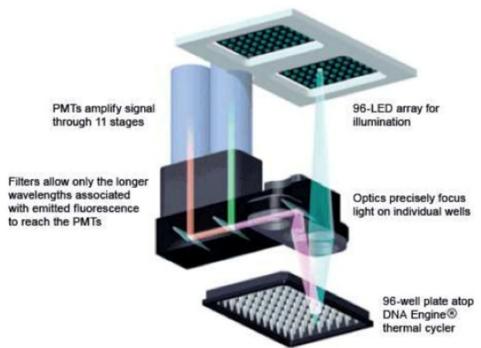
Esercitazione 8: ANALISI DATI


- **1. Real-Time PCR Chemistry**
- 2. Amplification plot, melting curve
- 3. Basics on controls biological and technical replicates
- 4. Analysis of qPCR data generated in the laboratory course

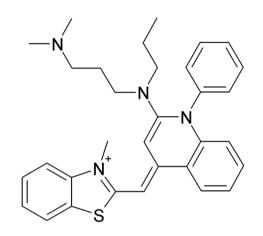
Esercitazione 8: ANALISI DATI

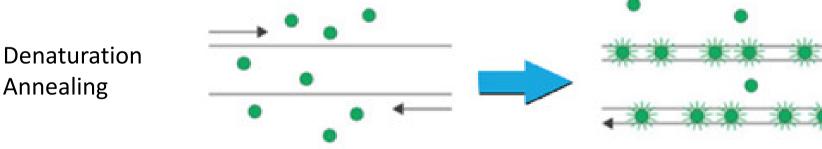
- **1. Real-Time PCR Chemistry**
- 2. Amplification plot, melting curve
- 3. Basics on controls, biological and technical replicates
- 4. Analysis of qPCR data generated in the laboratory course

Real time PCR and Data analysis

...follow the accumulation of PCR products during increasing cycle numbers in "real-time" using a detection system (gel electrophoresis non necessary)

Real-Time PCR Chemistry


SYBR[®] Green I dye



Binds double stranded DNA

1. SYBR® Green I Dye Assay Chemistry

Classic PCR setup with addition of SYBR Green: SYBR Green is a green fluorescent cyanine dye that has high affinity for double-stranded DNA. The mode of binding is believed to be a combination of DNA intercalation and external binding. When bound, SYBR absorbs at a wavelength around 497 nm and emits fluorescence around 520 nm.

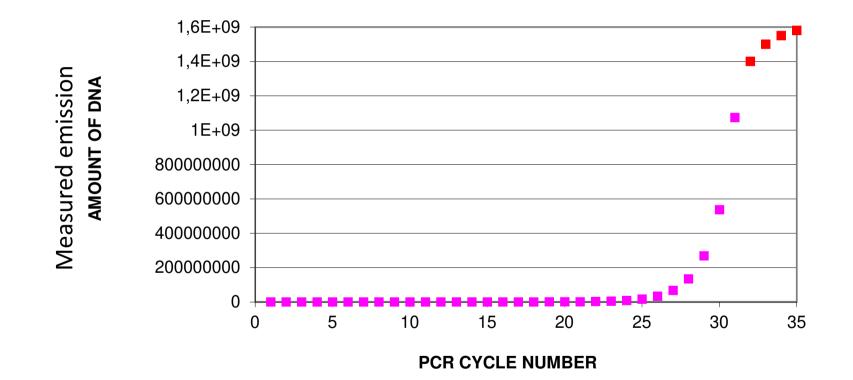


DNA synthesis Detection of emission of fluorescence

1. Dye in solution emits low fluorescence 2. Emission of the fluorescence by binding

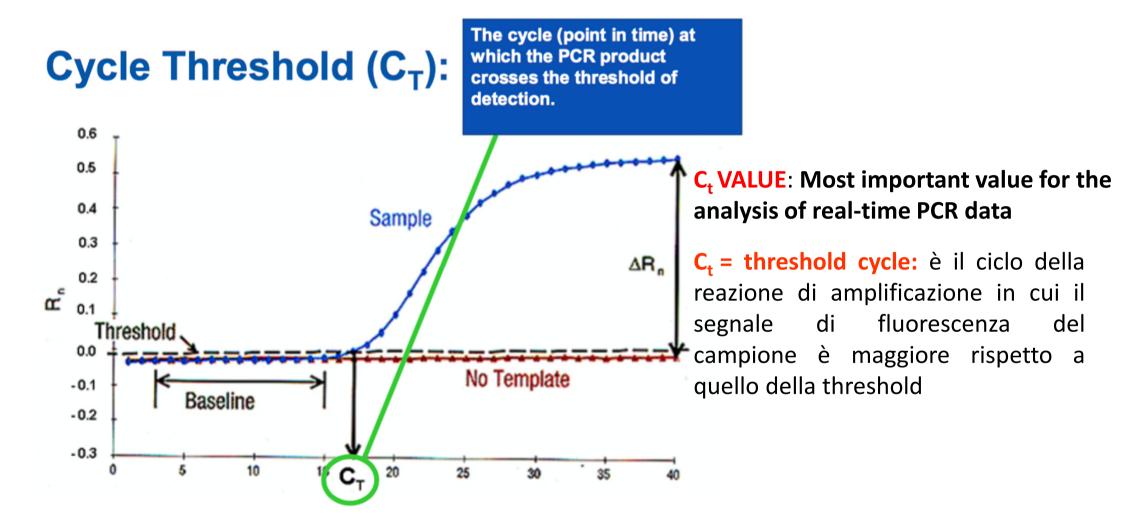
Fluorescence emmission is increasing with increasing of PCR cycles

Basics of real-time PCR measurements

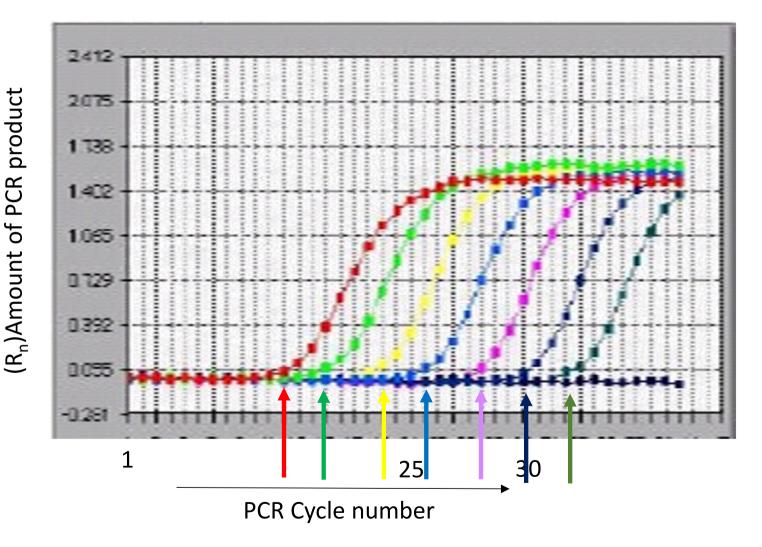


Esercitazione 8: ANALISI DATI

- **1. Real-Time PCR Chemistry**
- 2. Amplification plot, melting curve
- 3. Basics on controls biological and technical replicates
- 4. Analysis of qPCR generated in the laboratory course


Basics of real-time PCR measurements

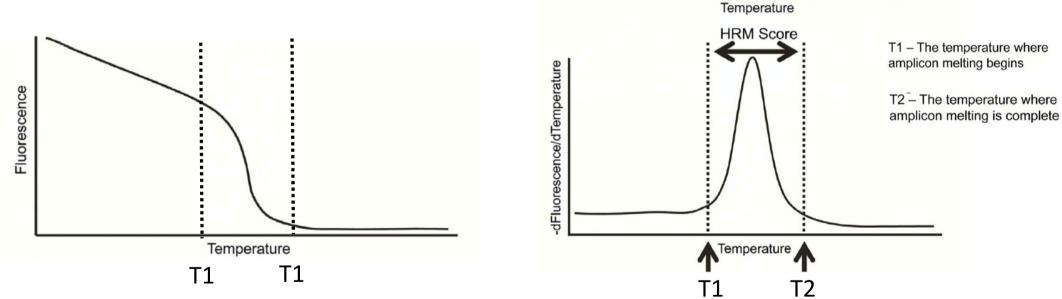
AMPLIFICATION BLOT


Quantitative information

Terminology of amplification blots

Basics of real-time PCR measurements – Amplification blot

Follow PCR product amplification in real-time (RT-PCR)


Many samples are analyzed at same time (typically in 96 well format)

Follow the amplification of PCR amplicons in "REAL-TIME" in all biological samples analyzed = REAL TIME PCR

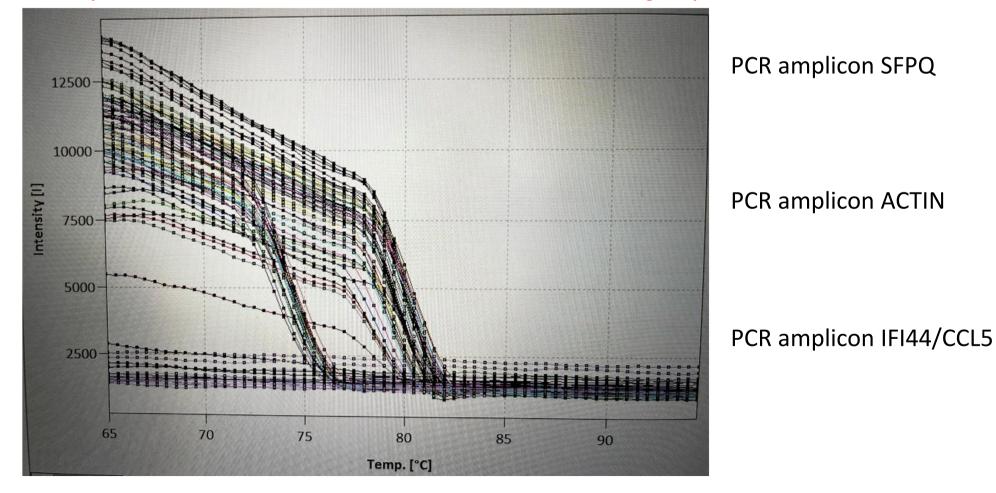
Basics of real-time PCR measurements – Melting curve

METLTING CURVE ANALYSIS (HRM = high resolution melting score)

The temperature-dependent dissociation between two DNA-strands can be measured using a DNA-intercalating fluorophore such as SYBR green, or fluorophore-labelled DNA probes. In the case of SYBR green (emmitting fluorescense 1000-fold more intensely while intercalated in the minor groove of two strands of DNA), the dissociation of the DNA during heating is measurable **by the large reduction in fluorescence that results.**

The temperature at which 50% of DNA is denatured is known as the melting temperature.

Generation of melting curves, melting peaks, and HRM scores. Melting curves (top panel) are generated by graphing Fluorescence against Temperature. Fluorescence declines as the DNA melts. DNA melting is visualized through the use of a saturating duplex-dependent DNA intercalating dye. As the DNA melts, the dye is released; unbound dye does not fluoresce. Melting peaks (bottom panel) are generated by taking the negative derivative of Fluorescence with respect to Temperature and graphing these values against Temperature (2 dF/dT vs T).

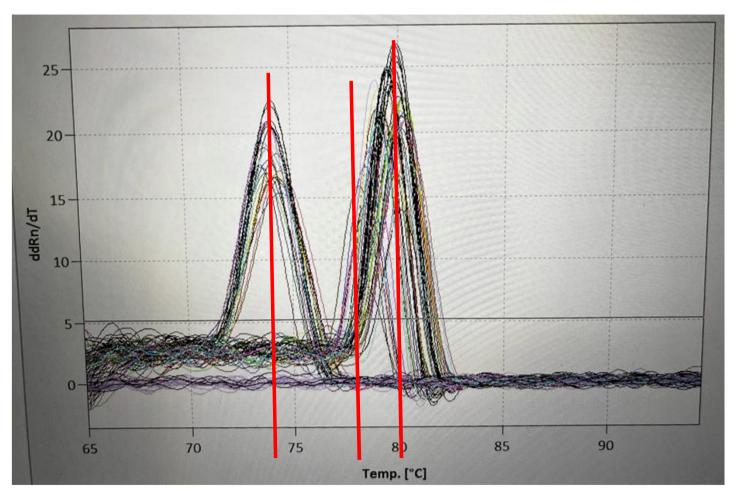

Melting curve is determined after the last cycle of PCR:

- → PCR machine heats up PCR products from 0°C to 100°C
- → Dissociation of SYBR from dsDNA filaments is measured
- → IF PCR HAS AMPLIFIED SPECIFICALLY A SPECIFIC REGION → ALL DNA MOLECULES WILL MELT AT A SPECIFIC TEMPERATURE → melting temperature is determined by DNA sequence!!!
- ightarrow IF YOU RUN PCR PRODUCT ON AGAROSE GEL, ONLY ONE BAND WILL BE VISIBLE

Basics of real-time PCR measurements – Melting curve

METLTING CURVE ANALYSIS (HRM = high resolution melting score)

The temperature-dependent dissociation between two DNA-strands can be measured using a DNA-intercalating fluorophore such as SYBR green, or fluorophore-labelled DNA probes. In the case of SYBR green (emmitting fluorescense 1000-fold more intensely while intercalated in the minor groove of two strands of DNA), the dissociation of the DNA during heating is measurable **by the large reduction in fluorescence that results.**



The temperature at which 50% of DNA is denatured is known as the melting temperature.

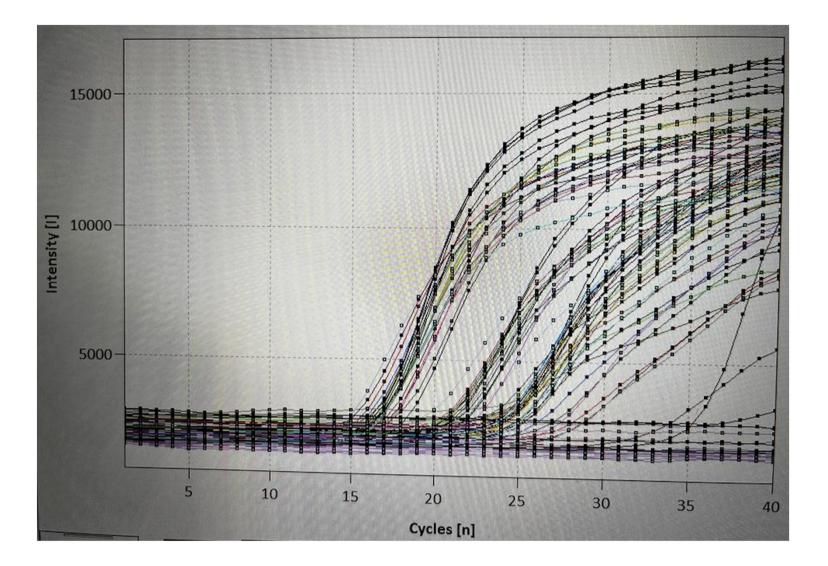
Basics of real-time PCR measurements – Melting curve

METLTING CURVE ANALYSIS (HRM = high resolution melting score)

The temperature-dependent dissociation between two DNA-strands can be measured using a DNA-intercalating fluorophore such as SYBR green, or fluorophore-labelled DNA probes. In the case of SYBR green (emmitting fluorescense 1000-fold more intensely while intercalated in the minor groove of two strands of DNA), the dissociation of the DNA during heating is measurable **by the large reduction in fluorescence that results.**

The temperature at which 50% of DNA is denatured is known as the melting temperature.

T_m: PCR amplicon XXX: 74°C

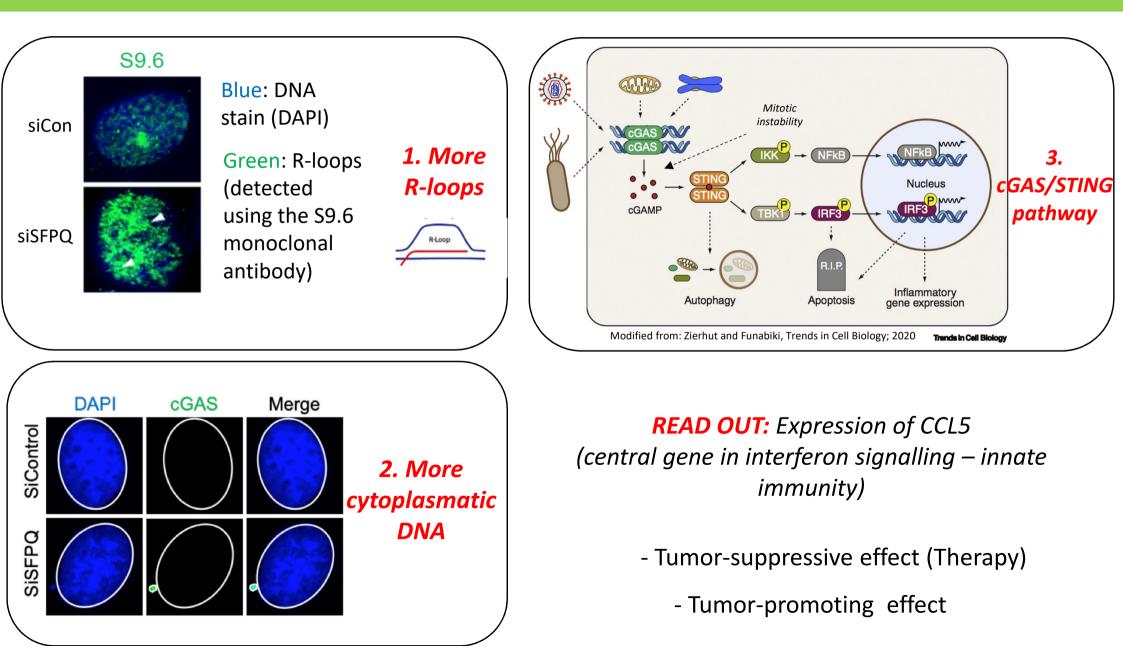

T_m: PCR amplicon XXX: 76°C

T_m: PCR amplicon XXX: 80°C

Tm: depends on length of PCR aplicon and seuquence context (proportion A-T and G-C); Specific for each PCR amplification product

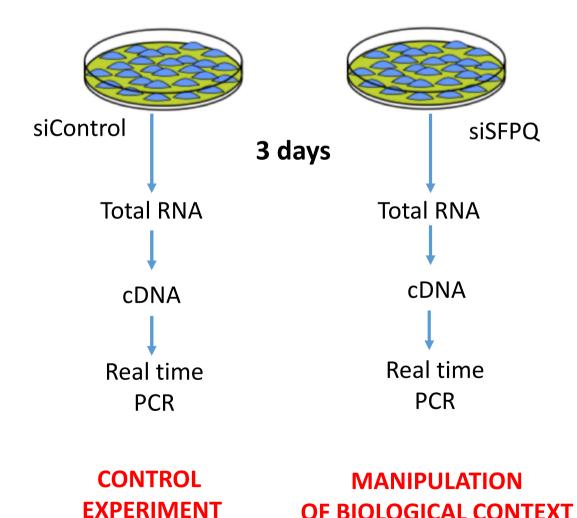
Generated by taking the negative derivative of Fluorescence with respect to Temperature and graphing these values against Temperature (2 dF/dT vs T).

Basics of real-time PCR measurements – Amplification blot



Follow the amplification of PCR amplicons in "REAL-TIME" in all biological samples analyzed = REAL TIME PCR

Esercitazione 8: ANALISI DATI


- **1. Real-Time PCR Chemistry**
- 2. Amplification plot, melting curve
- 3. Basics on controls, biological and technical replicates
- 4. Analysis of qPCR data generated in the laboratory course

BIOLOGICAL BACKGROUND: LOSS OF SFPQ FUNCTION

1. All relevant biological samples are proessed at same time with same procedures

U2-OS cells transfected with siRNA (siControl, siSFPQ)

!!!! Control experiments are essential!!!!

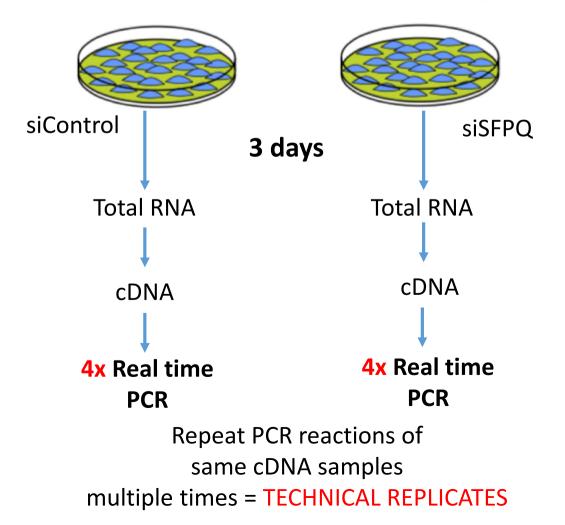
IIII All relevant experimental samples have been processed (RNA prep; cDNA sysnthesis, qPCR) in parallel, at the same time by sme operator IIII

!!! Only in this case experimental data
can be compared with each other
 (Control and siSFPQ)!!!

!!!Experiments are repeated to evidence
 eventual biological or technical
 variations !!!

2. Replicates are necessary to produce relevant scientific data

BIOLOGICAL REPLICATES:


Le repliche biologiche sono misurazioni parallele di campioni biologicamente distinti che catturano variazioni biologiche casuali, che possono essere esse stesse oggetto di studio o fonte di rumore.

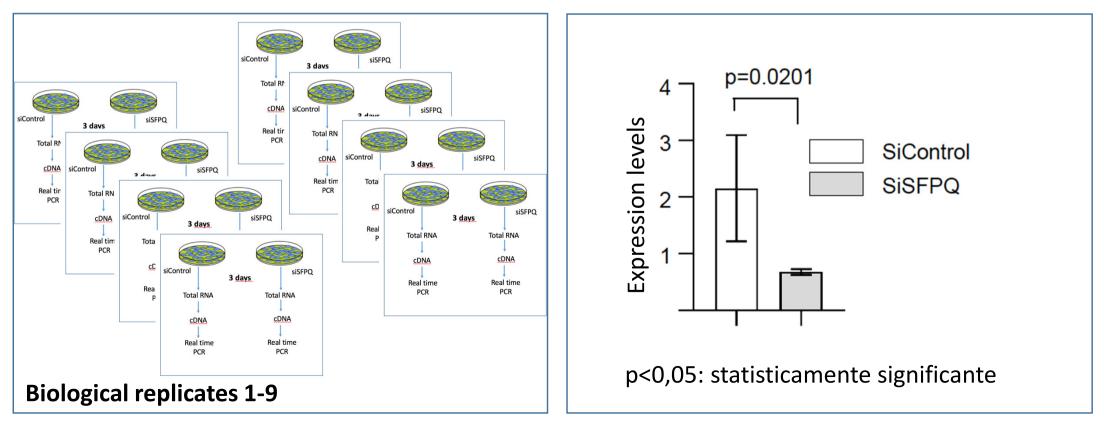
2. Replicates are necessary to produce relevant scientific data

TECHNICAL REPLICATES:

Le repliche tecniche sono misurazioni ripetute dello stesso campione che rappresentano misure indipendenti del rumore casuale associato a protocolli o apparecchiature.

I campioni sono ottenuti da un singolo esperimento. Il metodo specifico viene applicato più volte sullo stesso campione

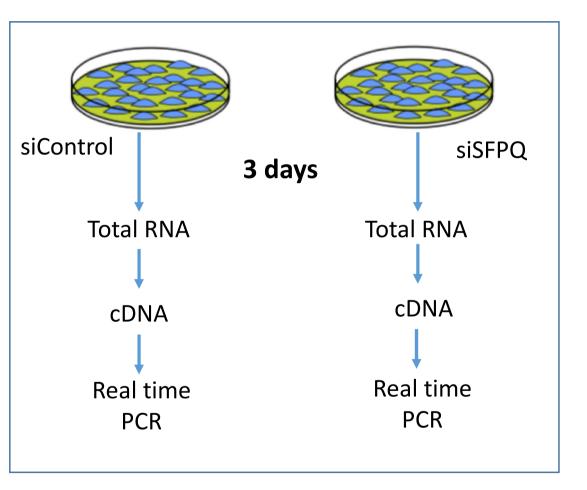
Note: we did not do technical replicates in the laboratory course (in normally at least 2 technological replicates need to be performed)


2. Tests to evaluate the robustness and significance of biological data

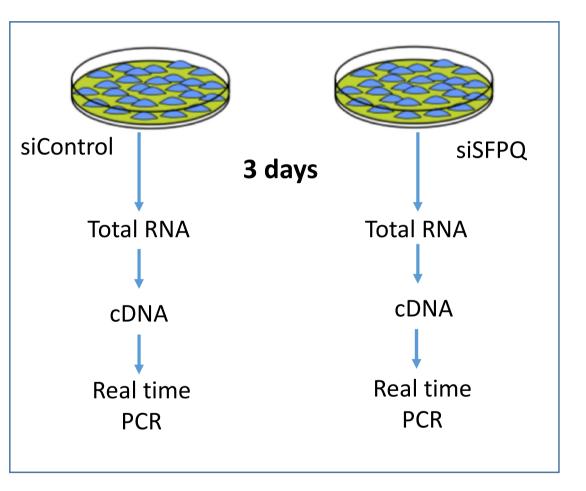
Step 1: Deviazione standard:

Una deviazione standard è una misura di quanto sono dispersi i dati rispetto alla media. Una deviazione standard bassa o piccola indica che i dati sono raggruppati strettamente attorno alla media mentre una deviazione standard alta o grande indica che i dati sono più sparsi.

Step 2: Student's t-test:

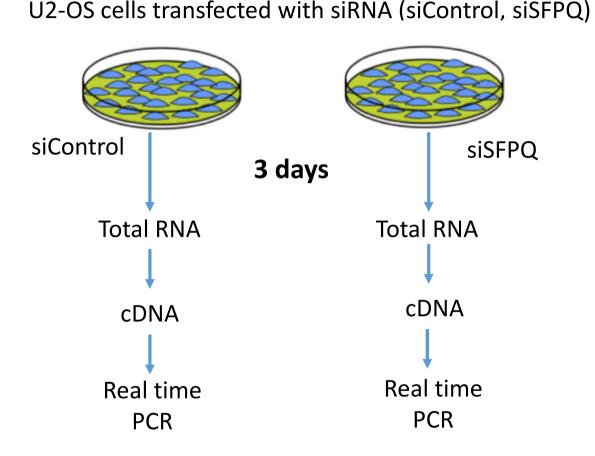

Un t-test è un tipo di analisi statistica utilizzata per confrontare le medie di due gruppi e determinare se le differenze tra loro hanno maggiori probabilità di derivare da un caso casuale.

Esercitazione 8: ANALISI DATI


- **1. Real-Time PCR Chemistry**
- 2. Amplification plot, melting curve
- 3. Basics on controls biological and technical replicates
- 4. Analysis of qPCR data generated in the laboratory course

Analysis of qPCR data generated in the laboratory course

- A. Obtaining Ct values for siCon; siSFPQ
- B. Calculation of Δ Ct value
- C. Calculation of $\Delta\Delta$ Ct values
- D. Calculation of fold changes
- E. Calculation of StdDev; p-value
- F. Generation of Barblot diagram with StdDev, p-values, labelling of axes

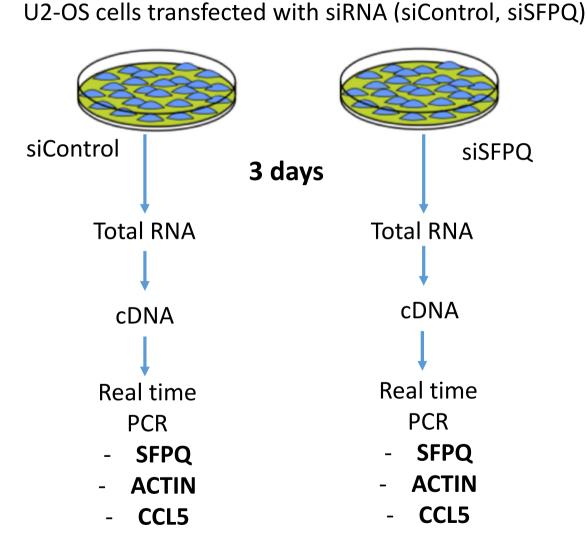

Analysis of qPCR data generated in the laboratory course

A. Obtaining Ct values for siCon; siSFPQ

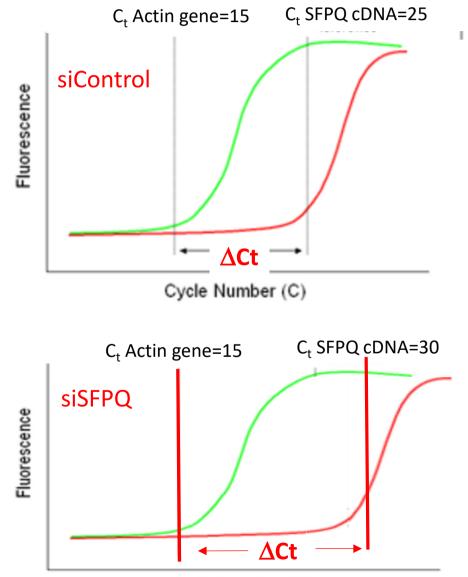
- B. Calculation of Δ Ct value
- C. Calculation of $\Delta\Delta$ Ct values
- D. Calculation of fold changes
- E. Calculation of StdDev; p-value
- F. Generation of Barblot diagram with StdDev, p-values, labelling of axes

Basics for the analysis of real-time PCR data: relative quantitation Obtaining Ct values for siCon; siSFPQ

All relevant experimental samples have been processed (RNA prep; cDNA sysnthesis, qPCR) in parallel, at the same time A. Obtaining Ct values for siCon; siSFPQ


GENES OF INTEREST (SFPQ, CCL5):

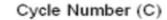
- altered expression in relevant biological context expected (siControl, siSFPQ)
- Biological interest is focussed on these genes


REFERENCE GENE (ACTIN):

- no altered expression in relevant biological context (siControl, siSFPQ)
- preferentially expressed at high levels
- Serves to control of sample quantity
- Serves to control for pipetting errors
- Other examples:18S rRNA, GAPDH, βactin, tubilin, RNA polymerase II, histone H3

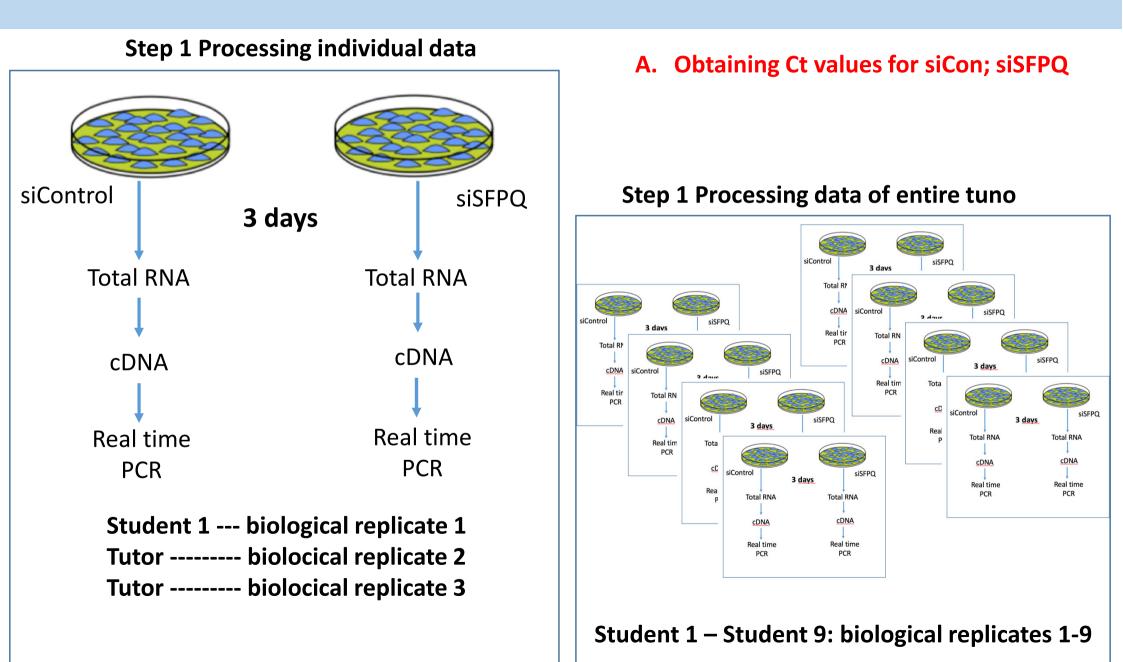
Basics for the analysis of real-time PCR data: relative quantitation Obtaining Ct values for siCon; siSFPQ

All relevant experimental samples have been processed (RNA prep; cDNA sysnthesis, qPCR) in parallel, at the same time

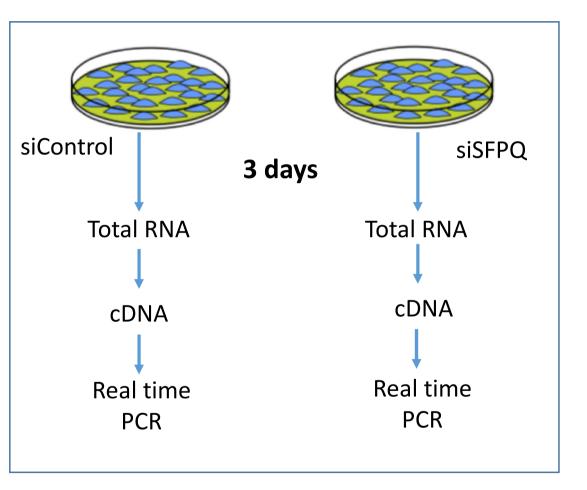

A. Obtaining Ct values for siCon; siSFPQ

Cycle Number (C)

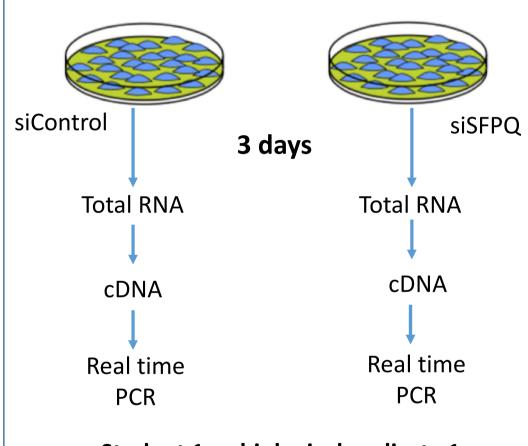
Basics for the analysis of real-time PCR data: relative quantitation Reference gene compensates for evential errors by operator



All relevant experimental samples have been processed (RNA prep; cDNA sysnthesis, qPCR) in parallel, at the same time


∆Ct

Basics for the analysis of real-time PCR data: relative quantitation Obtaining Ct values for siCon; siSFPQ

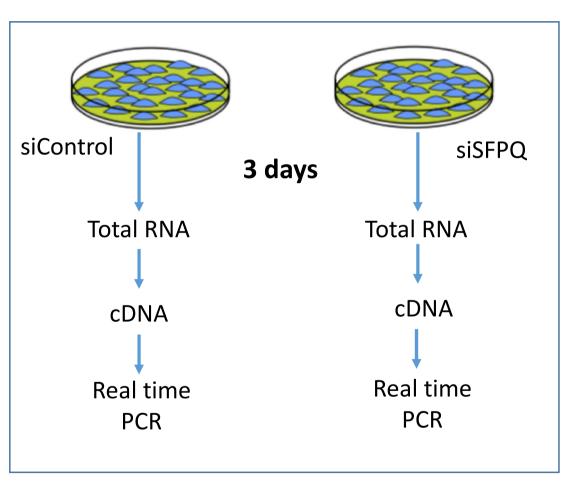

Obtaining Ct values for siCon; siSFPQ

A	В	С	D	E	F	G	Н	1	J	К	L	м	N	0	Р	
	ACTIN						SFPQ						CCL5			
Replica	te	siControl	siSFPQ			Replicate		siControl	siSFPQ			Replicate		siControl	siSFPQ	
	1 CT	12,43	13,15			1	СТ	17,33	21,32			1	СТ	20,51	19,96	
	2 CT	12,13	13,28			2	СТ	17,34	21,64			2	СТ	23,8	29,85	
	3 CT	13,29	12,79			3	СТ	17,99	21,17			3	СТ	21,82	20,02	
	4 CT	12,68	12,37			4	СТ	16,82	20,54			4	СТ	23,13	21,7	
	5 CT	11,15	13,59			5	СТ	15,91	21,57			5	СТ	18,17	24,58	
	6 CT	11,94	14,61			6	СТ	16,79	22,22			6	СТ	19,6	21,08	
	7 CT	12,88	14,5			7	СТ	17,31	21,87			7	СТ	21,03	21,17	
	8 CT	13,01	13,53			8	СТ	17,53	20,82			8	СТ	20,76	20	
2	9 CT	13,69	13,12			9	СТ	18,49	20,4			9	СТ	23,43	20,26	
3																
1																

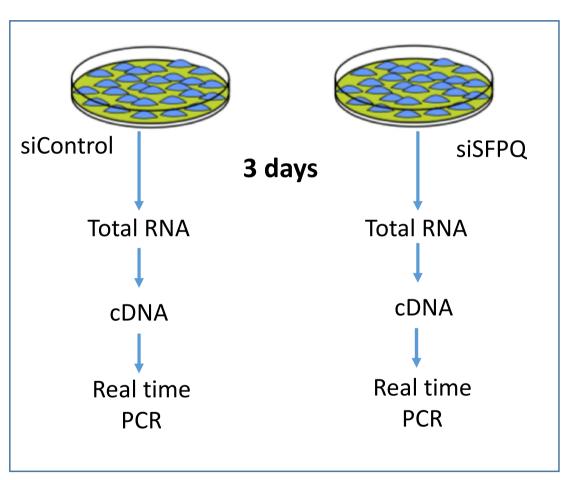
- A. Obtaining Ct values for siCon; siSFPQ
- **B.** Calculation of Δ Ct value
- C. Calculation of $\Delta\Delta$ Ct values
- **D.** Calculation of fold changes
- E. Calculation of StdDev; p-value
- F. Generation of Barblot diagram with StdDev, p-values, labelling of axes

ANALYSING DATA OF THE LABORATORY COURSE Calculation of \triangle Ct value, $\triangle \triangle$ Ct values, fold changes

Student 1 --- biological replicate 1 Tutor ----- biolocical replicate 2 Tutor ----- biolocical replicate 3

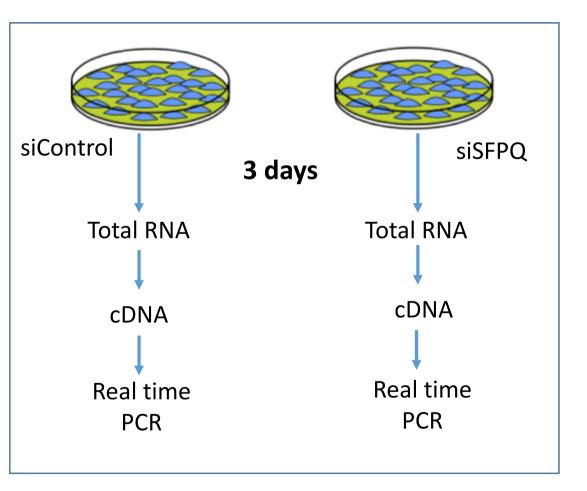

B. Calculation of deltaCt value

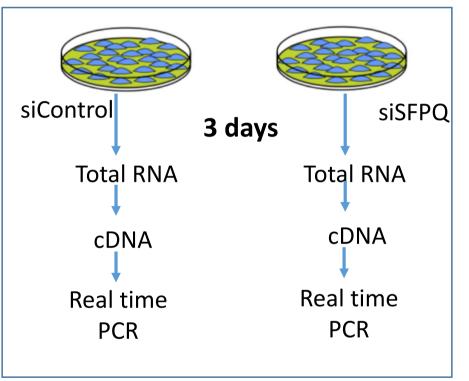
siControl


		ACTIN	SFPQ	siControl
Replicate		siControl	siControl	delta Ct
1	СТ	12,43	17,33	4,9
2	СТ	12,13	17,34	5,21
3	СТ	13,29	17,99	4,7
4	СТ	12,68	16,82	4,14
5	СТ	11,15	15,91	4,76
6	СТ	11,94	16,79	4,85
7	СТ	12,88	17,31	4,43
8	СТ	13,01	17,53	4,52
9	СТ	13,69	18,49	4,8

siSFPQ

		ACTIN	SFPQ	siSFPQ
Replicate		siSFPQ	siSFPQ	delta Ct
1	СТ	13,15	21,32	8,17
2	СТ	13,28	21,64	8,36
3	СТ	12,79	21,17	8,38
4	СТ	12,37	20,54	8,17
5	СТ	13,59	21,57	7,98
6	СТ	14,61	22,22	7,61
7	СТ	14,5	21,87	7,37
8	СТ	13,53	20,82	7,29
9	СТ	13,12	20,4	7,28

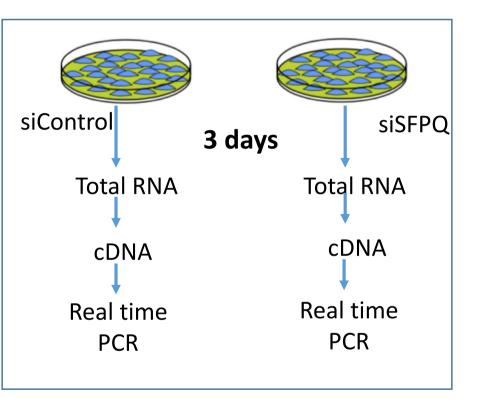

- A. Obtaining Ct values for siCon; siSFPQ
- B. Calculation of Δ Ct value
- C. Calculation of $\Delta\Delta$ Ct values
- D. Calculation of fold changes
- E. Calculation of StdDev; p-value
- F. Generation of Barblot diagram with StdDev, p-values, labelling of axes


C. Calculation of $\Delta\Delta$ Ct value

siControl

		ACTIN	SFPQ	si	Control			
Replicate		siControl	siControl		elta Ct			
	СТ	12,43	17,33		4,9			
2	СТ	12,13	17,34		5,21			
siS	FPQ							
			ACTIN		SFPQ	s	SISFPQ	
	Replicate		siSFPQ		siSFPQ	d	elta Ct	
	-	СТ	13,1	_	21,32	_	8,17	
	2	СТ	13,2	28	21,64		8,36	
		siCo	ontrol		siSFPQ		de	ta
Replicate		de	lta Ct 🦌	d	lelta Ct		delt	aCt
1	СТ		4,9		8,1	L7		-3,27
2	СТ		5,21		8,3	36		-3,15
3	СТ		4,7		8,3	38		-3,68
4	СТ		4,14		8,1	٢7		-4,03
5	СТ		4,76		7,9	98		-3,22
6	СТ		4,85		7,6	51		-2,76
7	СТ		4,43		7,3	37		-2,94
8	СТ		4,52		7,2	29		-2,77
9	СТ		4,8		7,2			-2,48

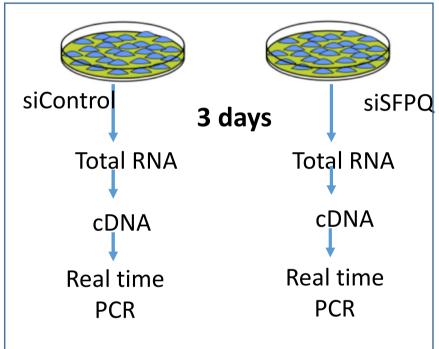
- A. Obtaining Ct values for siCon; siSFPQ
- B. Calculation of Δ Ct value
- C. Calculation of $\Delta\Delta$ Ct values
- D. Calculation of fold changes
- E. Calculation of StdDev; p-value
- F. Generation of Bar-blot diagram with StdDev, p-values, labelling of axes



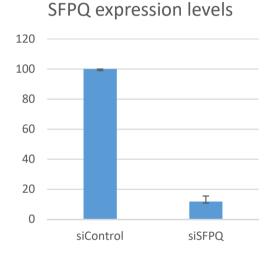
D. Calculation of fold changes

	siControl	siSFPQ	delta	convert cycle to fold change reduction
Replicate	delta Ct	delta Ct	deltaCt	2^(deltadeltaCt(*-1))
1	4,9	8,17	-3,27	9,646462622
2	5,21	8,36	-3,15	8,876555777
3	4,7	8,38	-3,68	12,81711804
4	4,14	8,17	-4,03	16,33619401
5	4,76	7,98	-3,22	9,317868692
6	4,85	7,61	-2,76	6,773962499
7	4,43	7,37	-2,94	7,674112955
8	4,52	7,29	-2,77	6,821079134
9	4,8	7,28	-2,48	5,578974665

...remember PCR in exponential phase: amplification per cycle: 2ⁿ (n= numero cicli)


...replica 1: SFPQ is 9,64 fold lower in siControl versus siSFPQ

- A. Obtaining Ct values for siCon; siSFPQ
- B. Calculation of Δ Ct value
- C. Calculation of $\Delta\Delta$ Ct values
- D. Calculation of fold changes
- E. Calculation of StdDev; p-value
- F. Generation of Bar-blot diagram with StdDev, p-values, labelling of axes

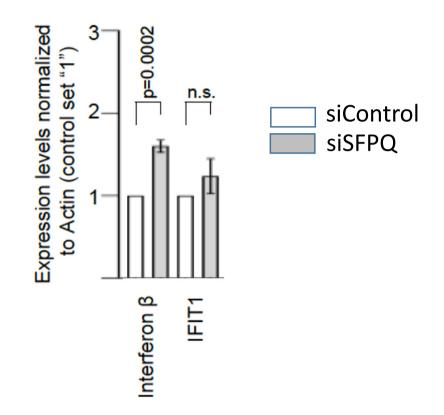

D. Calculation of StdDev, p-values

E. Generation of bar blot with error bars

RELATIVE EXPRESSION LEVELS							
	siControl	siSFPQ					
1	100	10,3664943					
2	100	11,2656308					
3	100	7,80206593					
4	100	6,12137686					
5	100	10,732068					
6	100	14,7624083					
7	100	13,030822					
8	100	14,6604369					
9	100	17,9244406					
	siControl	siSFPQ					
Average	100	11,8517493					
StdDev	0	3,66859579					

. . .

Replicate	siControl delta Ct	siSFPQ delta Ct	delta deltaCt	convert cycle to fold change reduction 2^(deltadeltaCt(*-1))	
1	4,9	8,17		9,646462622	1
2	5,21	8,36	-3,15	8,876555777	
2	17	8 38	-3.68	12 8171180/	ľ


siControl set "100"

Insert StdDev

Replica 1: SFPQ is 9.64 fold lower in siControl versus siSFPQ \rightarrow 100/9,64=10,366

Replica 2: SFPQ is 9,64 fold lower in siControl versus siSFPQ \rightarrow 100/8,87=11,25

Generation of Bar-blot diagram with StdDev, p-values, labelling of axes

Didascalia/Figure legend:

SFPQ expression as detemined by quantitative RT-PCR. A student's t-test was used to calculate statistical singificance. Error bars indicate standard variation. N, number of biological replicates

For example: Paper figure 1B in: https://www.nature.com/articles/s41467-022-29907-z (check also didascalia)