site in the lesions per se is of specific
value as it provides insights to better characterize cellu-
lar interactions between the hard clam and QPX upon
their contact. In this framework, QPX disease in clams
offer a unique opportunity to contrast focal and systemic
responses against microbial diseases in invertebrates
allowing for a more comprehensive understanding of
defense strategies used by these animals to fend micro-
bial attacks.
Our study aimed to characterize the gene regulation

features of M. mercenaria during QPX infection by pro-
filing the transcripts at the infection lesion and compare
focal clam responses with systemic responses detected in
healthy tissues from infected clams (in addition to a par-
allel comparison with tissues from healthy clams). This
study allowed the identification of factors involved in the
interactions with the parasite as well as molecular path-
ways activated by the host to neutralize QPX.

Results and discussion
Illumina sequencing and de novo transcriptome assembly
The main objective of this study was to identify molecu-
lar features of M. mercenaria in response to QPX infec-
tion and to compare the immune-related pathways
involved in the lesion-specific focal response with the
whole-organism scale systemic response. The high-
throughput Illumina RNA sequencing and de novo as-
sembly employed in this investigation allowed the con-
struction of the transcriptome in the absence of M.
mercenaria genome information. A total of 640,596,320
of 100 bp raw reads were generated from the Illumina
paired-end sequencing with about 27 to 48 Millions
paired-end reads generated from each of the 9 se-
quenced libraries (Table 1, Fig. 1a). The short read se-
quences generated from this RNAseq project have been
deposited at the NCBI short Read Archive database
under the SRA accession number SRP068241. Trimming
and filtering procedures yielded 606,021,407 clean reads
that were used for the de novo assembly of consensus
transcriptome based on all sequenced RNA libraries in
order to maximize the diversity of transcripts. This
allowed 90.61 to 92.20 % of the reads from the 9 libraries
be used for the transcriptome assembly. A total of
62,980 transcripts ranging from 201 to 23,103 bp with

Wang et al. BMC Genomics  (2016) 17:146 Page 2 of 22



average size of 1297.59 bp and median size of 835 bp
were produced from the assembly after low FPKM
and rare isoforms filtering. The size distribution of all
the de novo assembled transcripts is shown in Fig. 1b.
Once the transcriptome was constructed, the 9 librar-
ies were individually remapped to the 62,980 tran-
scripts and resulted with 85.27 to 89.05 % of reads
remapping. Theses counting data were then used for
DE analysis.

Transcriptome functional annotation
The transcriptome annotation performed using Blas-
t2GO returned a total of 19,107 transcripts (30.3 %) with
significant BlastX homology matches to other sequences
in NCBI nr database (E-value < 10E-03) (Fig. 1). Not sur-
prisingly, the top 3 species that had the most similarity
to M. mercenaria sequences were mollusks with avail-
able genomes and included the Pacific oyster, Crassos-
trea gigas (7,467), followed by the owl limpet Lottia

Table 1 RNA samples for RNA-seq libraries. Each pool is made with equal amounts of RNA from 3 individual clams. Pools A and B
were derived from the same clams

Library Clams Clam status Tissue status N paired-end reads

Nodule A1 1, 2, 3 Diseased Infection foci 30,491,569

A2 4, 5, 6 Diseased Infection foci 34,515,597

A3 7, 8, 9 Diseased Infection foci 46,861,893

Non-nodule B1 1, 2, 3 Diseased Non-lesion/Healthy 27,119,432

B2 4, 5, 6 Diseased Non-lesion/Healthy 28,254,720

B3 7, 8, 9 Diseased Non-lesion/Healthy 40,259,333

Healthy C1 10, 11, 12 Healthy Healthy 36,714,347

C2 13, 14, 15 Healthy Healthy 43,293,545

C3 16, 17, 18 Healthy Healthy 42,046,740

Fig. 1 M. mercenaria de novo assembled transcriptome summary. a Transcriptome sequencing, assembly and annotation overview. b Assembled
transcripts size distribution. c Distribution of the top 10 species with most homologues to M. mercenaria. Transcripts were searched using BLASTx
against NCBI nr database with a cutoff value of E < 10E-03
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gigantea (3,539) and the California sea slug Aplysia cali-
fornica (1,931) (Fig. 1c). KEGG Orthology (KO) terms
were assigned to 6,425 sequences and reference path-
ways were mapped to the KEGG database based on the
assigned KO terms (Fig. 1a, Additional file 1). A total of
29,815 sequences were identified to match to at least
one conserved protein domain in the InterPro database
(Fig. 1a, Additional file 1).
Gene ontology (GO) assignments were used to classify

functions of the predicted clam proteins. Based on
sequence similarity (E-value of 10E-03), 13,584 se-
quences were assigned to at least one GO annotation
(Fig. 1a, Additional file 1). As summarized in Fig. 2, a

total of 8,168, 4,600 and 4,231 sequences were respect-
ively categorized into the three main categories: bio-
logical process, cellular component, and molecular
function at the second functional annotation level. The
most dominant terms presented in the three categories
are the “cellular process”, “metabolic process”, “binding”,
“catalytic activity”, “cell”, and “organelle”. Very few tran-
scripts were clustered into “rhythmic process”, “cell
killing”, “protein tag”, “channel regulator activity”,
“nucleoid” or “virion”. It is noticeable that a good frac-
tion of transcripts were clustered into the immune-
related categories of response to stimulus (503), immune
system process (43) and biological adhesion (38). Those

Fig. 2 Gene Ontology (GO) annotations of the M. mercenaria transcriptome. GO terms were identified by Blast2GO and the results were summarized
in three main GO categories: biological process (8,168 annotations), cellular component (4,600 annotations), molecular function (4,231 annotations)
at level-2
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transcripts were of special interest given that they might
be involved in the M. mercenaria defense and resistance
toward QPX infection.
A significant portion (69.7 %) of M. mercenaria tran-

scripts did not match any BlastX hit in NCBI nr data-
base, in agreement with previous transcriptomic studies
in mollusks [17–20]. Most of the unannotated tran-
scripts may represent transcripts spanning untranslated
mRNA regions, or transcripts containing only non-
conserved protein domains [21, 22].

Identification of differentially expressed transcripts
The generated transcriptome was used as a reference for
downstream investigations of global gene expression in
the three different tissues of interest (nodule, non-
nodule and healthy) to identify genes associated with M.
mercenaria’s focal and systemic immune response
against QPX. A gene-isoform relationship was estimated
using RSEM over Trinity output isoforms. Results
showed that about 43 % (27,021) of all the transcripts
had 1 isoform, 19 % (12,307) had 2 isoforms and 38 %
(23,652) had 3 isoforms, suggesting extensive isoform di-
versity in M. mercenaria transcriptome. Transcript iso-
form variation could affect mRNA stability, localization
and translation, as well as the production of protein vari-
ants that differ in localization or function [23].
By comparing the number of transcripts expressed in

each sample, the contribution of specific samples to the

analysis can be estimated. The highest number of
expressed transcripts was found in the nodules of in-
fected clams, which were closely followed by that found
in the healthy clam samples (Fig. 3a). The lowest num-
ber of expressed transcripts came from non-nodule sam-
ples of QPX infected clams, with about 1,500 less
transcripts expressed than the other two samples. Read
coverage, which is critical in accurate determination of
fold change, averaged 477, 422 and 509 reads per tran-
script for nodule, non-nodule and healthy tissue sam-
ples, respectively (Fig. 3b).
Statistical analysis by DEseq identified 3,131 differen-

tially expressed (DE) transcripts from the pair-wise com-
parisons (|log2 (fold change)| >2, adjusted p-value
<0.001) between clam tissue samples (Fig. 4). In nodules,
a total of 829 transcripts, including 408 over-expressed
and 421 under-expressed transcripts were identified as
compared to non-nodule samples of QPX infected
clams. Compared to tissues from healthy clams, 1,591
DE transcripts were identified in nodules with 864 over-
expressed and 727 under-expressed transcripts. Simi-
larly, 1,681 DE transcripts were obtained from the com-
parison between healthy and non-nodule clam tissues, of
which 513 and 1,168 were over- and under-expressed,
respectively (Fig. 4, Additional file 3). A total of 1,694 of
these DE transcripts had protein homologs found in NCBI
nr database by Blastx searches (e-value <10E-03), which
were further examined for their putative functions during

Fig. 3 Number of transcripts expressed and reads coverage in each sample. a The X-axis indicates the sample (A1-A3: nodule; B1-B3: non-nodule;
C1-C3: healthy, refer to Table 1 for more details). The Y-axis indicates the number of transcripts expressed in the samples. b Summary statistics of
the reads coverage in each sample
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M. mercenaria immune response toward QPX. Annotated
transcripts were subsequently grouped into curated
categories according to their biological functions
based on the gene ontology (GO) terms and litera-
ture searches highlighting immune functions. DE

transcript sets were further examined in reference to
the assigned KO terms for the analysis of pathways
regulation. Significantly enriched KEGG pathways
were identified via the Fisher’s exact test (P < 0.01)
[24].

Fig. 4 Heatmap (a) and number of differentially expressed transcripts (b and c) across all samples (FDR ≤0.001, and |log2 (fold change)| >2). Over-
expressed transcripts are shown in red in A and are enumerated in B. Under-expressed transcripts are shown in green in A and are enumerated
in C. Replicate biological samples are displayed in A (see Table 1 for more details). For B and C: the cross-shaded areas inside each bar represent
the number of transcripts with higher (B) or lower (C) expression levels in a condition as compared to the other two (e.g., the expression levels of
38 focally over-expressed transcripts in B were higher in nodule than in non-nodule tissues and healthy clams)
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Here we specifically focus on DE transcripts drawn
from comparisons between “nodule vs. non-nodule” and
“non-nodule vs. healthy” tissue samples, which were re-
spectively considered to reflect the transcriptomic
changes caused by “focal” and “systemic” immune re-
sponse of M. mercenaria toward QPX infection, respect-
ively. The overview of DE transcripts drawn from these
two responses is presented in Fig. 4 and Additional files
2 and 3.

Differential expression of immune related transcripts
Focal response
Clam focal response reflected the alterations caused
by direct clam-QPX interaction at the infection site
(Additional file 2). QPX nodules are inflammatory masses
resulting from massive hemocytes infiltration and encap-
sulation of parasite cells [1, 2]. This process largely relies
on the motility and adhesion properties of hemocytes,
thus allowing these cells to migrate throughout the circu-
latory system and recruit to the infection site. Hemocytes
can sense stimuli in host tissues through an array of cell
surface receptors, and use these cues to adjust their be-
havior accordingly [25]. The activation of hemocytes re-
quires the binding of specific ligands to the cell surface
receptors, which subsequently initiate the transduction of
extracellular signals into the cytoplasm via a variety of sig-
naling pathways, thus inducing a series of hemocyte-
mediated immune response such as phagocytosis, encap-
sulation (prominent response against QPX in clams), ROS
production, as well as secretion of immune effectors and
cytokines [26–28]. A collection of DE transcripts involved
in these defense processes was identified during focal re-
sponse, suggesting that strong and comprehensive host-
pathogen interactions were taking places inside the QPX
lesions (Table 2, Additional file 2). A large fraction of the
DE transcripts of focal response was annotated as recep-
tors or molecules with receptor activities, which putatively
contribute to the host defense against QPX as (1) cell sur-
face receptors expressed on hemocytes that mediate the
recognition and phagocytosis or encapsulation of foreign
entities through microbe associated molecular patterns
(MAMP); (2) signaling receptors activating intracellular
signaling cascades or (3) the soluble bridging molecules
mediating the linkage between MAMPs and hemocytes
[29]. Among those receptors, most are identified as patho-
gen pattern recognition receptors (PRRs), which include
the C-type lectins (CTLs), the scavenger receptors (SRs)
and the toll-like receptors (TLRs).
The C-type mannose receptor-2 (MRC2) identified during

the focal response (Table 2) is a member of the C-type lec-
tins (CTLs) superfamily, a large group of Ca2+-dependent
carbohydrate-binding proteins that play crucial roles in in-
nate immunity. CTLs recognize pathogens and facilitate
their phagocytosis [30, 31] or encapsulation [32–34]. MRCs

are also key regulators of inflammatory responses and con-
tribute to the removal of harmful inflammatory agents [35,
36]. The 16-fold over-expression of MRC2 during the focal
response suggested that active hemocyte encapsulation and
local inflammation was induced by QPX at the infection le-
sions, which is consistent with the results of histopatho-
logical observations [1]. Another over-expressed CTL
member, the perlucin-like protein, has been previously
shown to trigger immune response in Manila clams during
microbial infection [37].
Scavenger receptors (SRs) were also among the strongly

over-expressed transcripts in infection foci (Table 2). These
included somatomedin-b and thrombospondin type-1
domain-containing (RPE spondin), insulin-related peptide
receptor, hemicentin-1, lysyl oxidase-like protein 2 and
mam domain-containing glycosylphosphatidylinositol an-
chor protein 1. SRs are structurally diverse PRRs that share
the common function of recognizing oxidized or acetylated
low-density lipoprotein (LDL) [38]. They contribute to in-
nate immunity by recognizing MAMPs and mediating
non-opsonic phagocytosis [29, 39]. They are extensively
found on immune cells and are able to interact with both
modified-host components and exogenous ligands, which
makes SRs a key component in host defense, apoptosis, in-
flammation and lipoprotein homeostasis [40–42]. For ex-
ample, scallop SRs bind not only to acetylated LDL but
also to MAMP including lipopolysaccharides (LPS), pepti-
doglycans (PGN), mannan and zymosan particles [39]. The
sea urchin genome encodes approximately 150 genes con-
sisting of one or more scavenger receptor cysteine-rich
(SRCR) domains [43], and the members of this gene family
exhibit dynamic shifts in transcription after immune chal-
lenge [40, 44].
Our results also show an over-expression of TLR-1 and

Toll-8/tollo in nodules (Table 2), which is in agreement
with previous investigations showing up-regulation of
TLRs in M. mercenaria mantle following QPX challenge
[15]. TLRs are among the most ancient and conserved
PRRs. They are expressed by immune cells and interact
with a large variety of MAMPs. Bivalve TLRs have been
characterized in the oyster C. gigas and the scallop C. far-
reri where they exhibited significant response to LPS
stimulation [45, 46]. Transcriptional modulation of TLRs
has also been reported in Ruditapes philippinarum and
Mya arenaria following MAMPs stimulation and bacterial
challenge [47, 48]. Interestingly, Toll-8 (Tollo) has been
shown to participate in Drosophila epithelial immunity
where it mediates host cells communication that subse-
quently activates systemic immune responses [49]. This
suggests that the Toll pathway could be one of the crucial
pivoting links that allow coordination between focal and
systemic immune components during infection.
The QPX nodules are formed as the result of granu-

lomatous inflammation, which is a chronic inflammatory
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Table 2 Transcripts with annotated functions (GO terms) related to immune recognition, signaling and regulation that were differentially
expressed during M. mercenaria focal response against QPX. Additional information on these transcripts is given in Additional file 2. “Inf”
designates an infinite fold change calculated for focal response as the expression of that transcript in non-nodule tissue was equal to 0

Transcripts ID Annotation Regul-ation Fold change Function/GOs

Pathogen recognition receptors (PRRS)

Scavenger receptors

comp186077_c0_seq3 somatomedin-b and thrombospondin
type-1 domain-containing (RPE spondin)

Up 71.3 F:scavenger receptor activity; P:immune
response; F:polysaccharide binding

comp179365_c0_seq8 insulin-related peptide receptor Up 11.5 F:scavenger receptor activity; P:transmembrane
receptor protein tyrosine kinase signaling pathway

comp169098_c0_seq1 hemicentin-1 Up 10.6 F:scavenger receptor activity; P:cell adhesion

comp169486_c0_seq1 lysyl oxidase-like protein 2 Up 22.5 F:scavenger receptor activity; F:copper ion binding

comp192413_c0_seq18 mam domain-containing
glycosylphosphatidylinositol
anchor protein 1

Up Inf F:polysaccharide binding; F:scavenger
receptor activity; P:immune response

C-type lectin (CTL)

comp176879_c0_seq8 c-type mannose receptor 2 Up 15.8 F:binding; F:carbohydrate binding

comp190222_c0_seq3 perlucin-like protein Up 49.1 F:binding; F:carbohydrate binding;

Toll-like receptors (TLRs)

comp189381_c0_seq1 toll-like receptor 1 Up 16.5 F:protein binding

comp190056_c0_seq8 toll-like receptor e precursor Down Inf P:signal transduction; F:protein binding

comp188195_c0_seq7 toll-like receptor g precursor Up Inf F:protein binding; P:signal transduction

comp189381_c1_seq2 cell surface receptor tollo (toll 8) Up 10.9 P:signal transduction; F:protein binding

Integrin

comp189082_c0_seq13 integrin alpha 4 Up Inf P:cell-cell adhesion; C:integrin complex

comp189082_c0_seq24 integrin alpha 4 Up 16.2 P:cell-cell adhesion; C:integrin complex

comp185789_c0_seq4 integrin alpha-ps Up 13.7 P:cell adhesion; C:integrin complex

comp184975_c0_seq10 integrin beta-1-like Up 12.4 F:protein binding; F:receptor activity;

Low-density lipoprotein (LDL)

comp181432_c3_seq2 LDL receptor-related protein 12 Up 12.1 -

comp187193_c1_seq4 LDL receptor-related protein 12 Up Inf F:protein binding

G-protein coupled receptor

comp177186_c1_seq2 G-protein coupled receptor partial Up 13.0 P:cell surface receptor signaling pathway;
F:transmembrane signaling receptor activity

comp191316_c2_seq1 G-protein coupled receptor 64-like Up 28.1 -

comp177657_c2_seq5 guanine nucleotide-binding
protein subunit

Up Inf P:G-protein coupled receptor signaling
pathway; F:signal transducer activity

comp187628_c0_seq44 substance-k (neurokinin) receptor Up 9.1 P:G-protein coupled receptor signaling pathway;
F:G-protein coupled receptor activity;

comp192446_c0_seq4 orexin receptor type 2 Up 12.4 P:G-protein coupled receptor signaling pathway;

Immune signaling and
cell communication

Phosphatase and kinases

comp192546_c5_seq4 immunoglobulin i-set domain protein Up 13.2 F:protein serine/threonine kinase activity

comp165267_c0_seq3 von willebrand factor type egf and
pentraxin domain-containing protein

Up 11.0 F:protein tyrosine kinase activity

comp191437_c1_seq4 focal adhesion kinase 1 Up 19.7 F:signal transducer activity;

comp188649_c0_seq3 calcium calmodulin-dependent
protein kinase

Up 9.3 F:calmodulin-dependent protein kinase activity

comp190317_c0_seq7 neuronal cell adhesion Down −13.3 F:rhodopsin kinase activity
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Table 2 Transcripts with annotated functions (GO terms) related to immune recognition, signaling and regulation that were differentially
expressed during M. mercenaria focal response against QPX. Additional information on these transcripts is given in Additional file 2. “Inf”
designates an infinite fold change calculated for focal response as the expression of that transcript in non-nodule tissue was equal to 0
(Continued)

Rho signaling

comp189234_c1_seq21 rho gtpase-activating protein
15-like isoform x3

Up 18.1 P:signal transduction

comp185122_c1_seq7 rho gtpase-activating protein 24 Up 27.1 P:signal transduction

comp187736_c1_seq25 rho-related protein raca Up Inf F:protein binding

comp188711_c0_seq2 rho-associated protein kinase 2 Up Inf P:intracellular signal transduction

Ubiquitin pathway

comp190451_c2_seq9 e3 ubiquitin-protein ligase hectd1 Up 164.9 F:ubiquitin-protein ligase activity;
F:metal ion binding

comp184512_c0_seq2 e3 ubiquitin-protein ligase march6 Up 15.0 F:zinc ion binding

comp192081_c0_seq1 e3 ubiquitin-protein ligase ubr3 Up 8.7 -

comp179031_c0_seq4 cop9 signalosome complex subunit 5 Up Inf F:protein binding

comp179031_c0_seq2 cop9 signalosome complex subunit 5 Up Inf F:protein binding

Wnt and Notch pathway

comp185090_c0_seq10 tyrosine-protein kinase ryk Up 26.3 P:Wnt receptor signaling pathway

comp187449_c0_seq2 fizzy-like protein Up 13.0 F:protein binding

comp175460_c0_seq1 neurogenic locus notch Up 11.7 P:Notch signaling pathway;

comp182793_c0_seq5 neurogenic locus notch protein Up 9.6 P:G-protein coupled receptor signaling pathway

comp192565_c0_seq10 nicastrin-like protein Up 12.6 P:protein processing

Calcium mediated signal transduction

comp183265_c0_seq1 calmodulin 3b (phosphorylase delta) Down −11.6 F:calcium ion binding

comp191993_c0_seq4 EF-hand Ca-binding domain-containing
protein 5

Down −10.9 -

comp191855_c0_seq2 EF-hand Ca-binding domain-containing
protein 6

Down −15.9 -

Complement pathway

comp165285_c0_seq7 macrophage-expressed gene 1 Up 11.5 -

Signal transducer

comp182953_c0_seq4 signal recognition particle
receptor subunit alpha

Up 13.8 F:signal recognition particle binding

comp182953_c0_seq5 signal recognition particle
receptor subunit alpha

Up 73.0 F:signal recognition particle binding

comp171563_c0_seq4 gtp-binding nuclear protein Up Inf P:small GTPase mediated signal transduction

comp188686_c0_seq19 neuralized pats1 Down −758.9 P:small GTPase mediated signal transduction

comp189853_c0_seq1 unc5c-like protein Down −12.5 P:signal transduction

Cell death regulation

Apoptosis process

comp175357_c1_seq16 solute carrier family 25
member 38-like isoform 1

Down −25.0 P:transmembrane transport

comp191590_c0_seq3 p53-induced protein with
a death domain isoform

Down −39.1 F:protein binding; P:signal transduction

comp191147_c0_seq62 inhibitor of apoptosis Up 24.6 -

comp191147_c0_seq70 inhibitor of apoptosis Up Inf F:metal ion binding; F:zinc ion binding;

comp191055_c2_seq4 programmed cell death protein 10 Up 367.1 -

comp190690_c2_seq9 cell death abnormality protein 1-like Up Inf F:binding; F:zinc ion binding
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reaction characterized by focal accumulation of activated
immune cells to isolate the invading agent [50, 51]. The
formation of granuloma requires local recruitment of
hemocytes at the site of infection to execute extracellular
defense processes around the invaders [50]. An array of
transcripts associated with cell migration, adhesion and
proliferation was regulated in nodules, including G-
protein coupled receptors (GPCRs) and integrins fam-
ilies (Table 2). GPCRs regulate inflammatory response
via binding to chemokines and chemoattractants, thus
activating pathways mediating hemocyte migration and
adhesion [52]. They also activate transcription factors in
immune cells, thus modulating the synthesis and secre-
tion of certain pro- or anti-inflammatory substances
[53]. On the other hand, integrins represent a major
group of cell adhesion mediators [54]. They not only
modulate the cell-cell and cell-extracellular matrix adhe-
sion, but also affect multiple signal transduction cas-
cades regulating cell survival and proliferation [54].
Overexpression of GPCRs and integrins in nodules sug-
gests their role in hemocytes adhesion and aggregation
associated with the formation of granuloma [50, 55].
Several enzymes regulating ROS production were also

over-expressed during focal response (Table 3). These
included a dual oxidase, which is a key component me-
diating host-microbe interactions in mucosa [56, 57].
Dual oxidase regulates oxidative burst and ROS produc-
tion in the gill muscosa of the shrimp Marsupenaeus
japonicus, favoring shrimp survivorship during viral in-
fections [58]. Interestingly, transcripts of dual oxidase
were only expressed in nodules, suggesting this enzyme
was induced upon direct clam-QPX interactions as a
part of the mantle mucosa-related immune response.
Other transcripts associated with oxidation-reduction
processes also exhibited somewhat nodule-exclusive pat-
tern, including the allene oxide synthase-lipoxygenase
(AOSL), lysyl oxidase-like protein (LOXL), ww domain-
containing oxidoreductase (WWOX), c-terminal binding
protein (CtBP), isocitrate dehydrogenase (ICD) and
methylenetetrahydrofolate reductase (MTHFR). These
molecules are important for maintaining the redox

homeostasis of extracellular environment as they are key
regulators for oxi-reduction reactions. Over-expression
of these transcripts in nodules suggests the need for the
host to timely balance out excessive ROS and other toxic
intermediates produced during interaction with QPX. In
addition to redox-regulation, many of these molecules
also take part in the immune modulation indirectly. For
example, AOSL play a role in coral immunity by con-
trolling the production of the inflammation regulator
arachidonic acid during apoptosis [59], and LOXL acts
both as a scavenger receptor and regulator for extracel-
lular matrix remodeling that initiate hemocyte migration
and tissue regeneration [60], while WWOX was shown
to promote proliferation of immune cells through inhib-
ition of their apoptosis [61, 62]. In addition, ICD,
MTHFR and cytochrome p450 are major detoxification
enzymes [63, 64]. In fact, immune cells and their se-
creted effectors require the proper redox state in the
extracellular environments to exert their immune func-
tions, which makes the maintenance of redox homeosta-
sis essential for persistent and effective host defense [65,
66]. This is particularly true in the case of QPX disease
where the neutralization of parasites depends on extra-
cellular killing pathways [26].
Apoptosis is an essential host mechanism to effectively

remove damaged and infected cells without causing in-
flammatory destructions to surrounding tissues [67, 68].
Interestingly, apoptosis seems to be largely inhibited
during M. mercenaria focal response, as shown by the
under-expression of pro-apoptosis transcripts (Table 2).
For example, the tumor necrosis factor (TNF)-like pro-
tein and 3-hydroxy-3-methylglutaryl-coenzyme A
(HMG-CoA) reductase-like protein were significantly
under-expressed in nodules. Similarly, the pro-apoptotic
p53-induced protein and solute carrier family 25 mem-
ber protein were also under-expressed in nodules. Mean-
while, inhibitor of apoptosis protein (IAP) was over-
expressed in nodules. IAPs regulate immune cell expan-
sion and survival in highly inflammatory environments
in mammals [69] and they may share similar function in
clams by preventing hemocytes from death during

Table 2 Transcripts with annotated functions (GO terms) related to immune recognition, signaling and regulation that were differentially
expressed during M. mercenaria focal response against QPX. Additional information on these transcripts is given in Additional file 2. “Inf”
designates an infinite fold change calculated for focal response as the expression of that transcript in non-nodule tissue was equal to 0
(Continued)

comp186101_c3_seq4 3-hydroxy-3-methylglutaryl-
coenzyme A reductase

Down −10.8 P:positive regulation of apoptotic process; P:negative
regulation of wound healing; P:oxidation-
reduction process;

Tumor necrosis factor (TNF)

comp182922_c0_seq5 TNF ligand superfamily member 10-like Up 8.5 -

comp176786_c2_seq3 TNF-like protein Down −26.3 F:tumor necrosis factor receptor
binding; P:immune response

TNF ligand superfamily member 10-like Up 8.5 -
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Table 3 Transcripts with putative functions (GO terms) related to immune effectors that were differentially expressed during M.
mercenaria focal response against QPX. Additional information on these transcripts is given in Additional file 2. “Inf” designates an
infinite fold change calculated for focal response as the expression of that transcript in non-nodule tissue was equal to 0

Transcripts ID Annotation Regula-
tion

Fold
change

Function/GOs

Oxidation-reduction processes

comp186178_c0_seq12 dual oxidase Up Inf P:response to oxidative stress; P:oxidation-
reduction process; F:peroxidase activity

comp185478_c0_seq4 allene oxide synthase-
lipoxygenase protein

Up 10.0 P:oxidation-reduction process; F:oxidoreductase
activity; F:metal ion binding;

comp186926_c0_seq7 c-terminal-binding protein Up Inf P:oxidation-reduction process; F:NAD binding;

comp187462_c1_seq6 chorion peroxidase Up 11.8 P:oxidation-reduction process; P:response
to oxidative stress; F:peroxidase activity

comp157634_c0_seq8 cytochrome p450 Up 178.6 P:oxidation-reduction process; F:oxidoreductase
activity; F:iron ion binding

comp183426_c1_seq2 dbh-like monooxygenase
protein 1-like protein

Up 24.8 P:oxidation-reduction process; F:dopamine
beta-monooxygenase activity;
F:oxidoreductase activity

comp188723_c0_seq1 isocitrate dehydrogenase Up Inf P:oxidation-reduction process; F:magnesium
ion binding; F:NAD binding

comp169486_c0_seq1 lysyl oxidase-like protein 2 Up 22.5 F:oxidoreductase activity; P:oxidation-reduction
process; F:scavenger receptor activity

comp192316_c0_seq4 methylenetetrahydrofolate
reductase

Up Inf P:oxidation-reduction process; F:methylenetetrahydrofolate
reductase (NADPH) activity;

comp189621_c0_seq4 procollagen-oxoglutarate
5-dioxygenase 3

Up 9.7 P:oxidation-reduction process; F:iron ion binding

comp185148_c0_seq6 ww domain-containing
oxidoreductase

Up Inf F:oxidoreductase activity; P:metabolic process

Protease

comp184786_c1_seq4 fur protein precursor Up Inf F:serine-type endopeptidase activity

comp180950_c0_seq5 lysosomal protective
protein precursor

Up 47.1 F:serine-type carboxypeptidase activity

comp180950_c0_seq2 lysosomal protective
protein precursor

Up 26.9 F:serine-type carboxypeptidase activity

comp189961_c0_seq12 N-acetylated-alpha-linked
acidic dipeptidase 2

Up 16.3 F:metallopeptidase activity;

comp178551_c1_seq1 membrane metallo-
endopeptidase-like 1-like

Up Inf F:metalloendopeptidase activity;

comp184011_c0_seq4 blastula protease 10 Up 8.1 F:metalloendopeptidase activity;

comp191868_c1_seq1 matrix metalloproteinase-19 Up 59.1 -

comp174947_c0_seq3 isoaspartyl peptidase
l-asparaginase-like

Up Inf F:hydrolase activity

comp183848_c0_seq3 kyphoscoliosis peptidase Down −8.7 P:microtubule-based movement

comp188831_c0_seq3 puromycin-sensitive
aminopeptidase-like
isoform

Down −65.5 F:metallopeptidase activity;

comp191458_c3_seq5 aspartic protease with reverse
transcriptase activity

Down −245.4 F:aspartic-type endopeptidase activity;

Protease inhibitor

comp189919_c1_seq4 alpha macroglobulin Up 21.9 F:endopeptidase inhibitor activity

comp189919_c1_seq2 alpha macroglobulin Up 12.4 F:endopeptidase inhibitor activity

comp181286_c4_seq1 thioester-containing protein Up 10.2 F:endopeptidase inhibitor activity

comp191416_c1_seq2 thioester-containing protein-a Up 14.8 F:endopeptidase inhibitor activity

comp191416_c1_seq1 thioester-containing protein-b Up 9.5 F:endopeptidase inhibitor activity
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interaction with QPX. In fact, ROS production during
parasite killing may trigger apoptotic cell death in mol-
luscs [67], and proper control of apoptosis mechanisms
is required to maintain cellular homeostasis during im-
mune response. This suspected inhibition of host apop-
tosis is supported by the above-mentioned over-
expression of integrins, as these were shown to protect
cells from apoptosis and induce anti-apoptotic pathways
during cell adhesion and spreading in the snails Lym-
naea stagnalis [70] and B. glabrata [71].
Infection and tissue injury trigger host immune re-

sponses via immune signaling pathways [72], by activat-
ing transcription factors and initiating the production of
immune effectors and regulators. Immune signaling
pathways identified in mollusks include Toll, MAPK/
JNK and JAK/STAT signaling pathways [27, 47, 73, 74].
During M. mercenaria focal response to QPX, a variety
of transcripts encoding kinases and phosphatases were
over-expressed (Table 2), suggesting the involvement of
MAPK and other kinase-mediated cascades in regulating
the focal inflammatory response [75], whereas the
under-expression of EF-hand domain containing protein
and calmodulin may indicate the suppression of

calcium-regulated pathways [76]. Overexpression of E3
ubiquitin-protein ligase and its upstream regulator
COP9 signalosome suggests the activation of the damage
surveillance ubiquitin/proteasome pathway [77–79]. In
parallel, the over-expression of rho GTPase and rho kin-
ase suggests the induction of anti-apoptotic Rho-
mediated signaling pathway [80, 81] and reinforce the
idea that apoptotic inhibition is extensively initiated by
M. mercenaria to help fight QPX. However, a very lim-
ited number of DE transcripts was detected in relation
to those conventional signaling pathways of innate im-
munity, such as the complement pathway and the Toll/
TLR pathway. Only 1 transcript encoding macrophage-
expressed gene protein 1 (MPEG1), a putative member
of the complement pathway [82, 83], was differentially
expressed in QPX nodules. As for the Toll/TLR pathway,
only a few receptors were identified (Table 2) but none
of their downstream components.
Interestingly, components of the Notch and the Wnt

signaling pathways were over-expressed during focal re-
sponse (Table 2). These included two putative Notch
family members, the neurogenic locus Notch protein
and the mediator protein nicastrin, and the tyrosin-

Table 3 Transcripts with putative functions (GO terms) related to immune effectors that were differentially expressed during M.
mercenaria focal response against QPX. Additional information on these transcripts is given in Additional file 2. “Inf” designates an
infinite fold change calculated for focal response as the expression of that transcript in non-nodule tissue was equal to 0 (Continued)

comp192366_c0_seq1 thioester-containing protein-c Up 32.5 F:endopeptidase inhibitor activity

comp191416_c0_seq5 thioester-containing protein-e Up 12.9 F:endopeptidase inhibitor activity

comp191416_c0_seq4 thioester-containing protein-e Up 22.4 F:endopeptidase inhibitor activity

Ion transporter and sequester

comp190604_c1_seq1 ceruloplasmin precursor Up 21.8 P:copper ion transport; P:cellular iron ion homeostasis;
F:ferroxidase activity

comp182612_c1_seq1 ferric-chelate reductase 1 Up 16.7 Iron transfer

comp180332_c1_seq1 ferric-chelate reductase 1-like Up 11.8 Iron transfer

comp177359_c0_seq1 selenium binding protein Down −11.0 P:protein transport; F:selenium binding

comp174164_c0_seq20 divalent metal transporter Up 328.2 P:transport; F:transporter activity

Wound repair

comp185425_c1_seq1 actin-related protein 2 3
complex subunit 5-like

Up Inf C:cytoskeleton; P:regulation of actin filament polymerization

comp93954_c0_seq1 extracellular matrix protein 2
isoform1

Up 25.9 F:protein binding

comp188753_c5_seq1 cartilage matrix protein Up 25.8 F:chitin binding; P:chitin metabolic
process; C:extracellular region

comp142858_c0_seq1 epidermal growth factor-like
protein 8-like

Up 18.5 F:protein binding; F:calcium ion binding

comp192650_c1_seq4 multiple epidermal growth
factor-like domains 6

Up 21.9 F:protein binding

comp186665_c0_seq1 thrombospondin- partial Up 106.9 F:protein binding

comp186665_c0_seq4 thrombospondin- partial Up 38.0 F:protein binding

comp184960_c0_seq4 septin-7-like isoform 8 Up Inf P:cell cycle; F:GTP binding; C:septin complex

comp184960_c0_seq42 septin-7-like isoform 6 Up 8.9 -
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protein kinase RYK which belongs to the Wnt pathway.
Wnt signaling pathway regulates many cellular immune
processes and is evolutionarily conserved across taxa
[84, 85]. Wnt signaling has been intensively exploited for
its regulatory functions during wound healing and tissue
regeneration [86, 87], so its over-expression may be re-
lated to wound healing to repair damage resulting from
tissue digestion by the parasite or tissue necrosis. The
Notch signaling network was scarcely explored in bi-
valves even though it has been reported to be associated
with several aspects of immune response in mammals
[88], especially in regulating granulomatous reactions to
foreign bodies [89]. As an evolutionarily conserved path-
way involved in modulating the intercellular signaling,
the Notch pathway presumably shares an equally im-
portant role in M. mercenaria by modulating the forma-
tion of granuloma. Notch signaling triggers macrophage
expression of genes involved in pro-inflammatory re-
sponses [90], but can suppress inflammation responses
triggered by canonical TLR cascade [91], in agreement
with our observations. These tightly regulated mecha-
nisms ensure tailored immune responses against differ-
ent pathogens and are crucial for the host to achieve
high immune efficiency while avoiding excessive im-
mune activation and self-inflicted damages.
Several proteases (A.K.A proteinases, peptidases) were

also differentially regulated during M. mercenaria focal
response against QPX. These proteases mostly belong to
the serine and metallo protease families and were gener-
ally over-expressed in QPX nodules (Table 3). Proteases
serve as key immune modulators partially through their
ability to digest and remodel the extracellular matrix
and tissues associated with hemocyte activation [92].
Commonly associated with lysosomes and granules of
inflammatory cells, serine proteases participate in im-
mune regulation either directly by degradation of patho-
gens or indirectly through activation of cell surface
receptors and signal molecules [92–94]. The function of
metalloproteases in immune regulation is even more di-
verse, acting as immune effectors, signal transducers,
and mediators of immune cell development and migra-
tion [95]. Metalloproteases are also known to be in-
volved in many pro-inflammatory pathways, particularly
in the Notch pathway where they act as a type of down-
stream element to Notch [96].
At the same time, immune effectors with known uni-

versal protease inhibitor activities, such as alpha2-
macroglobulin (α 2 M) and thioester-containing protein
(TEP, a subfamily of α 2 M), were also collectively over-
expressed in QPX nodules (Table 3). The α 2 M super-
family inhibits peptidases of diverse origins [97, 98]. The
simultaneous over-expression of proteases and protease
inhibitors may reflect a finely adjusted defense response
of M. mercenaria to maintain homeostasis and regulate

self- and pathogen-derived proteases, as shown in other
host-pathogen systems [92, 99], including bivalves [100].
Proteases have been identified as major virulence factors
of QPX [101, 102], and are thought to degrade host pro-
teinaceous immune effectors and hydrolyze host tissues
to fulfill nutritional requirements. Therefore, inhibition
of pathogen proteases contribute to host protection, and
was shown to represent a determinant factor for resist-
ance against infectious diseases in bivalves [103–106]. In
parallel, TEPs have been extensively studied in mollusk
immunity [99, 107], and beside their function as prote-
ase inhibitors, they also play a role as PRRs or opsonins
to facilitate microbial phagocytosis and encapsulation.
Consistent over-expression of TEPs was noted in this
study in agreement with findings following experimental
infection with QPX [15]. These results support a critical
role of TEPs in clam immune response against QPX ei-
ther via the protease-inhibitor activity of these proteins,
or by mediating parasite encapsulation, or both.
In addition, several metal ion transporters were over-

expressed in nodules (Table 3), including the putative
copper ion binding protein ceruloplasmin precursor, the
transferrin enzyme ferric-chelate reductase and the diva-
lent metal transporter (A.K.A natural resistance-
associated macrophage protein; 328 fold increase). These
molecules contribute to host defense by controlling the
supply of essential micronutrients in the vicinity of in-
fection sites thus reducing parasite survival [108, 109]
and favoring the production of antimicrobial factors
[110]. It is noteworthy to point out that some of the fo-
cally over-expressed transcripts might be partly driven
by the dramatic increase of hemocyte proportion within
tissues in the vicinity of infection foci as compared to
the surrounding host tissues [26, 111]. This would be es-
pecially the case for transcripts known to be highly
expressed in hemocytes, such as the cell surface PRRs,
secreted humoral immune effectors, cell signal transduc-
ers and enzymes associated with ROS production.

Systemic response
Significant transcriptomic regulations were observed
during M. mercenaria systemic immune response
against QPX, with a total of 1,681 DE transcripts, which
is about two times the number of focal DE transcripts
(829). However, only about one third of the DE tran-
scripts (513) were over-expressed in response to QPX
infection, the larger remaining part (1,168) represented
significantly under-expressed transcripts (Fig. 4, Add-
itional file 3), possibly due to the chronic stress imposed
by the infection. Transcriptome-wide depression has
been demonstrated in many marine invertebrates as the
result of pathogenic or environmental stress [18, 59,
112–114]. A considerable number of systemically under-
expressed transcripts was related to metabolism and
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biomineralization, which could be the result of host re-
source allocation during on-going infection. The chronic
inflammation induced by infection likely created extra
energy demands, which require resources being allocated
from other physiological processes, such as growth and
reproduction, to immune processes which is critical for
the survivorship of the host. In fact, slow growth and
lower tissue conditions are frequently observed in QPX-
infected M. mercenaria [2], and similar energy trade-offs
existed between immune defense and other energy ex-
penditure pathways [115–118]. Interestingly, a suite of
transcripts over-expressed during focal response was sig-
nificantly under-expressed in non-nodule tissues as com-
pared to healthy clams (Additional file 3), which
included several immune effectors and mediators associ-
ated with nodule formation and focal inflammation (e.g.,
integrins, notch proteins and peroxidases). In fact, main-
taining high levels of these focally-induced molecules
could be costly and dangerous as some are toxic to both
the parasite and the host, so their production must be
restrained within areas where they can directly exert
defense function, and reduced outside the infection foci to
minimize risks of undesirable effects on the host [116, 117].
On the other hand, systemically over-expressed tran-

scripts included stress proteins and other soluble immune
factors such as lysozyme (c-type lysozyme 2), lectins (C1q
domain containing protein, macrophage mannose recep-
tor 1, low affinity immunoglobulin epsilon fc receptor),
AMP (hemocyte defensin), proteases (cathepsin K, calpain
11, isoaspartyl peptidase/L-asparaginase, ASRGL, count-
ing factor associated protein d) and ferric-chelate reduc-
tase (Table 4, Additional file 3). Over-expression of host
stress proteins, such as heat shock proteins (HSP 70, HSP
90) and universal stress protein (USP) was also noted, in
agreement with observations made during infection in
other bivalve species [119–121]. Increased levels of stress
proteins provide host cells with protection against in-
correct protein folding caused by infection, inflamma-
tion, oxidative stress and other destructive events
[122, 123]. The systemic over-expression of soluble
immune effectors (e.g., humoral proteins) may help
maintaining comparatively high immune capacity to
prevent the spread of QPX (or secondary pathogens)
throughout the host. In addition, transcripts of anti-
apoptotic factors (IL17, deoxyguanosine, baculoviral
map repeat-containing proteins) were also over-
expressed during the systemic response, indicating
that anti-apoptotic processes noted during focal re-
sponse are not limited to the infection foci.

Pathway alterations during M. mercenaria’s response to QPX
Transcriptomic alterations during both focal and sys-
temic response discussed above were also highlighted in
the pathway enrichment analysis of the DE transcripts.

This analysis aims at extracting an overview of pheno-
typic changes on the underlying functional level, to re-
duce the complexity of biological information given by
the long lists of DE genes/transcripts [124]. The KEGG
pathways of focal adhesion (04510), ECM-receptor inter-
action (04512), Notch signaling pathway (04330) and
apoptosis (0421) were significantly over-represented dur-
ing both focal and systemic response (Fig. 5), even
though fold enrichment were generally higher during the
focal response. Other immune-related pathways particu-
larly enriched during the focal response included regula-
tion of actin cytoskeleton (04810), cell adhesion
molecules (CAMs, 04514), the leukocyte transendothe-
lial migration (04670), complement and coagulation cas-
cade (04610) and Wnt signaling pathway (04310). These
pathways are critically involved in the immune cells acti-
vation during migration, attachment and parasite encap-
sulation, which serve as the underlying mechanisms for
nodule formation and QPX killing. On the other hand,
basic metabolic pathways such as the citrate cycle
(TCA) and pyruvate metabolism were specially enriched
during the systemic response. These alterations were
largely in accordance with the under-expression of
metabolism-associated DE transcripts in infected tissue
compared to the healthy tissue (Fig. 4), possibly reflect-
ing changes in the energy allocation strategy during in-
fection as discussed above.
Interdependence of KEGG pathways widely exist and

most of these are interrelated with each other via shared
components, forming a signaling network to allow for
pathway crosstalk. To investigate these interactions, we
extracted the DE transcripts shared by multiple enriched
pathways and constructed a sketch of the hypothetical
pathways network that are significantly altered by QPX
infection (Fig. 6). In this framework, M. mercenaria re-
sponse to QPX infection was initiated upon the sensing
of danger signals via cell membrane receptors. The signals
subsequently transmitted down through the MAPK, Wnt
and Notch pathways and triggered the production of a
series of host defense factors as the end results. In parallel,
activation of pathways regulating actin cytoskeleton and
leukocyte transendothelial migration facilitated the re-
cruitment of hemocytes to the infection area to build a
barrier of cellular defense against the parasite. Recruited
hemocytes then attached to and encapsulated QPX cells
as suggested by the modulation of focal adhesion and
ECM receptor interaction pathways. These cellular activ-
ities were performed under a tight regulation of the apop-
tosis pathway to determine cell fates, resulting in either
the survival or death of M. mercenaria cells.

Distinctive transcriptomic pattern of healthy clams
A suite of transcripts (407, Fig. 4, Additional file 4 and
Table 5) exhibited higher transcription levels in healthy
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clams as compared to diseased clams (considering both
nodule and non-nodule tissues). A considerable fraction
of these transcripts were related to metabolic processes,
nucleic acids binding and transcriptional regulation. The
over-expressed immune-related transcripts identified in
healthy clams are of particular interest as they may be
involved in M. mercenaria resistance towards QPX. For
example, an antimicrobial protein (aplysianin A [125,
126]) was exclusively identified in healthy clams with al-
most no detection in diseased clams. In addition, the
highest expression levels of a serine protease inhibitor
were also observed in healthy clams. A serine protease
inhibitor has been linked to oyster (Crassostrea

virginica) resistance against the protozoan parasite Per-
kinsus marinus [103–106, 127]. Therefore, the high ex-
pression of the serine protease inhibitor in healthy clams
supports its involvement in M. mercenaria’s resistance
against QPX, likely by inhibiting the activity of parasite
proteases. Moreover, a pathogen recognition protein (c-
type lectin domain family 10 member A-like) was signifi-
cantly higher in healthy clams as compared to diseased
animals, which may also contribute to clam resistance
against QPX by promoting microbial recognition and
encapsulation [128]. Previous studies demonstrated that
clam genetic background affects M. mercenaria resist-
ance toward QPX [4, 129, 130], therefore immune-

Table 4 Selected transcripts with annotated functions (GO terms) related to immune response that were over-expressed during M.
mercenaria systemic response against QPX. Additional information on these transcripts is given in Additional file 3. “Inf” designates
an infinite fold change calculated for focal response as the expression of that transcript in non-nodule tissue was equal to 0

Transcripts ID Annotation Regul-ation Fold change Function/GOs

Stress protein

comp39934_c1_seq1 heat shock 70 kda protein Up Inf P:response to stress

comp181704_c3_seq49 heat shock 70 kda protein 12b Up 452.9 -

comp68505_c0_seq1 heat shock protein 70 Up 37.8 P:response to stress

comp38810_c0_seq1 hsp90 family member Up 64.7 P:response to stress

comp192296_c2_seq3 usp-like protein isoform 2 Up 46.2 P:response to stress

Immune effectors

comp192209_c0_seq3 hemocyte defensin partial Up 173.5 P:defense response

comp186386_c5_seq2 c-type lysozyme 2 Up 20.0 -

comp186386_c5_seq1 c-type lysozyme 2 Up Inf -

comp164821_c0_seq2 c1q domain containing protein Up 8.3 Lectin

comp164821_c0_seq3 c1q domain containing protein Up 11.9 Lectin

comp190576_c0_seq27 low affinity immunoglobulin
epsilon fc receptor

Up 134.1 F:carbohydrate binding; Lectin

comp190576_c0_seq26 low affinity immunoglobulin
epsilon fc receptor

Up 201.6 F:carbohydrate binding; Lectin

comp191987_c0_seq10 macrophage mannose receptor 1-like Up 7.8 F:carbohydrate binding; Lectin

comp189507_c1_seq9 ferric-chelate reductase 1 Up 10.7 Iron transport

Peptidases

comp156268_c1_seq1 cathepsin k-like Up 9.5 -

comp184090_c0_seq6 calpain 11-like Up 10.1 -

comp189096_c0_seq4 counting factor associated protein d-like Up 36.1 F:cysteine-type peptidase activity

comp176418_c0_seq1 isoaspartyl peptidase Up 8.0 F:hydrolase activity

Anti-apoptotic factors

comp178822_c0_seq1 interleukin IL17-like Up 11.6 P:inflammatory response; F:cytokine activity

comp176786_c2_seq3 deoxyguanosine mitochondrial Up 29.5 F:tumor necrosis factor receptor
binding; P:immune response;

comp192603_c1_seq8 baculoviral iap repeat-
containing protein 7-a

Up 10.3 P:negative regulation of peptidase activity

comp192603_c1_seq7 baculoviral iap repeat-
containing protein 7-a

Up 14.3 P:negative regulation of peptidase activity

comp191786_c0_seq3 baculoviral iap repeat-
containing protein partial

Up 8.9 -
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related transcripts specifically associated with healthy
clams represent excellent candidates as molecular
markers for further research on screening and breeding
QPX-resistant M. mercenaria strains.
On the other hand, a subset of transcripts (126, Fig. 4

and Table 5) exhibited lowest expression levels in
healthy clams. These include stress protein HSP 70 and
USP, as well as the detoxification molecule cytochrome
p450, which together highlight the stress experienced by
clams as the result of QPX infection [63, 131–135]. In
addition, other immune related transcripts including a
protease (isoaspartyl peptidase/L-asparaginase, ASRGL),
a protease inhibitor (GTP-binding protein yptV4), a C-
type lectin (MRC1), and molecules involved in tissue

regeneration and cell signaling, were also under-
expressed in healthy clams as compared to infected indi-
viduals, suggesting their role in fighting the infection.

Conclusions
This is one of the first studies contrasting focal and sys-
temic immune responses to infections in invertebrates
using high-throughput sequencing. Resulting transcrip-
tome represents a significant addition to the so far lim-
ited public genomic information available for M.
mercenaria. The transcriptomic profiles of healthy and
infected clams reflected complex interactions between
the host immune system and the pathogen leading to
molecular changes at both the infection foci and the

Fig. 5 Significantly enriched KEGG pathways in M. mercenaria derived from the differentially expressed (DE) genes during focal (a) and systemic
(b) response against QPX. The KEGG pathways having significant enrichment (P< 0.01) are presented, and the bar shows the x-fold enrichment of each
KEGG pathway. Pathways involved in immune response are marked with red dots while metabolism-related pathways are marked with green dots

Wang et al. BMC Genomics  (2016) 17:146 Page 16 of 22



systemic level. In general, the systemic responses of M.
mercenaria reflected prevailing transcriptomic suppression
accompanied with a contrasting over-expression of stress
proteins and soluble antimicrobial effectors; whereas the
focal response highlighted cell-cell interactions between he-
mocytes and the parasite that typically result in local in-
flammation, extracellular degradation, encapsulation,
granuloma formation, and wound repair. What needs to be
kept in mind is that the regulation of these genes can be
the result of either an effective immune response or a

symptom of a future death. In fact, several apoptotic and
anti-apoptotic genes were regulated. This highlights a fine
adjustment of M. mercenaria defense mechanisms to pre-
cisely adapt to the infection development (e.g., through the
modulation of energy allocation, apoptotic and anti-
apoptotic processes and mobilization of different signaling
pathways). In addition, the identification of immune-related
transcripts that were particularly associated with healthy
clams offered new perspectives on the molecular features
putatively involved in clam resistance against QPX.

Fig. 6 Overview of immune-related enriched pathways of differentially expressed (DE) transcripts during M. mercenaria response to QPX. a Schematic
diagram of enriched pathways and their interactions. Only pathway components encoded by DE transcripts (shown in text boxes) are presented within
each enriched KEGG pathway (framed in orthogonal polygons). Arrows display possible interactions (e.g., activation, inhibition) between pathway
components. b Overview of DE transcripts expression associated with enriched pathways in nodule, non-nodule and healthy M. mercenaria tissues.
The red and green heatmap values indicate log2 fold of relative expression levels for individual transcripts. Arp2/3: actin related protein 2/3 complex;
CtBP: C-terminal binding protein; CAMK2: calcium/calmodulin-dependent protein kinase (CaM kinase) II; CycD: cyclin D1(CCND1); ECM: von Willebrand
factor; ENDO-G: endonuclease G; FAK: focal adhesion kinase; FYN: tyrosine-protein kinase; HES1: hairy and enhancer of split 1; IAP: baculoviral IAP
repeat-containing protein, cIAPs; ITGA: intergrin alpha; ITGB: intergrin beta; MLCP: serine/threonine-protein phosphatase PP1 catalytic subunit; NRXN:
neurexin; NCSTN: nicastrin; Rac: Ras-related C3 botulinum toxin substrate; ROCK: Rho-associated protein kinase; RTK: proto-oncogene tyrosine-protein
kinase; SELE: selectin, endothelial cell; SELP: selectin, platelet; TRAIL: tumor necrosis factor ligand superfamily member 10); WNT: wingless-type MMTV
integration site family
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Methods
Clam tissue and RNA samples preparation
Adult hard clams (54 ± 5 mm in length, mean ± standard
deviation) were collected from a QPX enzootic area in
Massachusetts. Clams were shucked and grossly exam-
ined for the presence of nodules along the mantle rim.
Nodule tissues were dissected and a small piece of each
nodule was microscopically examined (fresh mount) for
the identification of QPX cells. Aliquot tissues from
positive nodules were submitted to RNA extraction.
Meanwhile, a piece of seemingly healthy tissue that is
anatomically symmetrical to the nodule was collected
from the same clam (e.g., “healthy” tissue from a dis-
eased clam) and divided into 2 aliquots, with the first ali-
quot used for QPX detection by qPCR [10] and the
second used for RNA extraction. Mantle tissues were
also collected from “seemingly” healthy clams (no visible
nodules) and used for QPX detection and RNA extrac-
tion. Following confirmation of disease status by qPCR,
the samples were divided into the following 3 categories:
(1) infected tissue from a diseased clam, (2) “healthy”(-
non-nodule) tissue from a diseased clam, and (3)
“healthy” tissue from a healthy clam. Total RNA was in-
dividually extracted using TRIzol ® Reagent (Invitrogen,
Carlsbad, CA, USA). Further RNA clean-up and on-
column DNase digestion were performed with RNeasy
Mini Kit (Qiagen Ltd., Crawley, UK) according to the
manufacturer’s guideline. RNA quantity and quality were

analyzed on Nanodrop ND-1000 (Thermo Scientific,
Wilmington, USA). Only RNA samples with absorption
ratios of A260/A280 close to 2.0 were used for RNA-seq
analysis. A total amount of 3 μg RNAs per sample was
used and pooled into a total of 3 pools (3 clams per
pool) representing each tissue category (9 pools in all).
The pooling strategy is shown in Table 1.

RNA sequencing, de novo assembly and annotation
The sequencing of each pooled RNA sample as a paired
end (PE) reads library (100 pb) was performed on Illu-
mina HiSeq 2000 platform at the McGill University and
Genome Quebec Innovation Center (Montreal, Canada),
producing from 27.1 up to 46.8 millions of PE reads per
sample (Table 1). Raw reads were filtered and trimmed
according to length and quality score (min length 60 nt,
end trimming quality 25, min quality filtering: 20 on
75 % of the read length) using the FASTX-Toolkit soft-
ware v 0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/).
rRNA cleaning was performed using the riboPicker soft-
ware v 4.0.3 (http://ribopicker.sourceforge.net) [136]
against SILVA database v111. And finally pair retrieval
was performed using a homemade python script accessible
through GitHub (https://github.com/ppericard/bioinfo-
toolkit). High quality filtered sequence reads from all librar-
ies were combined and subsequently used for de novo
assembly. Assembly was based on the de Bruijn graph as-
sembler Trinity (http://trinityrnaseq.sourceforge.net/) [137]

Table 5 Selected transcripts with annotated functions (GO terms) related to immune response that were differentially expressed in
naïve M. mercenaria as compared to QPX infected individuals. Additional information on these transcripts is given in Additional file
4. “Inf” designates an infinite fold change calculated for focal response as the expression of that transcript in non-nodule tissue was
equal to 0

Transcripts ID Annotation Fold change Function/GOs

Over-expressed

comp168250_c0_seq2 macrophage expressed protein 84.0 -

comp160023_c0_seq1 serine protease inhibitor 1 18.1 F:protein binding

comp117137_c0_seq1 proline-rich transmembrane protein 1 148.6 P:response to biotic stimulus

comp134883_c0_seq1 c-type lectin domain family 10 member a-like 121.4 F:carbohydrate binding

comp180146_c3_seq31 aplysianin a precursor Inf P:defense response; F:oxidoreductase activity

comp179365_c0_seq7 insulin-related peptide receptor 20.0 F:scavenger receptor activity

comp187368_c2_seq9 apoptosis 1 inhibitor 16.2 P:apoptotic process;

comp193015_c0_seq1 baculoviral iap repeat-containing protein 4 391.0 P:negative regulation of apoptotic process;
F:ubiquitin-protein ligase activity

Under-expressed

comp39934_c1_seq1 heat shock 70 kda protein Inf P:response to stress

comp192296_c2_seq3 usp-like protein isoform 2 −46.2 P:response to stress

comp169961_c0_seq2 cytochrome p450 1a1 −75.1 -

comp176418_c0_seq1 isoaspartyl peptidase l-asparaginase-like −8.0 F:hydrolase activity

comp191987_c0_seq10 macrophage mannose receptor 1-like −7.8 F:carbohydrate binding

comp186563_c0_seq7 bile salt-activated lipase-like −9.8 F:hydrolase activity
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using the default parameters. Assembly quality was con-
trolled by re-mapping raw reads back to the transcripts
using bowtie 2 and RSEM within Trinity package scripts.
The assembled transcripts with sequence length longer
than 200 bp, re-mapping FPKM (fragments per kilobase of
transcript per million mapped reads) greater than 1 and
isoform discovery level greater than 1 % were then consid-
ered for the following annotation and transcript abundance
quantitation. Annotation of this de novo assembled tran-
scriptome was performed using Blast2GO (http://
www.blast2go.com) with a semi-automated functional an-
notation based on sequence homology search. Putative
gene identities was obtained by Blastx search against Na-
tional Center for Biotechnology Information (NCBI) non-
redundant sequences (nr) database with the E-value thresh-
old setting at 1E-03. Putative gene functions were predicted
by sequence similarity search against Gene Ontology (GO,
http://www.geneontology.org/) database and assigning GO
annotation terms to each mapped transcript. Protein do-
main search and enzyme annotation were also performed
using InterPro scan and the Kyoto Encyclopedia of Genes
and Genomes (KEGG). KEGG Orthology (KO) terms and
KEGG pathways were also assigned to the assembled se-
quences using the online KEGG Automatic Annotation
Server (KAAS, http://www.genome.jp/kegg/kaas/) using bi-
directional best-hit methods [138]. This server provides KO
annotation and pathway mapping.

Differential gene expression analysis
The consensus transcriptome generated in the previous
steps was used as a reference for transcript abundance
analysis. Reads from each single library were separately
mapped to this reference transcriptome using the “RNA-
Seq by Expectation-Maximization (RSEM)” method that
is bundled within the Trinity package. The expression
level of each transcript was determined as the total
mapped reads count. The differences in gene expression
between clam tissue samples (nodule, non-nodule and
healthy tissues) were estimated using the DESeq Biocon-
ductor package (https://github.com/Bioconductor-mir-
ror/SESeq/tree/release-3.2) [139] in R statistical software
(R Development Core Team, 2010; http://www.R-projec-
t.org). The threshold for defining significant differentially
expressed (DE) transcripts between two different condi-
tions (3 replications in each condition) was set as ad-
justed p-value smaller than 0.001 and absolute log2 (fold
change) values greater than 2. Expression patterns of DE
transcripts were also analyzed by a K-means clustering
method using Euclidean distance based on expression
levels over all input samples. For further analysis, only
those DE transcripts with annotation were considered as
candidates of interest and were subsequently divided
into over- and under-expressed groups.

Availability of supporting data
The data sets supporting the results of this study are
available at the NCBI short Read Archive database under
the SRA accession number SRP068241.

Additional files

Additional file 1: Sequence summary of M. mercenaria de novo
assembled transcriptome. This is a Microsoft Excel worksheet that
contains descriptions and annotation information of individual transcript
sequences. (XLSX 6600 kb)

Additional file 2: Differentially expressed (DE) sequences associated
with M. mercenaria focal response against QPX. This file is a Microsoft
Excel worksheet that contains separate lists of over- and under-expressed
transcripts with their expression levels and fold change values given.
(XLSX 143 kb)

Additional file 3: Differentially expressed (DE) sequences associated
with M. mercenaria systemic response against QPX. This file is a
Microsoft Excel worksheet that contains separate lists of over- and
under-expressed transcripts with their expression levels and fold
change values given. (XLSX 327 kb)

Additional file 4: Transcripts that were differentially expressed in naïve
M. mercenaria as compared to QPX infected individuals. This file is a
Microsoft Excel worksheet that contains separate lists of over- and under-
expressed transcripts with their expression levels and fold change values
given. (XLSX 128 kb)
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