Q1. Logic

- (a) Prove, or find a counterexample to, each of the following assertions:
 - (i) If $\alpha \models \gamma$ or $\beta \models \gamma$ (or both) then $(\alpha \land \beta) \models \gamma$
 - (ii) If $(\alpha \land \beta) \models \gamma$ then $\alpha \models \gamma$ or $\beta \models \gamma$ (or both).
 - (iii) If $\alpha \models (\beta \lor \gamma)$ then $\alpha \models \beta$ or $\alpha \models \gamma$ (or both).
- (b) Decide whether each of the following sentences is valid, unsatisfiable, or neither.
 - (i) $Smoke \implies Smoke$
 - (ii) $Smoke \implies Fire$
 - (iii) $(Smoke \implies Fire) \implies (\neg Smoke \implies \neg Fire)$
 - (iv) $Smoke \lor Fire \lor \neg Fire$
 - (v) $((Smoke \land Heat) \implies Fire) \iff ((Smoke \implies Fire) \lor (Heat \implies Fire))$
 - (vi) $(Smoke \implies Fire) \implies ((Smoke \land Heat) \implies Fire)$
 - (vii) $Big \lor Dumb \lor (Big \implies Dumb)$
- (c) Suppose an agent inhabits a world with two states, S and $\neg S$, and can do exactly one of two actions, a and b. Action a does nothing and action b flips from one state to the other. Let S^t be the proposition that the agent is in state S at time t, and let a^t be the proposition that the agent does action a at time t (similarly for b^t).
 - (i) Write a successor-state axiom for S^{t+1} .

2

(ii) Convert the sentence in the previous part into CNF.

Q2. First Order Logic

Consider a vocabulary with the following symbols:

•	Occuption(p, o): Predicate. Person p has occuption o .
•	Customer(p1, p2): Predicate. Person $p1$ is a customer of person $p2$.
•	Boss(p1, p2): Predicate. Person $p1$ is a boss of person $p2$.
•	Doctor, Surgeon, Lawyer, Actor: Constants denoting occupations.
•	Emily, Joe: Constants denoting people.
	hese symbols to write the following assertions in first-order logic: Emily is either a surgeon or a lawyer.
(iv)	Joe is an actor, but he also holds another job.
(v)	All surgeons are doctors.
(vi)	Joe does not have a lawyer (i.e., is not a customer of any lawyer).
(vii)	Emily has a boss who is a lawyer.
(viii)	There exists a lawyer all of whose customers are doctors.
(ix)	Every surgeon has a lawyer.

Q3. [Optional] Local Search

rate is α .

Q3. [Optional] Local Scarci
(a) Hill Climbing
(i) Hill-climbing is complete. True False
(ii) Hill-climbing is optimal. True False
(b) Simulated Annealing
(i) The higher the temperature T is, the more likely the randomly chosen state will be expanded. \Box True \Box False
(ii) In one round of simulated annealing, the temperature is 2 and the current state S has energy 1. It has 3 successors: A with energy 2; B with energy 1; C with energy 1-ln 4. If we assume the temperature does not change, What's the probability that these states will be chosen to expand after S eventually?
(iii) On a undirected graph, If T decreases slowly enough, simulated annealing is guaranteed to converge to the optimal state. True False
(c) Local Beam Search
The following state graph is being explored with 2-beam graph search. A state's score is its accumulated distance to the start state and lower scores are considered better. Which of the following statements are true?
Start C S S S S S S S S S S S S S S S S S S
States A and B will be expanded before C and D.
States A and D will be expanded before B and C.
States B and D will be expanded before A and C.
None of above.
(d) Genetic Algorithm
(i) In genetic algorithm, cross-over combine the genetic information of two parents to generate new offspring. True False
(ii) In genetic algorithm, mutation involves a probability that some arbitrary bits in a genetic sequence will be flipped from its original state.True False
(e) Gradient Descent
(i) Gradient descent is optimal. True False
(ii) For a function $f(x)$ with derivative $f'(x)$, write down the gradient descent update to go from x_t to x_{t+1} . Learning