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Suppose now that we want to perturb the system so the induce a spin-flip transition. Physically, since the
interaction Hamiltonian ĤSB is proportional to �̂z, then opposite contributions arise when the system is in |0i
and |1i. Thus, by making the system change fast between |0i and |1i, one can average out the contributions
from ĤSB, e↵ectively decoupling the system from the environment.

Specifically, we will consider a modified Hamiltonian reading

Ĥ0 ! Ĥ(t) = Ĥ0 + ĤP(t), (8.42)

where the Hamiltonian perturbation ĤP(t) can be implemented via a monocromatic alternating magnetic field
applied at the resonance. Its explicit form we consider is

ĤP(t) =
nPX
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V (n)(t)
n
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o
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�̂+e
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P
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P
)
⌘
,

(8.43)

with nP being the number of pulses, t(n)P is the time at which the pulse is switched on every �t, namely

t(n)P = t0 + n�t, with n 2 { 1, . . . , nP } . (8.44)

Finally, the switch of the impulse is determined by V (n)(t), which is defined as

V (n)(t) =

(
V, for t 2 [t(n)P , t(n)P + ⌧P],

0, otherwise,
(8.45)

where ⌧P is the duration time of the pulses.

The exact dynamics with respect to the modified Hamiltonian Ĥ(t) cannot be solved. However, we can
assume that during the pulses the contribution of ĤSB is negligible and we completely neglect it. Then, the
dynamics becomes piecewise, alternating ĤSB to ĤP.

As for the unperturbed case, we tackle the problem in the interaction picture. Namely, the e↵ective Hamil-
tonian becomes

Ĥ (I)(t) = Ĥ (I)

0 (t) + Ĥ (I)

P (t), (8.46)

where Ĥ (I)

0 (t) is shown in (8.5) and
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(8.47)

However, one has that
ei!0�̂zt/2�̂�e

�i!0�̂zt/2 = ei!0�̂zt/2 |0i h1| e�i!0�̂zt/2,

= ei!0t |0i h1| ,
= ei!0t�̂�,

(8.48)

and similarly
ei!0�̂zt/2�̂+e

�i!0�̂zt/2 = e�i!0t�̂+. (8.49)

Then, we obtain
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Ĥ (I)

P (t) =
nPX

n=1

V (n)(t)
⇣
�̂+e

�i!0t
(n)

P + �̂�e
i!0t

(n)

P

⌘
,

=
nPX

n=1

V (n)(t)ei!0�̂zt
(n)

P
/2�̂xe

�i!0�̂zt
(n)

P
/2,

(8.50)

where we exploited that �̂+ + �̂� = �̂x. Notably, the only time dependence is in V (n)(t), but it is only formal
as one can see from Eq. (8.45). Then, when considering the corresponding unitary, we have
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(8.51)

By Taylor expanding
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We finally fix V and ⌧P so to have an actual bit-flip. This is provided by setting

V ⌧P
~ =

⇡

2
, (8.53)

which gives

e�
i
~V �̂x⌧P = e�i

⇡
2 �̂x = �i�̂x. (8.54)

Notably, we can consider the limit of the time pulses that go to zero, i.e. ⌧P ! 0, as long as V ! 1 and
Eq. (8.53) holds. Since from here V does not appear explicitly, this will only simplify the calculations.

Then, we have that

V̂ (I)

n (⌧P) = V̂ (I)

n = �iei!0�̂zt
(n)

P
/2�̂xe
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(n)

P
/2. (8.55)

By considering that the following relation holds

e�i!0�̂zt/2 = cos(!0t/2)1̂ � i sin(!0t/2)�̂z, (8.56)

and the anticommutation relation {�̂x, �̂z} = 0, we have that

�̂xe
�i!0�̂zt/2 = ei!0�̂zt/2�̂x. (8.57)

It follows that one can write the operator V̂ (I)

n in two equivalent ways:
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Let us now consider the time evolution of the first entire cycle of spin-flips: this is from time t0 through

time t(1)P when the spin flips the first time, to time t(2)P when the spin flips back to the original spin state. In
particular, we define this latter time as t1 = t0 + 2�t. The unitary dynamics from t0 to t1 is given by
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(8.59)

where, up to a unimportant phase, we have
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The first square parenthesis in the last line of Eq. (8.59) is given by
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(8.61)

Similarly, the second square parenthesis in the last line of Eq. (8.59) can be rewritten as
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We divide the contributions to the sum in those with even and odd values of l. For even values, we have �̂l
z = �̂2l0

z ,
where l = 2l0; then �̂l

z = 1̂ = (��̂z)l. For odd values of l, we have �̂l
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z , where l = 2l0 + 1; then �̂l
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But more specifically, we also have that �̂x�̂l
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z. Thus, it follows that
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Thus, we have that Eq. (8.59) reads
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and can be recasted as
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where we neglected the overall unimportant phase and we defined

⌘k(�t) = ⇠k(�t)
�
1 � ei!k�t

�
. (8.67)

Now, the full evolution from time t0 to time tN after N entire cycles of spin-flip is simply given by
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(8.68)
where we introduced
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Such an evolution is to be compared to that with no pulses on the same time period. This is given by Eq. (8.60)
where one substitutes t↵ ! t0 and t� ! tN . Then, since tN � t0 = 2N�t, we have
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Notably, the expressions in Eq. (8.68) and Eq. (8.70) have a similar structure, with the important di↵erence
being the factor ⌘k(N,�t) substituted with ⇠k(2N�t). Thus, the decohering factor � (t0, tN ) will take a suitably
modified expression as that in Eq. (8.39), namely
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We now compare the di↵erence between these two factors:

⌘k(N,�t) � ⇠k(2N�t) = ⌘k(�t)
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where we exploited the composition of the ⇠k terms. Then, by considering that
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and the definition of ⌘k(�t) in Eq. (8.67), we obtain

⌘k(N,�t) � ⇠k(2N�t) = �2⇠k(�t)ei!k�t
X
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e2i!k�t(n�1). (8.74)

Equivalently, we have
⌘k(N,�t) = ⇠k(2N�t) (1 � fk(N,�t)) , (8.75)

where
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By exploiting the geometric series and the definition of ⇠k, we get

fk(N,�t) = 2
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Finally, by taking the limit of dense pulses, i.e. �t ! 0, we obtain

lim
�t!0

fk(N,�t) = 1, (8.78)
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which means that under the same limit we have

lim
�t!0

⌘k(N,�t) = 0. (8.79)

As a consequence, the decoherence factor vanishes: � (t0, tN ) ! 0. Namely, the decohering e↵ect of the en-
vironment on the system is cancelled. E↵ectively, one has a (dynamical) decoupling of the system from its
environment.
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