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Triple stranded helicates

- Ni(ll) : octahedral geometry
- one ligand can not wrap around one Ni(ll) cation: trimerization
- other metals: Co(ll), Fe(ll), lanthanides



Double and Triple Helicates:

an example of Self-sorting




Cyclic Helicates
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Topology

In topology, angles, distances or shapes have no meaning
But the object cannot be cut




Molecular graph

Representation of the bonds between atoms with no interest in their chemical nature

(a)
mmmm) planar graph
One possible conformation with no
crossing in 2D representation

Topological chemistry

- If two molecules are different only for their graphs, they are topological isomers

ais an isomer of b and c.
b and ¢ are topological enantiomers.




Knotted and intertwined patterns have fascinated mankind and
artists for centuries, because of the beauty and the symbolism
they convey. Therefore it is not surprising if they can be found
in the cultural production of virtually all civilizations across
time and space.



Molecular graph

mmm)> non-planar graph
No possible conformation with no
crossing in 2D representation

topological chemistry is the chemistry of molecules having a non planar graph ‘
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[n]Catenanes

+4 CN
- [CU{CN)

Sauvage 1983
Williamson ether synthesis
Yield 42%

Wiliamson ether synthesis: R-0OH + X-R* —= R-0O-R'




a) “blue-over-orange” crossing-point
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M=
Copperl) catalyzed azide-alkyne 1,3-cycloaddition (CUAAC): R-Ny + R—=——H —== RN Y
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[2]Rotaxanes
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M=
Copper(l catalyzed azide-akyne 1.3-cycloaddiion (CUAAC) RNy + R—=—H —m= R-N_|
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Synthesis. I recently reported the synthesis of 1, a receptor for
p-benzoquinone.” This synthesis employed the macrocyclization
reaction shown in Scheme 1. In an attempt to improve the yield
of 1, I developed the two-step synthesis shown in Scheme II. This
reaction yielded three major products, fractions A, B, and C (see
Experimental Section). Fraction B was identical with the cyclic
dimer, 1, synthesized via Scheme 1. FAB mass spectra of fractions
A and C showed molecular ions that corresponded to tetrameric
species. Fraction C had a '"H NMR spectrum that was almost
identical with that of 1 in CDCl,/CD;OD. Thus all four com-
ponents of the tetramer were equivalent and had retained their
symmetry. In contrast, fraction A had a very complex 'H NMR

Scheme 11
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Cyclic Dimer 1, Cyclic Tetramer 2, and Catenane 3 (Scheme II). §,
1 g, and 0.4 mL of triethylamine were dissolved in 250 mL of dry di-
chloromethane and transferred to a dropping funnel. Isophthaloyl di-
chloride (0.26 g) was similarly dissolved in 250 mL of dry dichloro-
methane and transferred to an identical dropping funnel. These two
solutions were added dropwise to [ 200 mL of dry dichloromethane over
a period of 4 h with stirring under nitrogen. The reaction mixture was
then stirred for a further 12 h. The precipitate was filtered off and the
solvent evaporated under reduced pressure. The products were chro-
matographed on silica with chloroform—ethanol eluant. Fraction A was
eluted with chloroform. Fraction B was eluted with chloroform—ethanol
(99:1). Fraction C was eluted with chloroform—ethanol (98:2). All three
fractions were recrystallized from chloroform-pentane.

as obtained as a white crystalline solid (400 mg, 34%).

The NMR data are discussed in the main text. m/z 1806 (MH™),
Cug)HusNgOg r@qllires M* = 1808.

Fraction B was obtained as a white powder (600 mg, 51%). Spec-
troscopic data were as for the cyclic dimer 1 from Scheme I.

Fraction C was obtained as a white powder (50 mg, 5%). NMR
(CDCl,/CD,OD) 6 8.41 (4 H,s), 7.98 (8 H, d), 743 (4 H, t), 6.96 (16
H, s), 2.21 (16 H, br), 2.10 (48 H, s), 1.52 (24 H, br). m/z 1806
(MH+); C1mH1uN30; re:quircs M* = 1808.
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Hydrophobic effect

Ma, L0y, PdiAc),

CO, HO




Hydrophobic effect




Anion templating




Halogen bond templating
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Figure 4. a) Electron micrograph of circular DNA revealing a catenane
topology. b,c) Highlighting the two compenent rings of the DNA
catenane as a Hopf link. Modified from Ref. [23] with permission.

Figure & The “chainmail” arrangement of peoteiny found in bactenio-
phage HK97s capsid [colored sectionm heghlghn the indvidual peotein
rogs) a) The repeatiog pattern of interlocking protess which consti.
bute the spherical capad. b) A cross-section of the cagd in which
three protein rings interdock with one another. ¢} Magaified vew of the
position at which peotein rings overdap |crossdnking isopeptide bands
are highlighted). Regeinted from Ref |28] with permission



Molecular Borromean Rings

Kelly S. Chichak,” Stuart ). Cantrill,” Anthony R. Pease,’
Sheng-Hsien Chiu,” Gareth W. V. Cave,? Jerry L. Atwood,?
J. Fraser Stoddart™

28 MAY 2004 VOL 304 SCIENCE www.sciencemag.org




Borromean Ring

Endo-Tridentate Transition Metals

Exo-Bidentate
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Fig. 2. The "H NMR spectra (CD.OD, 298 K] of {A] the exo-bidentate ligand-containing starting
material DAB-H -4TFA (500 HHIE (B) the molecular Borromean rings BR-12TFA (600 MHz)






6 Zn(Il) bound to one bipy and one dimminopyridine (in the solid
state 6th position occupied by triluoroacetate (TFA); S; symmetry
n-n stacking ech bipy between 2 phenols 3.61-3.66 A; 12*
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Figure 23. A guide for demonstrating the synthesis of topologically different molecules from the precursor to the trefoil knot.
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Molecular Knots and Links

Nusrer of Lo Connection shown Fopodogy
mwial cvires s bry ;rroey
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Fig. 3 The linear helicate strategy to interlocked molecules introduced by
Sauvage.®® To date the first three entries of this table have been realised
experimentally using this strategy, generating catenanes,® trefoil knots®® and
doubly-interlocked [2]catenanes (Solomon links)*” using one, two and three metal
centres, respectively. The synthesis of a pentafoil knot or triply-interlocked
[2]catenane (the 'Star of David’ topology) from a linear helicate has thus far
proved unsuccessful *®
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Fig. 8. Synthesis of the first trefoil knot using a two-anchor helical template.
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Fig. 5 The potential of circular metal helicates to form molecular knots and links
by connecting adjacent end-groups. To date only a pentafoil knot has been
prepared through this strategy.”
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ARTICLES

A synthetic molecular pentafoil knot

Jean-Francois Ayme', Jonathon E. Beves', David A. Leigh'*, Roy T. McBurney', Kari Rissanen?
and David Schultz’

NATURE CHEMISTRY | VOL 4 | JANUARY 2012 | www.nature.com/naturechemistry
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The cover image features the
interlaced 'rho’ character from
Matthew 1:18 in the Lindisfarne
Gospels as a backdrop for the

X-ray crystal structure of the most
complex non-DNA molecular knot
synthesized so far. A team led by
David Leigh prepared the 160-atom-
long pentafoil knot in a one-step
reaction from ten organic building
blocks and five iron( 1) cations.
They use a single chloride anion as
a template, which, in the solid-state
structure, is located at the centre of
the pentafoil knot and exhibits ten
CH---Cl- hydrogen bonds.
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Circular Dichroism Spectrum of Enantiopure Circular Helicates formead from
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Figure S8 Circular dichroism spectra of (R)-[3g]CHPF;)e and (5)-[3g]CHPF;)e in MeCN.
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After work up CH=N
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Figure $9 Formation of pentafoil knot [6]"" monitored by 'H NMR (DMSO-d,, 500 MHz), aromatic
region of spectrum shown. Spectra were collected of the crude reaction mixture after t = 0 (bottom), 2h,
10h, 26h and 48h. The top spectra is of the same sample after work-up ('H NMR in CD;CN) with 'H

NMR assignments indicated.
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Nobel Laureate in Chemistry 2016: Jean-Pierre Sauvage, University of Strasbourg, France.
The Nobel Committee for Chemistry. From: The Nobel Lectures 2016, 2016-12-08

https://www.youtube.com/watch?v=voihggHIU 4

http://www.catenane.net/pages/2017 819knot.html
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