q/ Programming in Java -
Basics of Swing

S8 Paolo Vercesi

Agenda

7\ \ Hello, World!
The rules of the game

Working with Swing components

The humble dialog

Decoupling the view from the application logic

Hello, World!

~ A7

Graphical user interfaces (GUI) and OOP

Object-oriented programming is very well
suited for GUI programming

GUI components or controls are natural
objects: windows, buttons, labels, text fields,
etc., GUI programming is naturally
asynchronous and event oriented

In a GUI application, the main method is
responsible to initialize and assemble the
GUl and the application logic, and then to
make the GUI visible

GUI libraries for Java

SWing <(e—
« Abstract Widget Toolkit (AWT)

 Partof Java SE
JavaFX

Standard Widget Toolkit (SWT)
All available for Windows, Linux, and MacOS

How to learn Java Swing

Official tutorial https://docs.oracle.com/javase/tutorial/uiswing/index.html
* beaware thatitis based on Java 8
* releasedin 2014
» the APl hasn’t changed in the meanwhile
» good to understand how the components wors
Study the Java documentation
Look at the source code
Attend this introduction to Java Swing
Do a lot of experiments

https://docs.oracle.com/javase/tutorial/uiswing/index.html

Hello, World!

public class HelloWorld {

public static void main(String[] args) {
SwingUtilities.1invokelLater(HelloWorld: :helloWorld);

¥

private static void helloWorld() {
JFrame frame = new JFrame("A message to the World");
frame.setDefaultCloseOperation(WindowConstants.DISPOSE ON CLOSE);

JLabel label = new JLabel("Hello, Wor‘ld!"); & A message to the World
label.setHorizontalAlignment(SwingConstants.CENTER);
frame.getContentPane().add(label, BorderlLayout.CENTER);

JButton closeButton = new JButton("Close"); Hello, World:
closeButton.addActionListener(x -> frame.dispose());
frame.getContentPane().add(closeButton, BorderLayout.SOUTH);

| Close

frame.setSize (400, 200);
frame.setVisible(true);

Analysis of HelloWorld.java 1/5

JFrame frame = new JFrame("A message to the World");
frame.setDefaultCloseOperation(WindowConstants.DISPOSE ON CLOSE);

A JFrame represents a window with all the
decorations: icon, title, and buttons to
minimize, maximize, and close

2P A message to the World — Il >

The behavior of the close button can be
customized, for example to dispose the
JFrame

Hello, World!

Close | By disposing a JFrame, we close the JFrame, if
open, and we release all the resources
associated to this JFrame

Analysis of HelloWorld.java 2/5

JLabel label = new JLabel("Hello, World!");
label.setHorizontalAlignment(SwingConstants.CENTER);
frame.getContentPane().add(label, BorderLayout.CENTER);

Fd A message to the World = A JLabel is a Swing component used to
represents a piece of text with an icon

To make a Swing component visible, we must
Hello, World! add it to a container, if there are no
intermediate containers, we can add it to the
content pane of the JFrame directly

Close A container uses a layout manager to layout
the components it contains. When adding a
The content pane of a JFrame uses the component to a container we can specify a

BoderLayout manager by default constraint

Analysis of HelloWorld.java 3/5

HelloWorld. java

JButton closeButton = new JButton("Close");
closeButton.addActionListener(x -> frame.dispose());
frame.getContentPane().add(closeButton, BorderLayout.SOUTH);

Py A message to the World - O s A JButton is a Swing component able to

respond to user actions. For example, when

the user clicks on the button, it triggers an
action listener
Hello, World!

‘ Close ‘

Analysis of HelloWorld.java 4/5

frame.setSize(400, 200);
frame.setVisible(true);

Py A message to the World - O X A JFrame and its content pane are shown in
the screen when we make the frame visible

Hello, World!

Analysis of HelloWorld.java 5/5

public static void main(String[] args) {
SwingUtilities.invokelLater(HelloWorld: :helloWorld);

¥

Almost all GUI code MUST run on the Event Dispatch Thread by
using either invokelater or invokeAndWait

static void invokeAndWait(Runnable doRun) Causes doRun.run() to be executed
synchronously on the AWT event
dispatching thread.

static void invokeLater(Runnable doRun) Causes doRun.run() to be executed
asynchronously on the AWT event
dispatching thread.

More on this topic in the next section!

https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/javax/swing/SwingUtilities.html#invokeAndWait(java.lang.Runnable)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Runnable.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/javax/swing/SwingUtilities.html#invokeLater(java.lang.Runnable)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Runnable.html

Take aways

 Swing is a library used to develop a graphical user interface (GUI) for Java programs

 Swing is part of the “The Java Platform, Standard Edition (Java SE) APIs”

https://en.wikipedia.org/wiki/Graphical_user_interface

I

Therules of the game

~ A7

Containment hierarchy

To make a component visible, its
containment hierarchy must be
included into a JFrame o another
window object

JPanels are containers to which
usually we add components

Each component can belong to just
one container

Other containers to which we add
components are JToolBar, JMenu,
and JPopupMenu

JFrame
JLabel
JPanel
JLabel JButton
JPanel

JPanel

Swing windows

Title bar

Window buttons Minimize, maximize, Close None
and close

Border Yes Yes No

Modal No Yes No

Independent Yes No No

A GUI application usually visualizes just one JFrame instance
* When aframe is minimized, all the child dialogs and windows are minimized

 When aframe is disposed, all the child dialogs and windows are disposed

Disposing windows

Windows (JFrame, JDialog, and JWindow) must be disposed after usage

public void dispose()

Releases all of the native screen resources used by this Window, its subcomponents,
and all of its owned children. That is, the resources for these Components will be
destroyed, any memory they consume will be returned to the OS, and they will be
marked as undisplayable.

The Window and its subcomponents can be made displayable again by rebuilding
the native resources with a subsequent call to pack or show. The states of the
recreated Window and its subcomponents will be identical to the states of these
objects at the point where the Window was disposed (not accounting for additional
modifications between those actions).

Note: When the last displayable window within the Java virtual machine (VM) is
disposed of, the VM may terminate. See AWT Threading Issues for more
information.

J

https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/java/awt/doc-files/AWTThreadIssues.html#Autoshutdown

Dispose vs hide

DisposedFrame. java

public class DisposedFrame {
ublic static void main(Strin args .)
g (8[1 args) { This program doesn’t

terminate

SwingUtilities.invokelater(DisposedFrame: :disposeFrame);

}

private static void disposeFrame() {
JFrame frame = new JFrame("A frame that will be disposed"”);

frame.setDefaultCloseOperation(JFrame.DISPOSE ON CLOSE);

frame.setSize(400, 200);
frame.setVisible(true); HiddenFrame. java

! public class HiddenFrame {

public static void main(String[] args) {
SwingUtilities.invokelLater(HiddenFrame: :hideFrame);

¥

private static void hideFrame() {
JFrame frame = new JFrame("A frame that will be hidden");

frame.setDefaultCloseOperation(JFrame.HIDE ON CLOSE);
frame.setSize (400, 200);
frame.setVisible(true);

This program terminates

Swing components and AWT

In Java Swing there are other windows classes, such as
Frame, Dialog, and Window. These are part of the old
AW library available since Java 1. Swing was introduced
since Java 2. Graphic classes without the ‘J’ in front are
usually part of AWT and you should not use them.

Some Swing classes, like for example JFrame, JDialog and
JWindow still inherits from Frame, Dialog, and Window.

java.awt.Component

A

java.awt.Container

A

javax.swing.JComponent

All Swing components inherit from JComponent that A
inherit from Container that inherit from Component. The
API of Container and Component is still widely used.
javax.swing.JLabel javax.swing.JButton

Assignment: explore the API of Container, Component and JComponent. v[
of

Inheritance hierarchy

java.awt.Component

A

java.awt.Container

A

javax.swing.JComponent

A

javax.swing.JPanel

javax.swing.JButton

All Swing components, inherits from JComponent that
in turn inherits from Container

So, all Swing components are containers but not all
Swing components are meant to contain other
components. E.g., is not appropriate to add a
component to a JButton

Maybe this is not a very appropriate use of
inheritance, but sometimes software engineers
should accept trade-offs, in this case they traded
code reuse with a “misuse” of inheritance

javax.swing.JLabel

When to use inheritance

Both classes are in the

same logical domain The subclass is a proper

subtype of the superclass
The implementation of the
superclass is necessary or
appropriate for the subclass

The enhancements made by the
subclass are primarily additive

J

https.//www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose

https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose

Digression - AWT inheritance hierarchy

Component
AN
Container
AN
Button Label Checkbox Choice List Panel Window
A\
Frame Dialog

Only the components that are supposed to contain other
components are subclasses of Container

Inheritance vs containment hierarchy

java.awt.Component

A

java.awt.Container

A

javax.swing.JComponent

A

javax.swing.JPanel

javax.swing.JButton

JFrame

JLabel

JButton

JPanel

javax.swing.JLabel

Label and button are child
components of a panel

Don’t get confused!

Exercises

1. Modify the HelloWorld example to use a JDialog and a JWindow instead of a JFrame
1. Explore how window closing works
2. Explore how program termination works

2. Modify the Hello World example to open an “Hello, World!” popup (use both JDialog and
JWindow) when pressing the button
1. Explore how modality of JDialog works
2. Explore window closing and program termination

Almost “NO” fixed layout

A

JLabel

WARNING
Swing is addictive!

\

JPanel

1
width

height

A layout manager has two main responsibilities

The position, size and location, of a component
is decided by the layout manager of its
container

Each component is responsible to indicate its
preferred, minimum and maximum sizes

Each Swing component knows how to calculate
its preferred, minimum and maximum sizes

Each container has its own layout manager

1. layout the child components given their preferences and eventually a set of constraints

2. calculate the container preferred, minimum, and maximum sizes

Since each container has its own layout manager, the process is “recursive”

J

Layout managers

Common (my favorites) layout managers

BorderLayout GridBaglLayout

BorderlLayoutDemo GridBaglLayoutDemo |-_| |E E|
Button 1 (PAGE_START) Buttan 1 Button 2 Button 3

Long-Mamed Button 4
Button 3 (LINE_START) Button 2 (CENTER) 5 (LINE_END)

Long-Named Button 4 (PAGE_END)

&y BorderLayout demo — O X

BorderLayou
BorderLayoutDemo.java

public class BorderLayoutDemo {

public static void main(String[] args) { e Center East
SwingUtilities.invokelLater(BorderLayoutDemo: :run)

¥

private static void run() {
JFrame frame = new JFrame("BorderlLayout demo"); South
frame.setDefaultCloseOperation(WindowConstants. DISPOSE ON_CLOSE);
Container cp = frame.getContentPane();
cp.setlLayout(new BorderLayout());
cp.add(new JButton("North"), BorderLayout.NORTH);
cp.add(new JButton("South"), BorderlLayout.SOUTH);
cp.add(new JButton("East"), BorderlLayout.EAST);
cp.add(new JButton("West"), BorderLayout.WEST);
cp.add(new JButton("Center"), BorderLayout.CENTER);
frame.setSize (500, 400);
frame.setVisible(true);

BorderLayout

North When using the BorderLayout
Page start

* The North and South components have
heights equal to their respective preferred
heights. And they are expanded to take all the

West East available horizontal space.

Line start Center Line end

* The West and East components have widths
equal to their respective preferred widths.
And they are expanded to take all the

South available vertical space.

Page end « The Center component takes all the available

horizontal and vertical space.
The maximum number of components is 5

The position of the component in the layout defines the _—
constraints to which a component is subject q,
of

Familiar enough!

ﬂ AutoSave E Programming in Java - Part 13 - Basics of Swing.pptx = Saved to this PC ~ £ Search (At+Q)

A\ Paolo Vercesi @ o o >

File Home Insert Draw Design Transitions Animations Slide Show Record

KON

O

Review WView Help Simulation

® Record 2
=l b f ‘ e+ o

O
£ C}bc Replace ~
/)

Calibri (Body)

Paste

A EEN\ OO Wi
ED Mew Reuse B I U § a5 AV. OA1lLD u " Arrange Dictate = Designer
- Slide v Slides 5 Section ~ = e - Gen{ = -~ I Select v

Undo Clipboard Slides Paragraph Drawing Editing Woice Designer

Format Background

BorderLayout D)

v Fill
North The North and South components have A
Page start Solid fill

heights equal to their respective Coadicnt il
preferred heights. And the are expanded o

. . Picture or texture fill
to take all the available horizontal space. Pattern fill
West East

Line start LErEr

D Hide background graphics
Line end The West and East components have

widths equal to their respective Gl

preferred widths. And the are expanded

South to take all the available vertical space.
Page end

Transparency |

Working with Swing compone...

My notes go herd

Apply to &l
English (United States) (¢ Accessibility: Investigate

GridBaglLayout demo

GridBagLayoutDemo. java

public class GridBaglLayoutDemo {

public static void main(String[] args) {

SwingUtilities.invokelater(GridBaglLayoutDemo: :run);

¥

private static void run() {
JFrame frame = new JFrame("GridBaglLayout demo");

frame.setDefaultCloseOperation(WindowConstants.DISPOSE ON CLOSE);

Container cp = frame.getContentPane();
setLayout(new GridBaglLayout());

cp.
.add(new
cp.
cp.
cp.
cp.
cp.

cp

cp.

add(new
add(new
add(new
add(new
add(new
add(new

JButton("1"), new GridBagConstraints(0,
JButton("2"), new GridBagConstraints(1,
JButton("3"), new GridBagConstraints(2,
JButton("4"), new GridBagConstraints(3,
JButton("Center"), new GridBagConstraints(o, 1, 4,
JButton("A"), new GridBagConstraints(e, 2, 2, 1, 1.

]

OO0
o

J

9,

J

o

J

1
1
1
1

J

JButton("B"), new GridBagConstraints(2, 2, 2,
frame.setSize (500, 300);
frame.setVisible(true);

J

o

1
1
1,

1,

1, 1.

g¥4 GridBaglayout demo

Center

.1&

CENTER,
CENTER,
CENTER,
CENTER,

CENTER, BOTH, new Insets(10, 10,
CENTER, HORIZONTAL, new Insets(9,
CENTER, HORIZONTAL, new Insets(9,

o o

o

R =
COROO®®
\o

o

o

NONE, new Insets(9,
NONE, new Insets(9,
NONE, new Insets(9,
NONE, new Insets(0,

o

J

J

OO0

9,
9,
9,
9,

J

X, ¥, width, height, weightx, weighty, anchor, fill, insets, padx, pady

&4 GridBaglayout demo

O

>

GridBaglLayout

1

The GridBagLayout creates a “virtual” grid that can be extended

Center

indefinitely.

Each components is subject to many constraints

* X,y position in the grid

* width, height horizontal and vertical span

* weightx, weighty define the weight of the corresponding
columns (rows), Horizontal (vertical) extra space is assigned

T N . based to the column (row) weight. Define also how much

horizontal (vertical) extra space is given to the component
* anchor how to position the component in the cell
 fill how to resize the component in the cell, depending on its
weight
* Insets how much space we should put around the component
* padx, pady internal padding of the component

J

Assignment 1

Define the GridBagConstraints that, when used with a GridBagLayout, produce the same effects of the
five constraints of the BorderLayout, NORTH, WEST, CENTER, EAST, SOUTH.

Assignment 2

Implement a “fixed” layout manager

Gallery of layout managers

https.//docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

BoxLayout

BoxLayoutDemo [= |[B](X]
Button 1

Button 2

Button 3

Long-Mamed Button 4

The BoxLayout class puts components in a single row or column. It respects the components’ requested maximum
sizes and also lets you align components. For further details, see How to Use BoxLayout.

CardLayout

CardLayoutDemo CardLayoutDemo

C-ard with JEButtons Card with JTextField

TextField

Button 1 Button 2 Button 3

The Cardlayout class lets you implement an area that contains different components at different times. A
CardLayout is often controlled by a combo box, with the state of the combo box determining which panel (group of
components) the CardLayout displays. An alternative to using CardLayout is using a tabbed pane, which provides
similar functionality but with a pre-defined GUI. For further details, see How to Use CardLayout.

https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

Swing is not thread-safe

Most Swing object methods are not thread-
safe, invoking them from multiple threads
risks thread interference or memory
consistency errors

Some Swing component methods are labelled
thread-safe in the API specification; these can be
safely invoked from any thread. All other Swing
component methods must be invoked from the
event dispatch thread

https.//docs.oracle.com/en/java/javase/2 1/docs/api/java.desktop/javax/swing/package-summary.htmi

Swing event handling code runs on a special
thread known as the event dispatch thread
(EDT) and most of the code that invokes Swing
methods also runs on this thread

Programs that ignore this rule may seems to
run correctly most of the times but are subject
to unpredictable errors that are difficult to
reproduce

J

https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/javax/swing/package-summary.html

The event queue & event dispatch thread

4)

java.awt.EventQueue The event dispatch thread is a thread used to
process the events enqueued in an event queue

Key pressed
Window closing Swing/AWT has several types of events
Paint * Action Key
Mouse dragged « Component e Window
Paint Container » Focus
Mouse pressed Mouse o Text
Mouse released * Mouse wheel * etc

\ Y,

4 @)

Event
. Pump next event N Run the event
from the queue dispatcher

\java.awt. EventDispatchThread

Using the event dispatch thread

The code that handles Swing events is invoked from
the event dispatch thread

If you need to determine whether your code is running on
the event dispatch thread, invoke
|Javax.swing.SwingUltilities.isEventDispatchThread

Tasks on the event dispatch thread must finish quickly;
if they don't, unhandled events back up and the user
interface becomes unresponsive

Longer tasks should run in background, i.e., without
blocking the GUI by using a SwingWorker

J

https://docs.oracle.com/javase/8/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread--

Take aways

d To make a component visible, its containment hierarchy must be included into a visible JFrame o
another visible window object

J Swing provides three types of windows

 In general, an application has just one JFrame and it can have more instances of JDialog or JWindow

J We should not directly use AWT components, even if we still use AWT classes

J Windows must be properly disposed

1 Most Swing components are subclasses of AWT components

1 Components into a container are laid out by a layout manager

J Swing is not thread safe

1 Swing documentation indicates what methods are thread-safe

. Thread-unsafe methods must be invoked from the event dispatch thread

I

Working with Swing components

~ A7

Interactions with the GUI

Swing components receive mouse and
keyboard events from the window system,
and they translate these events into events
at the component level

In other words, Swing components fire
events in response to user actions

Event processing happens in the event
dispatch thread, as the name suggest

While processing events, it’s always
(thread) safe to invoke Swing methods
from the same thread

From GUI events to component events

Mouse

pressed
event <i§;3 Action
[::$> performed [::§> ActionListener

JButton

Mouse (j:iy event

released
event

Registered listeners receive the
component event. E.g., an
ActionListener registered to the
JButton receives the Action
performed event

Components translate GU| events
into component events. E.g., the
Mouse pressed and Mouse
released events trigger an Action
performed event

GUI events are dispatched to

components. E.g., the Mouse

pressed, and Mouse released

events are dispatched to the
JButton

All these events are dispatched through the event dispatch thread

S

buttons
* push button
* check box
» toggle button
* radio button
choosers
» color chooser
* file chooser
combo box
list
menus
* menu bar

Swing components

* popup menu
e menu
e menu item

* option pane
* panes

* editor pane
* textpane

* panel

* progress bar
* scroll pane
e separator

o slider

spinner
split pane
tabbed pane
table
text components
« textfield
* password field
e textarea
* textpane
tool bar
tool tip
tree

Google “Swing components library”

JOptionPane

JOptionPane can be used to inform the user about something or to ask for some input.
The class has many public constructors and many static methods to show dialogs.

nowMessageDialog()
nowConfirmDialog()
nowInputDialog()

. . | y
nowOptionDialog() Message

nhn N " 0n

@ Hi Paolo!
Parameters

:
» parentComponent * options

* message * jcon
* messagelype * title
o optionType |nitialvalue

JOptionPaneDemo

OptionPaneDemo. java

import static javax.swing.JOptionPane.showConfirmDialog;
import static javax.swing.JOptionPane.showInputDialog;
import static javax.swing.JOptionPane.showMessageDialog;

public class JOptionPaneDemo {

public static void main(String[] args) {
SwingUtilities.invokelLater(JOptionPaneDemo: :demo) ;

¥

private static void demo() {
String name = showInputDialog(null, "What's your name");

int result = showConfirmDialog(null, "Your name is: " + name + "\n Is it right?");
if (result == JOptionPane.OK OPTION) {
showMessageDialog(null, "Hi " + name + "!");
} else {
showMessageDialog(null, "Try again", "Incorrect name", JOptionPane.ERROR MESSAGE);
) -
}

N

SwingDemo

! g_j swing Demo — n W

Laheltext:|HeIIn,‘.“.fnrld! |

f Hello, World!

o i Show background Change background Center |«

Swing demo - Setting up and showing the JFrame

JFrame frame = new JFrame("Swing Demo");
frame.setDefaultCloseOperation(DISPOSE ON CLOSE);
Container cp = frame.getContentPane();
cp.setlLayout(new BorderLayout());

JLabel label = new JLabel("Hello, World!");

label.setOpaque(true);

cp.add(new JScrollPane(label), BorderLayout.CENTER);
cp.add(northPanel, BorderLayout.NORTH);
cp.add(southPanel, BorderlLayout.SOUTH);
frame.setSize (600, 200);

frame.setVisible(true);

The JScrollPane

Hello, World!

& Swing Demo — O x

Label text: Hello, World!

The JScrollPane shows the
component through a viewport

When the viewport is not wide
enough, scrollbars are added to the
view

U Show background Change background Left v/ o

The North panel

JPanel northPanel = new JPanel(new GridBaglLayout());

JLabel textLabel = new JLabel("Label text:");

northPanel.add(textLabel, new GridBagConstraints(e, o, 1, 1, 0.0, 0.0,
GridBagConstraints.WEST, GridBagConstraints.NONE, new Insets(o, 4,0, 0), 9, 0));
JTextField textField = new JTextField(30);

textField.addActionListener(e -> label.setText(textField.getText()));
northPanel.add(textField, new GridBagConstraints(1, o, 1, 1, 1.0, 0.0,

GridBagConstraints.WEST, GridBagConstraints.HORIZONTAL, new Insets(4, 4, 4, 4), 0, 0));

| & Swing Demo — U A

| Hello. World!

J

The South panel 1/2

JPanel southPanel = new JPanel(new FlowlLayout());

JSlider sizeSlider = new JSlider(SwingConstants.HORIZONTAL, 1, 60, label.getFont().getSize());
sizeSlider.addChangelListener(e -> label.setFont(label.getFont().deriveFont((float) sizeSlider.getValue())));
southPanel.add(sizeSlider);

JButton changeColorButton = new JButton("Change background");
JCheckBox showBackground = new JCheckBox("Show background");

showBackground.addActionListener(e -> {
label.setOpaque(showBackground.isSelected());
label.repaint();
changeColorButton.setEnabled(showBackground.isSelected());

});
southPanel.add(showBackground);

changeColorButton.setEnabled(false);
changeColorButton.addActionListener(e -> {
label.setBackground(JColorChooser.showDialog(frame, "Choose background color", label.getBackground()));

1)
southPanel.add(changeColorButton);

Show background Change background enter |«

The South panel 2/2

JComboBox<Integer> alignmentComboBox = new JComboBox<>(
new Integer[]{SwingConstants.LEFT, SwingConstants.CENTER, SwingConstants.RIGHT});

alignmentComboBox.setRenderer(new DefaultListCellRenderer() {

@Override
public Component getlListCellRendererComponent(JList<?> list, Object value, int index, boolean isSelected, boolean cellHasFocus) {

switch ((Integer) value) {

case SwingConstants.LEFT -> value = "Left";
case SwingConstants.CENTER -> value = "Center";
case SwingConstants.RIGHT -> value = "Right";
}
return super.getListCellRendererComponent(list, value, index, isSelected, cellHasFocus);
}

1)
alignmentComboBox.setSelectedItem(label.getHorizontalAlignment());

alignmentComboBox.addActionListener(e -> {
label.setHorizontalAlignment((Integer) alignmentComboBox.getSelectedItem());

});

southPanel.add(alignmentComboBox);

Hello, World!

| [' [v] Show background Change background Center |«

Look-and-feel

Swing allows to change the look-and-feel (L&F) of GUI applications, to
adapt the appearance and the behavior of GUI components

UIManager.setLookAndFeel (UIManager.getSystemLookAndFeelClassName());

or

UIManager.setLookAndFeel (UIManager.getCrossPlatformLookAndFeelClassName());

& Swing Demo — O oy | & Swing Demo — O >

Label text: Label text: Hello, Warld!

Java Is great! Hello, World!

I @ show background Change background Center - | [- Show background Change background Center |«

J

https.//www.oracle.com/java/technologies/a-swing-architecture.html

https://www.oracle.com/java/technologies/a-swing-architecture.html

Take aways

1 Components fire events in response to user actions

1 Swing has a rich and comprehensive set of components

d Swing supports multiple look-and-feels

I

Writing custom Swing components

~ A7

Writing custom Swing components

When writing a custom swing component, you must consider the following responsibilities
* Painting

* Response to GUI events

 Size preferences (preferred/minimum/maximum)

PaintDemo. java

public class PaintDemo extends JComponent {

public PaintDemo() {
t

@Override
protected void paintComponent(Graphics g) {
Graphics2D scratch = (Graphics2D) g.create();
try {
Dimension size = getSize();
scratch.setRenderingHint(RenderingHints.KEY ANTIALIASING, RenderingHints.VALUE ANTIALIAS ON);
scratch.drawLine(@, 0, size.width, size.height);
scratch.drawLine(0, size.height, size.width, 0);
} finally {
scratch.dispose();

}
}

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {

@Override

public void run() {
JFrame frame = new JFrame();
frame.getContentPane().add(new PaintDemo());
frame.setDefaultCloseOperation(WindowConstants.DISPOSE ON CLOSE);
frame.setSize (200, 200);
frame.setVisible(true);

})s

Painting

1. Extend JComponent
2. Override paintComponent()
1. create a new Graphics and remember to dispose it

https.//www.oracle.com/java/technologies/painting.html

https://www.oracle.com/java/technologies/painting.html

Graphics2D

* Control the coordinate system, through affine transformation
* Rendering
* Shapes
o TJext
* Images
* Control rendering attributes
* Paint
 Font
» Stroke
 Composite
* Clip

Repainting

When does paint happen?
* [t happens in the Event Dispatch Thread
* You cannot decide when
* You can inform Swing that a component (or a part of that component) should be
repainted
* public void repaint()
« public void repaint(int x, int y, int width, int height)

Event management

Swing events
 Component events

* Focus events

* Hierarchy events

* [nput method events
 Keyevents

 Mouse events

* Mouse motion events
* Mouse wheel events
 Window events

* ...look at subclasses of AWTEvent

To manage events
* Register listeners
* Orenable event and override processXXXEvent

EventDemo. java

public class EventDemo extends JComponent {
private boolean pressed;

public EventDemo() {
enableEvents(MOUSE_EVENT MASK | MOUSE_MOTION_ EVENT MASK);

}

@Override
protected void processMouseEvent(MouseEvent e) {
switch (e.getID()) {
case MouseEvent.MOUSE PRESSED -> {
pressed = true;
repaint();
}
case MouseEvent.MOUSE RELEASED -> {
pressed = false;
repaint();

}
}
super.processMouseEvent(e);
¥
@Override

protected void paintComponent(Graphics g) {

Graphics2D scratch = (Graphics2D) g.create();

try {
scratch.setPaint(pressed ? Color.YELLOW : Color.BLUE);
scratch.fillRect(9, 9, getWidth(), getHeight());

} finally {
g.dispose();

}

AnimationDemo.java 1/2

public class AnimationDemo extends JComponent {

private Dimension speed;
private Point2D position;
private Timer timer;

public AnimationDemo() {
position = new Point2D.Double(0, 0);
speed = new Dimension(1, 1);
timer = new Timer(50, this::update);

}

public void start() {
timer.start();

}

public void stop() {
timer.stop();

}

@Override
protected void paintComponent(Graphics g) {
Graphics2D scratch = (Graphics2D) g.create();
try {
scratch.fillOval((int) position.getX(), (int) position.getY(), 3, 3);
} finally {

scratch.dispose();

}

AnimationDemo.java 2/2

public class AnimationDemo extends JComponent {

public void update(ActionEvent e) {
position.setlLocation(position.getX() + speed.width, position.getY() + speed.height);
if (position.getX() < 9) {
speed.width = -speed.width;
position.setlLocation(-position.getX(), position.getY());
} else if (position.getX() > getWidth()) {
speed.width = -speed.width;
position.setlLocation(getWidth() - position.getX(), position.getY());
}
if (position.getY() < 9) {
speed.height = -speed.height;
position.setlLocation(position.getX(), -position.getY());
} else if (position.getY() > getHeight()) {
speed.height = -speed.height;
position.setlLocation(position.getX(), getHeight() - position.getY());
}
repaint();

}

public static void main(String[] args) {
SwingUtilities.invokeLater(() -> {
JFrame frame = new JFrame("Animation demo");
AnimationDemo animationDemo = new AnimationDemo();
frame.getContentPane().add(animationDemo);
frame.setDefaultCloseOperation(DO NOTHING ON CLOSE);
frame.addWindowlListener(new WindowAdapter() {
@Override
public void windowClosing(WindowEvent e) {
animationDemo.stop();
frame.dispose();
s
frame.setSize (200, 200);
frame.setVisible(true);

})s

Assignment

Implement an analog and/or a digital clock

\\“‘|XIH',” f r _ El @-‘
~ T2,
Sy z -
—- S = -
P SS
. 74 VI N\
' '\

I

Multithreaded programming

~ A7

Concurrency

“more than one task running simultaneously on a system”

Writing correct programs is hard;
writing correct concurrent programs is harder.

Processes and threads

A process Is an executing program A thread of execution, or simply a thread, is
the smallest unit of execution to which a
scheduler allocates a CPU

A Java process contains several Java threads are scheduled (started, interrupted,
concurrent threads executing in a and resumed) by the scheduler of the underlying
shared memory environment operating system

CPU1 -

CPU2 —

The execution of a thread is assigned to a CPU until the scheduler decides to
interrupt the thread execution to schedule another thread

J

Threads

A thread consists of a stack of In Java, threads are instances of the
calls, a program counter, and an java.lang.Thread class
id

"RMI TCP Accept-0" #24 daemon prio=6 os_prio=0 cpu=0.00ms elapsed=325.06s tid=0x0000021167497000 nid=0x253c runnable
[OX0000004e2e01e000 |
java.lang.Thread.State: RUNNABLE
at java.net.PlainSocketImpl.accept@(java.base@ll.0.15/Native Method)
at java.net.PlainSocketImpl.socketAccept(java.base@l11.0.15/PlainSocketImpl.java:159)
at java.net.AbstractPlainSocketImpl.accept(java.base@l11.0.15/AbstractPlainSocketImpl.java:474)
at java.net.ServerSocket.implAccept(java.base@l1l.0.15/ServerSocket.java:565)
at java.net.ServerSocket.accept(java.base@l1.0.15/ServerSocket.java:533)
at it.esteco.rmi.ssl.Ss1RMIServerSocketFactory$l.accept(SslRMIServerSocketFactory.java:24)
at sun.rmi.transport.tcp.TCPTransport$AcceptLoop.executeAcceptLoop(java.rmi@l11.0.15/TCPTransport.java:394)
at sun.rmi.transport.tcp.TCPTransport$AcceptLoop.run(java.rmi@l1.0.15/TCPTransport.java:366)
at java.lang.Thread.run(java.base@l1.0.15/Thread.java:829)

A thread is executing the code of a single method, namely the current
method for that thread and the program counter contains the address of -

the instruction currently being executed QI
o

Starting a Thread

public static void main(String[] args) throws Exception {
var thread = new Thread(new Runnable() {
@Override
public void run() {
while (true) {
System.out.println("Running");
try {
Thread.sleep(2000);
} catch (Exception ex) {
ex.printStackTrace();

}
¥
}

1)
thread.start();

System.out.println("End of main");

}

End of main
Running
Running
Running

The Java Virtual Machine allows an
application to have multiple threads of
execution running concurrently, regardless
the number of processors

The Thread class is used to create and start
new threads of execution

The Thread class

public class Thread implements Runnable { The Runnable object that a thread runs
can be either the Thread itself or the
public Thread() target thread passed to the constructor

public Thread(Runnable target)

The Thread class implements an empty

public Thread(String name) run() method

public Thread(Runnable target, String name)
The two constructors without the

Runnable target should be used by
} subclasses only

public interface Runnable { To use a thread, you must either pass a

public abstract void run(); override the run() method

Runnable in the constructor or to
Jé’

Thread instance methods

public void start()

@Override
public void run()

public void interrupt()

bublic boolean isInterrupted()

pbublic final boolean isAlive()

public final void setName(String name)

oublic final String getName()

public final void join(final long millis)
oublic final void join(long millis, int nanos) throws InterruptedException

bublic final void join() throws InterruptedException

public final void setDaemon(boolean on)

public final boolean isDaemon()

A thread does not return a value nor throw any exception

public
public
public
public
public
public

static
static
static
static
static

static

Some of Thread static methods

Thread currentThread()

void yield()

void sleep(long millis) throws InterruptedException

void sleep(long millis, int nanos) throws InterruptedException
boolean interrupted()

void dumpStack()

Waiting for a thread to finish

public static void main(String[] args) throws Exception {
var thread = new Thread(new Runnable() {
@Override
public void run() {
for (int 1 = 0; 1 < 5; i++) {
System.out.println("Running");
try {
Thread.sleep(1000);
} catch (Exception ex) {
ex.printStackTrace();

} Start waiting for the thread
} to finish

} Running

1) Running
thread.start(); 2unnin

o " ° ° ° ° n g

System.out.println("Start waiting for the thread to finish"); .
Running

thread.join();

System.out.println("End of main"); Running
} End of main

Issues in concurrent programming

e Critical sections
e Mutual exclusion

Data access

synchronization

e Asynchronous
Process programming

e Wait/notify

synchronization

Evolution of concurrent programming in Java

60
S
S & —
g § Synchronizers
S 2 Executors
= Concurrent collections
Locks
g itomics
3 .
o synchronized
3 wait
= notify
.
o Concurrency
% utilities
—1
Java 5 (2004)
- Threads and
o .
s & monitors
N 9
<
S &
2 g Java (1996)
(Vs

rStream |
ForkJoinPool
ForkJoinTask Parallel
\ | streams
Java 8 (2014)
Fork/Join
Framework
Java 7 (2011) FF'OW \ |
Reactive
streams
Virtual
throads Java 9 (2017)
Java 21 (2023) q(g

Virtual threads

So far, we have used the so-called platform threads

A platform thread is a thin wrapper around an operating system thread
A virtual thread is also an instance of java.lang.Thread

* butitisn't tied to a specific operating system thread

Virtual threads are stopped and resumed by the JVM not by the OS
Virtual threads are not faster than platform threads

So why were they introduced?

High-throughput applications

Consider for example an application/web server

It can concurrently run many database queries and/or many http connections
Each of these queries or connections run on its own thread

And each of these threads might be blocked waiting for the query results or the
connection response

Many operating system threads spend most of their lifetime waiting for some
blocking /O operation

Operating system thread are considered a scarce resource

So, it's a waste of resources to keep them blocked in a waiting state

When a virtual threads is waiting, the associated operating system thread can be
assigned to another virtual thread

Platform vs virtual threads

CPU1

CPU2

Thread1

Thread?2

https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html#GUID-DC4306FC-D6C1-4BCC-
AECE-48C32C1A8DAA

https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html#GUID-DC4306FC-D6C1-4BCC-AECE-48C32C1A8DAA
https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html#GUID-DC4306FC-D6C1-4BCC-AECE-48C32C1A8DAA

Creating virtual threads

java.lang.Thread

public static Thread startVirtualThread(Runnable runnable)
public static Thread.Builder.OfPlatform ofPlatform()
public static Thread.Builder.O0fVirtual ofVirtual()

java.lang.Thread.Builder
public Thread start(Runnable runnable)

public Thread unstarted(Runnable runnable)

Multithreading in Swing

MVC In Swing

~ A7

Observer pattern

Define a one-to-many dependency between objects so that when one object changes state, all its
dependents are notified and updated automatically.

Problem
An object, the observer, wants to know when a state change occurs in another object, the subject.

Example
A home automation control system wants to know when a Television object is turned on, to dim the

lights of the room.

Synchronous solution

public class HomeAutomation { This solution has some problems
private final Light light; The control system is busy by
private final Television television; Cont"nuouslychecki”g the television

public HomeAutomation(Light light, Television television) {
this.light = light;

You can add a delay to save a few
this.television = television; y f

) CPU cycle, but you'll that delay to the
response too
public void run() {
while (true) { The control system is doing just one
if (television.isOn()) { task
light.low();
poelse { You can loop through a list of
light.high(); televisions of appliances to
y J check, but what happens if one
} of them does not return? -

S

Asynchronous solution 1

public class Television {

private HomeAutomation haj;
private boolean on;

public boolean isOn() f{
return on;

¥

public void setHomeAutomation(HomeAutomation ha) {
this.ha = ha;

¥

public void turnOn() {
on = true;
notify();

¥

public void turnOff() {
on = false;
notify();

¥

private void notify() {
ha.update();

¥

public class HomeAutomation {

private final Light light;

this.light = light;
tv.setHomeAutomation(this);

h

public void update() {
if (television.isOn()) {
light.low();
} else {
light.high();
}

public HomeAutomation(Light light, Television tv) {

This solution has one problem

Television and HomeAutomation are
tightly coupled

J

Asynchronous solution 2

public class Television {

private TelevisionObserver observer;
private boolean on;

public boolean isOn() {
return on;

}

public void attach(TelevisionObserver o) {
this.observer = o;

}

public void turnOn() {
on = true;
notify();

}

public void turnOff() {
on = false;
notify();

}

private void notify() {
observer.update();

}

public interface TelevisionObserver {

void update();

public class HomeAutomation implements TelevisionObserver {

private final Light light;

public HomeAutomation(Light light, Television tv) {

this.light = light;
tv.attach(this);
}

@Override
public void update() {
if (television.isOn()) {
light.low();
} else {
light.high();
}

You can register only one observer, and
you cannot detach it

J

public class Television {

Asynchronous solution 3

private List<TelevisionObserver> observers;
private boolean on;

public interface TelevisionObserver {
public boolean isOn() {
return on; void update();

¥ }

public void attach(TelevisionObserver o) {

public class HomeAutomation implements TelevisionObserver {
observers.add(o);

h private final Light light;
public void detach(TelevisionObserver o) { public HomeAutomation(Light light, Television tv) {
observers.remove(o); this.light = light;
h tv.attach(this);
}

public void turnOn() {
on = true;

. @Override
notify();

public void update() {

} if (television.isOn()) {
public void turnOff() { } 111g?t.low();
on = false; © i? ht.high();
notify(); } FEnIS ’
}
¥
private void notify() {)

observers.forkEach(o -> o.update());

¥

Observer pattern class diagram

Subject

observers:List

attach(Observer)
detach(Observer)
notify()

<interface>
Observer

update()

ConcreteObserver

A few variations

public interface TelevisionObserver { When an observer observes more than one subject could be

void update(Television subject); useful to know the source of the notification
}

@verride The update method does not bring any
P e e o)) 1 information about the new status, you have
light.low(); to pull the subject to know it’s state

} else {
light.high();
}
}
@Override !
Jublic void update(boolean on) { In the push model, the changed status is
if (on) { pushed to the observer
light.low();
} else {
light.high();
}
}
@0verride When the subject can notify different state -

public void update(Context context) { . .
changes, you can push more information

] through a Context object

S

Observer pattern in Swing

The observer pattern is ubiquitous in Swing

Observers are called listeners

Status changes are notified as events

Notifications follow the push model and they bring all the relevant information in
an Event object

Observer/listener can attach/register themselves to a variety of event

MVC

/TN

Displays to Acts on
EEEEEREEEE DR
View Controller

/NN

Observes Notifies Update

/S /

Model-View-Controller

MVC - The JButton case

/YN /7T N

Displays to Actson Displays to Actson
B s .t LT s .
O	
View Controller 2	ButtonUI ButtonUI
21	
VAR AR 5	
LI) I	S
Observes Notifies Update =1	Observes Notifies Update =8
a4 ST /) / =	
<	
: Model S : ButtonModel	
: >	:

I

The humble dialog

Decoupling the view from the application logic

)

The test pyramid

Vs
()
U
S
=
Vs
-
O
=
O
Q
&
S
O

Automation of GUI code

N\

. Special frameworks

\

. Complex setup

/

. Slow running

/

How to test GUI code

GUI code is hard to test automatically and hard to develop by using Test Driven Development

One strategy to make a GUI application more testable is to ensure that the GUI code have the
absolute minimum of behavior (code)

For example, through the implementation of the Humble Object pattern
http://xunitpatterns.com/Humble%200bject.html

http://xunitpatterns.com/Humble%20Object.html

Humble Object pattern

This pattern is applied at the boundaries of the system, where things are often difficult to test, in order
to make them more testable. We accomplish the pattern by reducing the logic close to the boundary,
making the code close to the boundary so humble that it doesn’t need to be tested. The extracted logic

is moved into another class, decoupled from the boundary which makes it testable.

- Robert C. Martin

The Humble Object pattern in GUI programming

1. Passive View (variation of the MVC pattern) https://stefanoborini.com/book-
modelviewcontroller/02-mvc-variations/02-variations-on-the-view/02-passive-view.html

2. Humble dialog pattern https.//martinfowler.com/articles/humble-
dialog-box.html

https://stefanoborini.com/book-modelviewcontroller/02-mvc-variations/02-variations-on-the-view/02-passive-view.html
https://stefanoborini.com/book-modelviewcontroller/02-mvc-variations/02-variations-on-the-view/02-passive-view.html
https://martinfowler.com/articles/humble-dialog-box.html
https://martinfowler.com/articles/humble-dialog-box.html

Model View Controller vs Passive View

Displays to Acts on
Displays to Acts on ——— —< - - 7L —————— |
— o o mm mml e o o - o — |
| \: | : |
| _ , View |
! View Controller 2 I !
| _g | | / \ > I
! / \ \ S | | Forwards Updates Q |
I LI) | | events view status >
| Observes Notifies Update 2 L |
| Q | \ % |
/ / > ! : 3
| <! : Logic x|
l e} l
| Model § : ! :
I : | Model ,
|
L e e e e e e e e e e e e e e e — -] , I

The Humble Dialog

1. Create a class for the smart object, and an interface class for the view. Pass the view to the smart
object

2. Develop commands against the smart object, test first. Write your tests against a mock view.

3. Create your dialog class and implement the view interface on it. Gestures on the dialog should
delegate to commands on the smart object. Calls from the smart object to the dialog should resolve
to simple setter methods.

When you follow these steps, you end up with tested code and a great interface for driving acceptance
tests programmatically.

- Michael Feathers, The Humble Dialog Box

S

Humble Dialog example

HelloWorld. java

public class HelloWorld {

public static void main(String[] args) {

&y A message to the World —] >

Hello, World!

SwingUtilities.invokelLater(HelloWorld::helloWorld);

Close |

¥

private static void helloWorld() {
JFrame frame = new JFrame("A message to the World");
frame.setDefaultCloseOperation(WindowConstants.DISPOSE ON CLOSE);

JLabel label = new JLabel("Hello, World!");
label.setHorizontalAlignment(SwingConstants.CENTER);
frame.getContentPane().add(label, BorderLayout.CENTER);

JButton closeButton = new JButton("Close");
closeButton.addActionListener(x -> frame.dispose());
frame.getContentPane().add(closeButton, BorderLayout.SOUTH);

frame.setSize (400, 200);
frame.setVisible(true);

What is the logic in this class?
What shall we test?

We want to test that when we
click on the Close button the
window is disposed

J

In practice

. > <interface>
—HeIIoWorIdLoglc HelloWorldView

h
Smart / start() zl:SV;’(())

object onCloseClicked() A
1 |
SwingView MockView
For testing

only

HelloWorld Logic & View

public class HelloWorldLogic { public interface HelloWorldView {

private final HelloWorldView view; void close();

public HelloWorldLogic(HelloWorldView view) { .
this.view = view; void show();

} }

public void start() {
view.show();

¥

public void onCloseClick() {
view.close();

¥

public static void main(String[] args) {
SwingHelloWorld view = new SwingHelloWorld();
HelloWorldLogic logic = new HelloWorldLogic(view);
view.installlLogic(logic);
logic.start();

SwingHelloWorld. java

public class SwingHelloWorld implements HelloWorldView { S‘ A 'ing

private JFrame frame;

private HelloWorldLogic logic; implementatiOrl

public void installlLogic(HelloWorldLogic logic) {
this.logic = logic;

¥

private void buildAndShow() {
frame = new JFrame("A message to the World");
frame.setDefaultCloseOperation(WindowConstants.DISPOSE ON CLOSE);
JLabel label = new JLabel("Hello, World!");
label.setHorizontalAlignment(SwingConstants.CENTER);
frame.getContentPane().add(label, BorderLayout.CENTER);
JButton closeButton = new JButton("Close");
closeButton.addActionlListener(x -> logic.onCloseClicked());
frame.getContentPane().add(closeButton, BorderLayout.SOUTH);
frame.setSize (400, 200);
frame.setVisible(true);

¥

@Override
public void show() {
SwingUtilities.invokelLater(this: :buildAndShow);

¥

@Override
public void closeWindow() {
SwingUtilities.invokelLater(frame::dispose);

¥

aest “Trivial” unit testing of

void logicShowsTheView() { o
HelloWorldViewSpy view = new HelloWorldViewSpy(); HEllOWOr‘ld LOglc
new HelloWorldLogic(view).start();
assertTrue(view.shown);

}

@Test

void logicClosesTheView() {
HelloWorldViewSpy view = new HelloWorldViewSpy();
new HelloWorldLogic(view).onCloseClicked();
assertTrue(view.closed);

}

private static class HelloWorldViewSpy implements HelloWorldView {

private boolean shown;
private boolean closed;

@Override
public void closeWindow() f{
closed = true;

¥

@Override
public void show() {
shown = true;

¥

Assignment 3

class Calculator {
Define a calculator class that
1. receives “events” froma final Display display;
calculator keyboard
2. sends the output to a Display Calculator(Display display) {
okﬂect } this.display = display;
class Display { void plusPressed() {
void display(String text) {
System.out.println(text); }
}
} void zeroPressed() {
}
}

Create a class for the smart object and an interface for the view

class Calculator { interface Display {
private final Display display; void show();
Calculator(Display display) { void display(String text);
this.display = display; }
}
}
Calculator > <interface>
Display
: show()
Calculator(Display) display(String)
§ A

SwingDisplay DisplaySpy

o st Sample unit testing of

DisplaySpy display = new DisplaySpy();

Calculator calculator = new Calculator(display); C a 1 c u 1 at o r‘

calculator.start();

assertTrue(display.shown);
assertEquals("0", display.displayed);
}

@Test

void division() {
DisplaySpy display = new DisplaySpy();
Calculator calculator = new Calculator(display);
calculator.start();
calculator.twoPressed();
calculator.dividePressed();
calculator.threePressed();
calculator.equalPressed();

assertEquals("0.6666666666666666", display.displayed);
}

static class DisplaySpy implements Display {

String displayed;
boolean shown;

@Override
public void show() {
shown = true;

}

@Override

public void display(String text) {
displayed = text;

}

Practical tips

The view interface should contain only methods to set the state of the view

Swing components implement the MVC pattern on their own and they update their state by their
own, we don't need to test those implementation of MVC

Try to avoid state duplication between the Swing components and the logic (not always easy)

References

Stefano Borini, Understanding Model-View-Controller
https.//stefanoborini.com/book-modelviewcontroller/

Michael Feathers, The Humble Dialog Box
https://martinfowler.com/articles/images/humble-dialog-box/TheHumbleDialogBox.pdf

https://stefanoborini.com/book-modelviewcontroller/
https://martinfowler.com/articles/images/humble-dialog-box/TheHumbleDialogBox.pdf

Take aways

J GUI applications are usually hard-to-test and they require special tools and setup

J We should move as much logic as possible out of the hard-to-test element into other more test-
friendly parts of the code base, by applying the Humble Object pattern

d In GUI applications the Humble Object pattern takes the form of the Humble Dialog that
implements the Passive View, a Model-View-Controller architectural pattern in which the View is
completely passive and does not update its state from the Model

q@l Thank you!

esteco.com fHEYHEinBoRv

https://www.facebook.com/ESTECO-166776810033909/
https://twitter.com/esteco_mF
https://it.linkedin.com/company/esteco-s-p-a
https://www.youtube.com/user/estecosrlsoftware/featured
https://vimeo.com/channels/1050665
https://www.esteco.com/corporate/esteco-copyright-policy

	Introduction
	Slide 1: Programming in Java – Basics of Swing
	Slide 2

	Hello, World!
	Slide 3
	Slide 5
	Slide 6
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

	The rules of the game
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

	Working with Swing components
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

	Writing custom Swing components
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

	Multithreaded programming
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

	MVC in Swing
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94

	The humble dialog
	Slide 95
	Slide 96
	Slide 97
	Slide 99
	Slide 100
	Slide 102
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116

	Thank you
	Slide 117: Thank you!

