
Chapter 8

Dynamical Decoupling and Quantum Error Mitigation

The greatest problem in the development of quantum computers are the presence of errors and noises. QEC
works in theory: the threshold theorem guarantees it. However, it requires a number of physical qubits (⇠ 103

to ⇠ 106) that is often beyond what possible with the current technology. In this chapter, we introduce two
possible routes to tackle the problem. These are the Dynamical Decoupling and the Quantum Error Mitigation.

8.1 Dynamical Decoupling

The dynamical decoupling (DD) approach leverage on averaging out the unwanted e↵ects of the surrounding
environment by applying a control on the system.

Two introduce the idea, we focus on the specific model of a qubit coupled to a thermal bath of harmonic
oscillators, with b̂k being the annihilation operator of the k oscillator. The total Hamiltonian reads

Ĥ0 = ĤS + ĤB + ĤSB = 1
2~!0�̂z +

X

k

~!k b̂
†
k b̂k +

X

k

~�̂z(gk b̂
†
k + g⇤k b̂k), (8.1)

where the first and second contributions are the free Hamiltonian of the qubit system and thermal bath re-
spectively, while the last term describes their interaction being weighted by the constants gk. Eventually, one
focuses on the dynamics of the qubit alone. Thus, the state of interest is the reduced density matrix, which is
obtained via

⇢̂S(t) = Tr(B)

h
e�iĤ0t/~⇢̂T(0)eiĤ0t/~

i
, (8.2)

where ⇢̂T(0) is the total state at time t = 0. The latter can be decomposed on the computational basis
{ | 0i, | 1i } as

⇢̂S(t) =
X

i,j=0,1

⇢ij(t) |ii hj| . (8.3)

Now, given the total Hamiltonian Ĥ0, one finds that the populations ⇢ii are conserved. Indeed,
h
�̂z, Ĥ0

i
= 0

and thus the model describes a purely decohering mechanism, where no energy exchange between the system
and the bath is present. Specifically, one can focus on the dynamics of the coherences ⇢01(t) alone, and we do
it in the interaction picture. Thus, we have that the total state is given by

⇢̂(I)

T (t) = ei(ĤS+ĤB)t/~⇢̂T(t)e�i(ĤS+ĤB)t/~, (8.4)

with the e↵ective Hamiltonian reading
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Ĥ (I)

0 (t) = ~�̂z

X

k

⇣
gk b̂

†
ke

i!kt + g⇤k b̂ke
�i!kt

⌘
. (8.5)

Correspondingly, the unitary operator determining the time evolution in the interaction picture from time t0 to
t is

Û (I)(t0, t) = T exp

⇢
� i

~

Z t

t0

ds Ĥ (I)

0 (s)

�
, (8.6)

where T indicates the time-ordering operator. The corresponding Dyson expansion, which is e↵ectively a Taylor
expansion accounting also for the time-ordering, reads

Û (I)(t0, t) = 1̂ � i

~

Z t

t0

dt1 Ĥ
(I)

0 (t1) � 1

~2

Z t

t0

dt2

Z t2

t0

dt1 Ĥ
(I)

0 (t2)Ĥ
(I)

0 (t1) + . . . (8.7)

Let us focus on the second order term, which can be rewritten in term of the integral from t0 to t for both
variables as

Z t

t0

dt2

Z t2

t0

dt1 Ĥ
(I)

0 (t2)Ĥ
(I)

0 (t1) =

Z t

t0

dt2

Z t

t0

dt1 Ĥ
(I)

0 (t2)Ĥ
(I)

0 (t1) �
Z t

t0

dt2

Z t

t2

dt1 Ĥ
(I)

0 (t2)Ĥ
(I)

0 (t1). (8.8)

The last term corresponds to the integral over the area highlighted by the blue lines in Fig. 8.1: for each value
of t2 2 [t0, t], the t1 integral runs from t2 to t. Equivalently, this area can be described by the red lines: for each
value of t1 2 [t0, t], one performs the t2 integral from t0 to t1.
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Fig. 8.1: Representation of di↵erent but equivalent ways of how to perform the integral in Eq. (8.9).

Mathematically, this implies that the following equality holds

Z t

t0

dt2

Z t

t2

dt1 Ĥ
(I)

0 (t2)Ĥ
(I)

0 (t1) =

Z t

t0

dt1

Z t1

t0

dt2 Ĥ
(I)

0 (t2)Ĥ
(I)

0 (t1). (8.9)

Moreover, we can recast the right-hand-side of the latter equation as

Z t

t0

dt1

Z t1

t0

dt2 Ĥ
(I)

0 (t2)Ĥ
(I)

0 (t1) =

Z t

t0

dt1

Z t1

t0

dt2
h
Ĥ (I)

0 (t2), Ĥ
(I)

0 (t1)
i

+

Z t

t0

dt1

Z t1

t0

dt2 Ĥ
(I)

0 (t1)Ĥ
(I)

0 (t2),

=

Z t

t0

dt1

Z t1

t0

dt2
h
Ĥ (I)

0 (t2), Ĥ
(I)

0 (t1)
i

+

Z t

t0

dt2

Z t2

t0

dt1 Ĥ
(I)

0 (t2)Ĥ
(I)

0 (t1),

(8.10)

where we swapped the variables t1 $ t2 in the second term. Namely, such second term is identical to that in
the left-hand-side of Eq. (8.8). Here, the non-equal time Hamiltonians do not commute, but give
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h
Ĥ (I)

0 (t2), Ĥ
(I)

0 (t1)
i

= ~2�̂2
z

X

kk0

⇣
gkg

⇤
k0ei!kt2�i!k0 t1

h
b̂†k, b̂k0

i
+ g⇤kgk0e�i!kt2+i!k0 t1

h
b̂k, b̂

†
k0

i⌘
,

= �2i~2
X

k

|gk|2 sin[!k(t2 � t1)],
(8.11)

which is an imaginary number. Now, by merging the last four equations, we find

Z t

t0

dt2

Z t2

t0

dt1 Ĥ
(I)

0 (t2)Ĥ
(I)

0 (t1) =
1

2

Z t

t0

dt2

Z t

t0

dt1 Ĥ
(I)

0 (t2)Ĥ
(I)

0 (t1) � 1

2

Z t

t0

dt1

Z t1

t0

dt2
h
Ĥ (I)

0 (t2), Ĥ
(I)

0 (t1)
i
,

=
1

2

✓Z t

t0

dt1 Ĥ
(I)

0 (t1)

◆2

+ i~2
Z t

t0

dt1

Z t1

t0

dt2
X

k

|gk|2 sin[!k(t2 � t1)].

(8.12)
This allows to recast the Dyson expansion as

Û (I)(t0, t) = 1̂ � i

~

Z t

t0

dt1 Ĥ
(I)

0 (t1) +
1

2

✓
� i

~

Z t

t0

dt1 Ĥ
(I)

0 (t1)

◆2

� i�(t0, t) + . . . , (8.13)

where

�(t0, t) =
1

2

Z t

t0

dt1

Z t1

t0

dt2
X

k

|gk|2 sin[!k(t2 � t1)]. (8.14)

By summing all the terms, one gets

Û (I)(t0, t) = e�i'(t0,t) exp

⇢
� i

~

Z t

t0

ds Ĥ (I)

0 (s)

�
, (8.15)

where one has an extra global phase, which is however unimportant since

Û (I)(t0, t)⇢̂
h
Û (I)(t0, t)

i†
= exp

⇢
� i

~

Z t

t0

ds Ĥ (I)

0 (s)

�
⇢̂ exp

⇢
i

~

Z t

t0

ds Ĥ (I)

0 (s)

�
, (8.16)

and there is not time-ordering operator.
Specifically, one can perform explicitly the time integral in the exponential of Û (I)(t0, t), which reads

� i

~

Z t

t0

ds Ĥ (I)

0 (s) =
1

2
�̂z

X

k

⇣
b̂†ke

i!kt0⇠k(t � t0) � b̂ke
�i!kt0⇠⇤k(t � t0)

⌘
, (8.17)

where

⇠k(t � t0) =
2gk
!k

(1 � ei!k(t�t0)). (8.18)

Now, the quantity of interest is the coherence, which in the interaction picture is given by

⇢(I)

01(t) = h0|⇢̂(I)

S (t)|1i = h0| Tr(B)


Û (I)(t0, t)⇢̂T(t0)

⇣
Û (I)(t0, t)

⌘†
�

|1i , (8.19)

and it can be computed analytically under the following assumptions:

1) The total initial state is separable, namely

⇢̂T(t0) = ⇢̂S(t0) ⌦ ⇢̂B(t0); (8.20)

2) The initial state of the bath is a thermal state of the form
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⇢̂B(t0) =
Y

k

(1 � e��~!k) exp
⇣
��~!k b̂

†
k b̂k

⌘
, (8.21)

with � = (kBT )�1 being the inverse temperature.

By going back to the Schrödinger picture, Eq. (8.19) reads

⇢01(t) = e�i!0(t�t0)⇢(I)

01(t),

= e�i!0(t�t0) h0| Tr(B)

"
exp

"
1

2
�̂z

X

k

⇣
b̂†ke

i!kt0⇠k(t � t0) � b̂ke
�i!kt0⇠⇤k(t � t0)

⌘#
⇢̂T(t0)

⇥ exp

"
�1

2
�̂z

X

k

⇣
b̂†ke

i!kt0⇠k(t � t0) � b̂ke
�i!kt0⇠⇤k(t � t0)

⌘##
|1i .

(8.22)

By applying with �̂z on the h0| and |1i states, we get

⇢01(t) = e�i!0(t�t0) Tr(B)

"
exp

"
X

k

⇣
ck b̂

†
k � c⇤k b̂k

⌘#
⇢̂B(t0)

#
⇢01(t0), (8.23)

where we exploited the cyclicity of the partial trace with respect to the bath operators, the assumption of
separability of the initial state, the definition of the initial coherence ⇢01(t0) = h0|⇢̂S(t0)|1i, and defined

ck = ck(t0, t) = ei!kt0⇠k(t � t0). (8.24)

In Eq. (8.23), one can recognise the displacement operator. Namely, the latter equation can be recasted as

⇢01(t) = e�i!0(t�t0) Tr(B)

"
Y

k

D̂k(ck)⇢̂B(t0)

#
⇢01(t0), (8.25)

where
D̂(�) = exp(�b̂†k � �⇤b̂) (8.26)

is the displacement operator.

Recall 8.1 (Coherent states)
Given the ground state |0i, one can construct a coherent state via the application of a displacement operator
to |0i. Namely,

D̂(�) |0i = |�i , (8.27)

where � 2 C. The coherent states form an overcomplete basis of the Hilbert space H, for which one has

1̂ =

Z
d2z

⇡
|zi hz| , (8.28)

where d2z = d(<z)d(=z). The combination of two displacement operators is governed by

D̂(↵)D̂(�) = e
1
2 (↵�

⇤��↵⇤)D̂(↵ + �). (8.29)

Finally, one can express the coherent states in terms of the Fock basis { | ni }, where

hn|zi =
znp
n!
e�|z|2/2, (8.30)
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determines the weights between the two basis.

Let us then consider the partial trace over the k-th mode of the displacement operator and the thermal state,
which explicitly reads

Tr(B)

h
D̂k(ck)⇢̂Bk(t0)

i
= (1 � e��~!k) Tr(B)

h
D̂k(ck)e

��~!k b̂
†
k b̂k

i
,

= (1 � e��~!k)

Z
d2z

⇡
hz|e��~!k b̂

†
k b̂kD̂k(ck)|zi ,

(8.31)

where we exploited the coherent basis to compute the partial trace and exploit its cyclicity. By applying the
composition of displacement opertors (namely, Eq. (8.29) merged with Eq. (8.27)), and introducing an identity
in the Fock basis, i.e. 1̂ =

P+1
n=0 |ni hn|, we get

Tr(B)

h
D̂k(ck)⇢̂Bk(t0)

i
= (1 � e��~!k)

Z
d2z

⇡

X

n

hz|ni e��~!kne
1
2 (ckz

⇤�zc⇤k) hn|z + cki ,

= (1 � e��~!k)

Z
d2z

⇡

X

n

e��~!kne
1
2 (ckz

⇤�zc⇤k)
(z⇤)np

n!
e�|z|2/2 (z + ck)np

n!
e�|z+ck|2/2,

(8.32)

where we applied Eq. (8.30). By putting together the exponentials, we obtain

Tr(B)

h
D̂k(ck)⇢̂Bk(t0)

i
= (1 � e��~!k)

Z
d2z

⇡
e�|z|2e�|ck|2/2e�zc⇤kS(z, ck) (8.33)

where

S(z, ck) =
X

n

e��~!kn (z⇤)np
n!

(z + ck)np
n!

,

=
X

n

1

n!

⇥
e��~!k(|z|2 + ckz

⇤)
⇤n

,

= exp
⇥
e��~!k(|z|2 + ckz

⇤)
⇤
.

(8.34)

Thus,

Tr(B)

h
D̂k(ck)⇢̂Bk(t0)

i
= (1 � e��~!k)

Z
d2z

⇡
e�|z|2↵ke�|ck|2/2e�zc⇤k exp[ckz

⇤e��~!k ], (8.35)

where
↵k = 1 � e��~!k , (8.36)

is a positive quantity. Then, the Gaussian integral in Eq. (8.35) can be safely implemented and gives

Tr(B)

h
D̂k(ck)⇢̂Bk(t0)

i
= (1 � e��~!k)

1

↵k
exp


� |ck|2

↵k
e��~!k

�
e�|ck|2/2,

= exp


�|ck|2

✓
1

2
+

e��~!k

(1 � e��~!k)

◆�
,

= exp


� |ck|2

2
coth

✓
�~!k

2

◆�
.

(8.37)

Finally, by merging together the latter equation with Eq. (8.25), we obtain

⇢01(t) = e�i!0(t�t0)e�� (t0,t)⇢01(t0), (8.38)

where we defined



8.1 Dynamical Decoupling 117

� (t0, t) =
X

k

|c2k|
2

coth

✓
�~!k

2

◆
,

=
X

k

|ei!kt0⇠k(t � t0)|2
2

coth

✓
�~!k

2

◆
,

=
X

k

| 2gk!k
(1 � ei!k(t�t0))|2

2
coth

✓
�~!k

2

◆
,

=
X

k

4|gk|2
!2
k

(1 � cos[!k(t � t0)]) coth

✓
�~!k

2

◆

(8.39)

where we simply substituted the definitions of ck and ⇠k(t� t0). Now, by introducing the spectral density I(!)
as

I(!) =
X

k

�(! � !k)|gk|2, (8.40)

which determines the strength of the coupling between the system and each bath’s modes, we can rewrite � (t0, t)
as

� (t0, t) = 4

Z +1

0
d! I(!) coth

✓
�~!
2

◆
(1 � cos[!(t � t0)])

!2
,

= 4

Z +1

0
d! I(!) (2n̄(!, T ) + 1)

(1 � cos[!(t � t0)])

!2
,

(8.41)

where n̄(!, T ) is the mean number of excitations of the mode ! at the temperature T = (kB�)�1. Notably,
� (t0, t) is positive. This can be seen explicitly from the first line of Eq. (8.39). This means, that — as expected
— the interaction with the environment reduces the coherences [cf. Eq. (8.38)].
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