
Loosening Coupling

Dario Campagna

Head of Research and Development

Building a Composite is repetitive,
complicated, or error-prone

▪ You can forget to add a new node to a parent
▪ You can add a new node to the wrong parent
▪ Same batch of steps over and over again
▪ Client code coupled to Composite

Composite construction

Motivation
▪ A reader for the RTF format needs to convert

RTF to many text formats
▪ Objects that requires laborious, step-by-step

initialization of many fields and nested objects

Applicability
▪ Construction process must allow different

representations for the constructed object
▪ Objects with “telescoping constructors”

Builder
Separate the construction of a complex object from its representation so that the same
construction process can create different representations.

Encapsulate Composite with Builder

https://www.industriallogic.com/xp/refactoring/compositeWithBulder.html
https://www.informit.com/articles/article.aspx?p=1398606&seqNum=5

https://www.industriallogic.com/xp/refactoring/compositeWithBulder.html
https://www.informit.com/articles/article.aspx?p=1398606&seqNum=5

Encapsulate Composite with Builder

Benefits Liabilities

Simplifies a client’s code for constructing a
Composite.

May not have the most intention-revealing
interface.

Reduces the repetitive and error-prone
nature of Composite creation.

Creates a loose coupling between client and
Composite.

Allows for different representations of the
encapsulated Composite or complex object.

1. Create a builder, make it possible for it to produce a one-node Composite.
✔ Compile and test

2. Make the builder capable of building children.
✔ Compile and test

3. Make the builder capable of settings attributes and values (if any).
✔ Compile and test

4. Reflect on how simple your builder is for clients to use, and then make it simpler.
✔ Compile and test

5. Refactor your Composite-construction code to use the new builder.
✔ Compile and test

Encapsulate Composite with Builder – Mechanics

Let’s apply this refactoring to the Composite TagNode in the
composite branch of the following repository.

https://github.com/dario-campagna/encapsulate-composite-
with-builder

▪ Example from Refactoring to Patterns
▪ Continuation of “Replace Implicit Tree with Composite”

Encapsulate Composite with Builder – Example

https://github.com/dario-campagna/encapsulate-composite-with-builder
https://github.com/dario-campagna/encapsulate-composite-with-builder

