

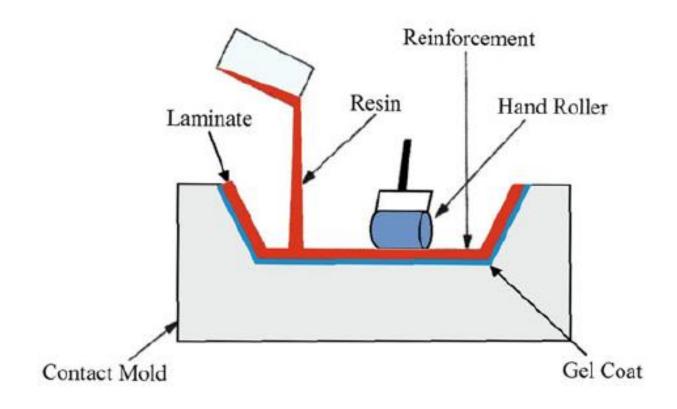
Materiali compositi

IPMC

- I più diffusi sono quelli rinforzati con fibre di vetro.
- I PMC rinforzati con fibre di C sono i più importanti per applicazioni strutturali all'avanguardia.

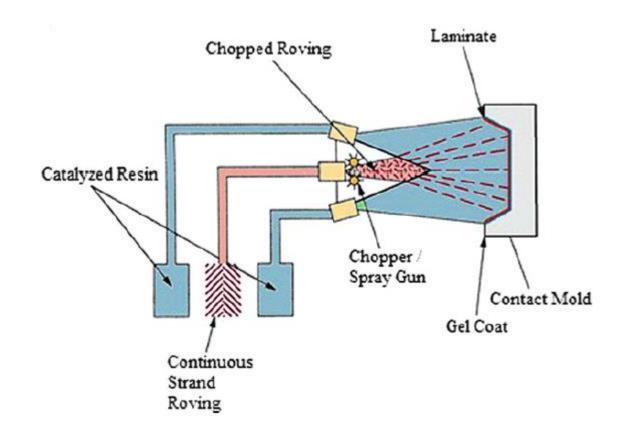
Parleremo dei processi di produzione di manufatti realizzati con PMC:

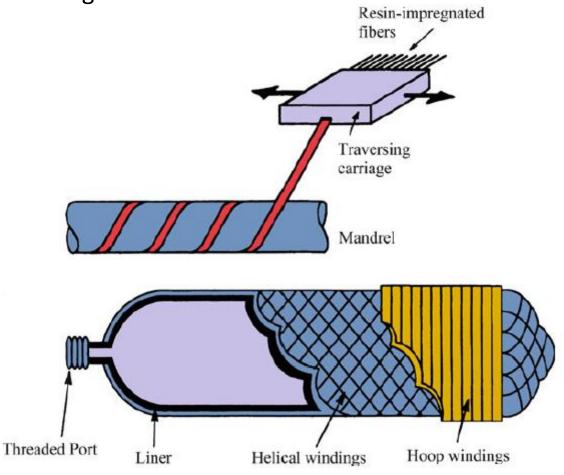
- con matrice termoindurente
- con matrice termoplastica

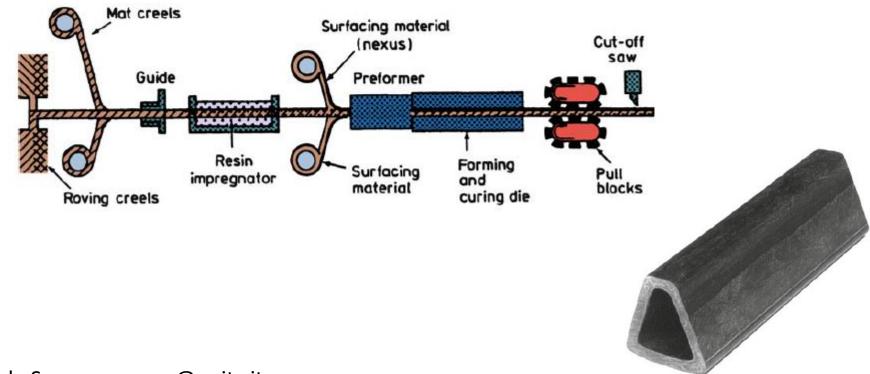

I materiali comunemente usati per la produzione di PMC a matrice termoindurente sono le resine epossidiche, le resine poliesteri e le resine vinilesteri.

- Tra i processi di produzione più comuni, vi è la laminazione manuale e mediante sistemi spray.
- Si tratta di processi industriali largamente utilizzati in molti settori, basati su tecnologie mature ed affidabili.

Il processo si basa sull'impiego di uno stampo e la compattazione del materiale composito viene effettuata mediante l'impiego di rulli.






Un'altra tecnica molto versatile è il filament winding. In questa tecnica il rinforzo viene utilizzato sottoforma di roving.

Per la produzione di manufatti a sezione costante, può essere utilizzato un processo denominato poltrusion, schematizzato nella seguente figura. Velocità di produzione tipiche: 100-2.000 mm/min, percentuale di fibre sino al 60%, larghezza anche 1-1.2 m.

Processo RTM (Resin Transfer Molding): in questo processo, una preforma costituita dalle fibre di rinforzo viene posta all'interno di uno stampo chiuso, nel quale viene iniettata la resina per mezzo di una pompa.

- La viscosità della resina deve essere bassa.
- E' facile aggiungere additivi (ritardanti di fiamma, catalizzatori, assorbitori UV, ecc.)

Vantaggi: ok per forme complesse, adatta a produzioni su larga scala, volume fibre

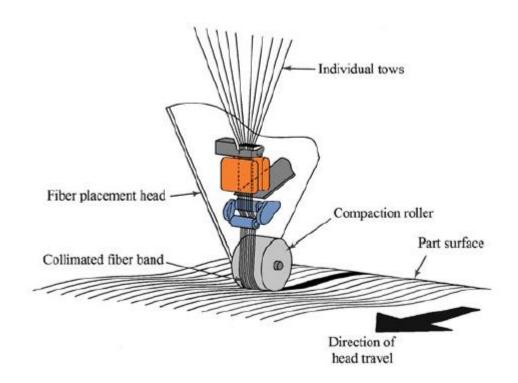
sino al 65%, basse emissioni.

Tipica applicazione: settore automotive.

Deposizione automatica delle fibre: ATP (Automatic Tape Placement) e AFP (Automatic Fibre Placement).

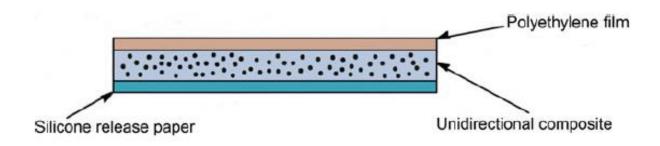
- Consentono un'elevata automazione.
- Ok per grandi strutture.
- Ottimizzazione dell'impiego delle fibre.
- Ripetibilità ed affidabilità: ok per industria aeronautica.

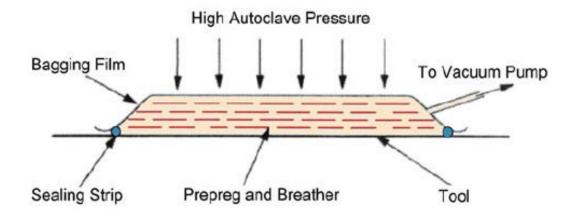
ATP:


- nastro preimpregnato, larghezza 75-300 mm, con film protettivo.
- Utilizzabile anche con matrici termoplastiche.
- E' basato sull'impiego di sistemi CAD -> CAM -> CNC.
- Taglio nastro con lame + ultrasuoni.
- Possibili anche tagli parziali.

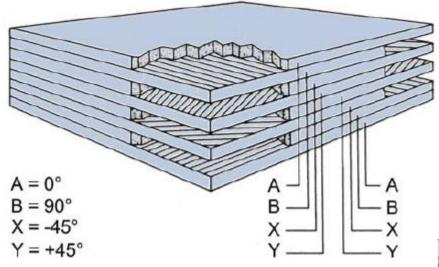
AFP:

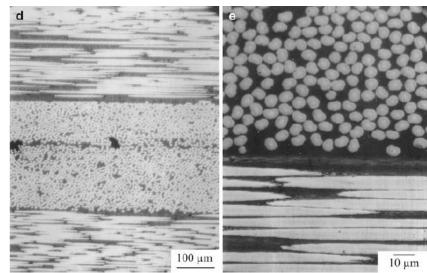
- Impiega roving «secco», più bobine alimentano una testa di deposizione/taglio.
- Spesso si usa una macchina CNC in configurazione gantry, a 5 o più assi.
- Possibile anche l'impiego di mandrini multipli.
- Sono sistemi molto veloci ed affidabili.

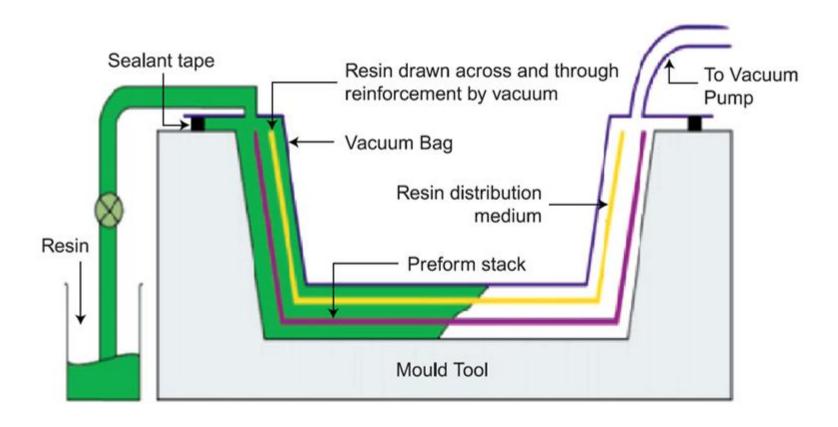



Processi basati sull'uso di un'autoclave:

- consentono di fabbricare anche parti di grandi dimensioni, massimizzando le proprietà meccaniche del composito.
- Si usano prepregs (anche a matrice termoplastica, che però –non essendo tacky- presentano dei problemi in più).
- I rotoli di prepreg in genere hanno lunghezze comprese tra 50 e 250 m e larghezze nell'intervallo 300 1.500 mm.
- Il contenuto in fibre del prepreg è tipicamente 60-65%.
- Per produrre un manufatto, gli strati di prepreg vengono sovrapposti.
- L'autoclave consolida le lamine, elimina le bolle d'aria e facilita la reticolazione della resina.



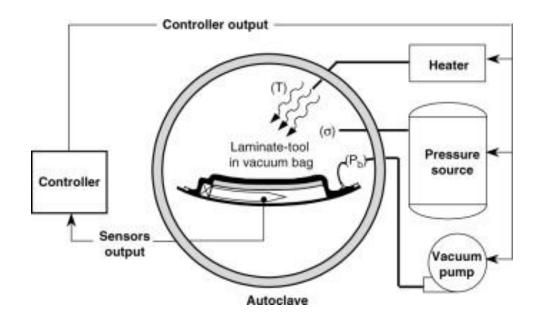


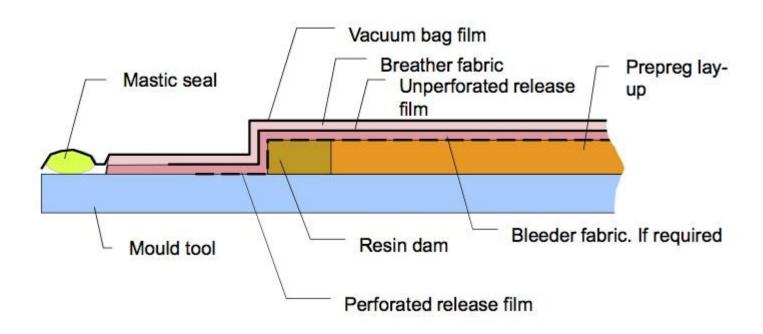


Produzione ali Boeing 787

Infusion

Infusion

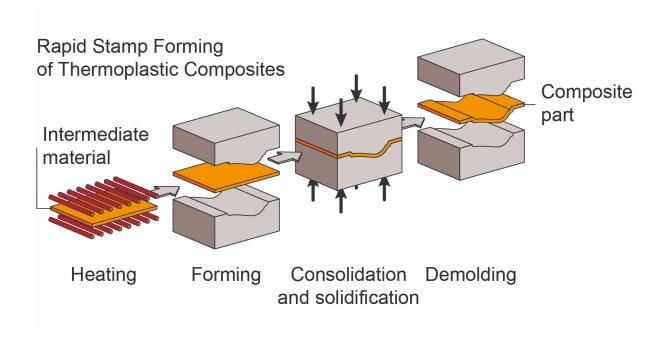

Impianti per la produzione di PMC


Impianti per la produzione di PMC

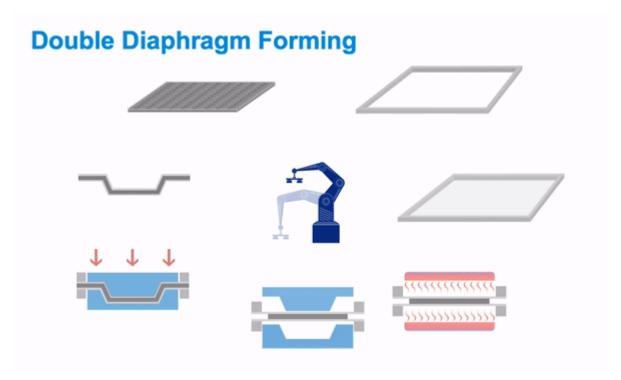
Impianti per la produzione di PMC

Vantaggi:

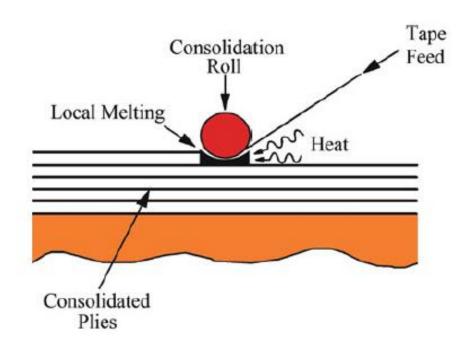
- Non è necessaria la refrigerazione dei semilavorati
- Le parti possono essere lavorate e unite mediante riscaldamento, anche in più fasi.
- I materiali posso essere riutilizzati.
- In genere, le matrici termoplastiche hanno una maggiore tenacità.

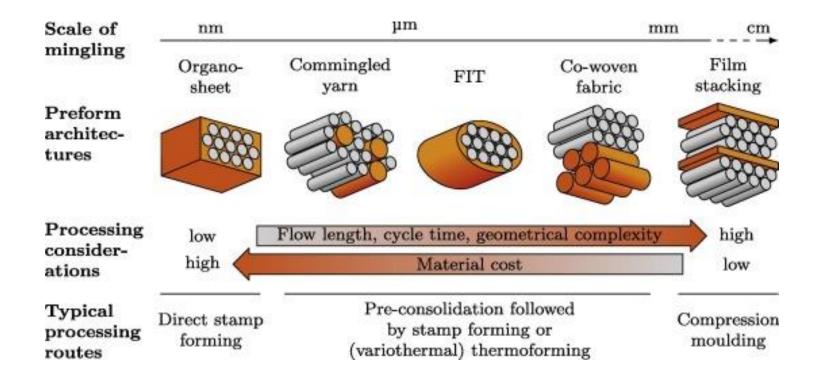

Svantaggi:

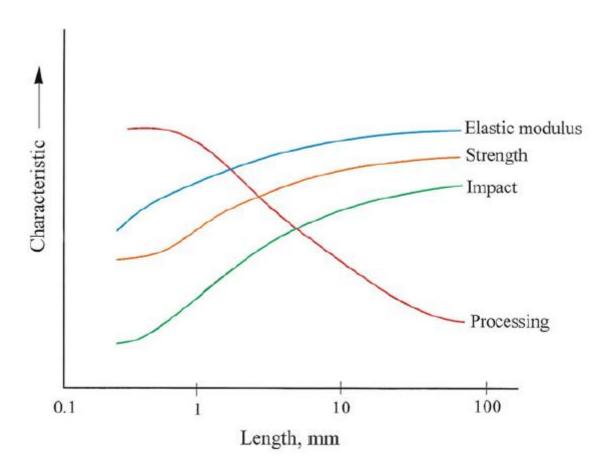
- Le temperature necessarie per la lavorazione sono più elevate rispetto a quelle utilizzate con le matrici termoidurenti (sino a 350 °C / 12 MPa / 30').
- I semilavorati non sono «tacky» e quindi la laminazione risulta essere più complessa.


- Normalmente il lay-up è composto da lamine contenenti fibre con ridotte quantità di matrice, alternate a lamine di solo materiale costituente la matrice.
- Il consolidamento avviene mediante applicazione di temperatura e pressione, per un tempo sufficiente. L'obiettivo è eliminare tutti i vuoti.

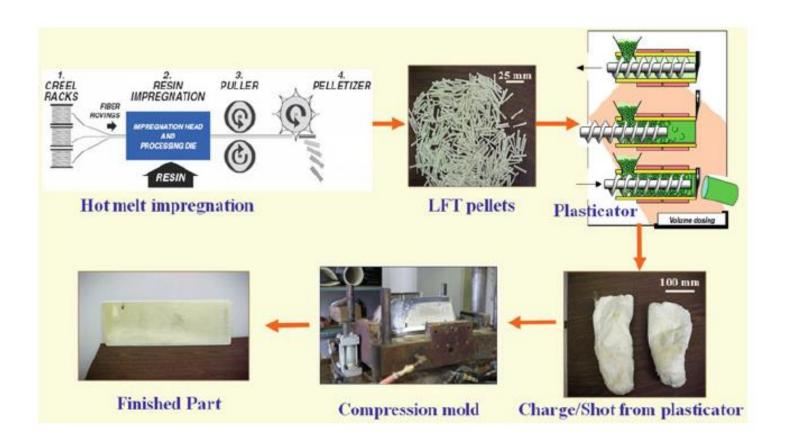
Double Diaphragm Forming: ok per oggetti con superfici a doppia curvatura.




Tape Layup:


Commingled fibers

Injection Molding / Compression Molding



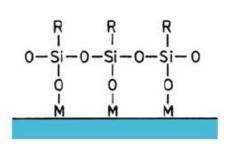
Nicola Scuor – nscuor@units.it

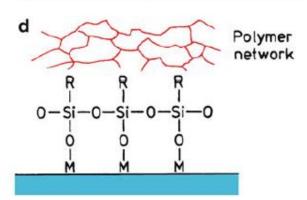
Injection Molding / Compression Molding

Consideriamo fibre:

- di vetro
- di carbonio
- aramidiche
- di UHMWPE
- In alcuni casi si tratta di materiali dotati di scarsa compatibilità chimica con le matrici polimeriche.
- > In altri casi, si tratta di polimeri a bassa energia superficiale.

In ogni caso, come visto precedentemente, è molto importante gestire le condizioni all'interfaccia, con particolare riferimento ai fenomeni di adesione.





Fibre di vetro: il rivestimento che viene applicato in fase di produzione viene rimosso e, spesso, sostituito da trattamenti a base di silani.

b R R R R HO-Si-OH HO

C

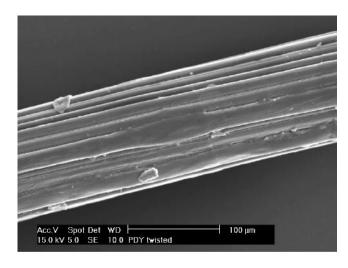
Fibre di carbonio: i trattamenti impiegati mirano ad aumentare la rugosità e/o la reattività superficiale delle fibre. Ci sono diverse possibilità:

- Deposizione di un appretto polimerico (ad es. epossidico, PVA, ecc.). Aumenta l'energia superficiale.
- Deposizione di un rivestimento PVD (ad es. SIC, ZnO). Aumenta l'energia superficiale e la rugosità.
- Ossidazione superficiale in fase gassosa o liquida (HNO₃, KMnO₄, ecc.).
 Aumenta la rugosità superficiale, si formano gruppi funzionali (es. -C-OH, -C=O, ecc.).

Fibre aramidiche: tipicamente, l'adesione tra matrici epossidiche e fibre di Kevlar è la metà di quella tra matrici epossidiche e fibre di vetro o carbonio, il che può essere considerato anche un vantaggio in alcune applicazioni (ad es. protezioni balistiche).

Nelle applicazioni ove è richiesta la massima resistenza meccanica del materiale composito rinforzato con fibre aramidiche, si possono utilizzare dei trattamenti superficiali delle fibre:

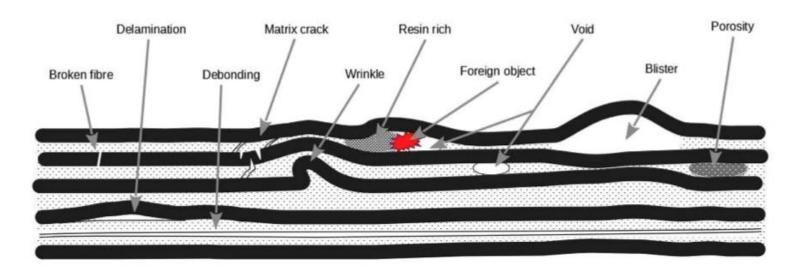
- Br₂ in H₂O (acqua di Br, fortemente ossidante).
- Silanizzazione.
- Idrolisi acida o basica.
- Plasma in ambiente reattivo (H₂O, Ar, ecc.).


Normalmente, l'adesione migliora, le caratteristiche meccaniche delle fibre peggiorano.

Fibre di UHMWPE: come noto, si tratta di un materiale a bassa energia superficiale, poco reattivo. Per migliorare l'adesione è necessario quindi un trattamento delle fibre; i più utilizzati sono i seguenti:

- plasma atmosferico (freddo) in atmosfera reattiva (NH₃, Ar, O₂, ecc.): pulizia superficiale, rimozione degli strati superficiali ed aumento della rugosità, formazione di gruppi funzionali.
- Trattamenti chimici, ad es. con acido cromico.

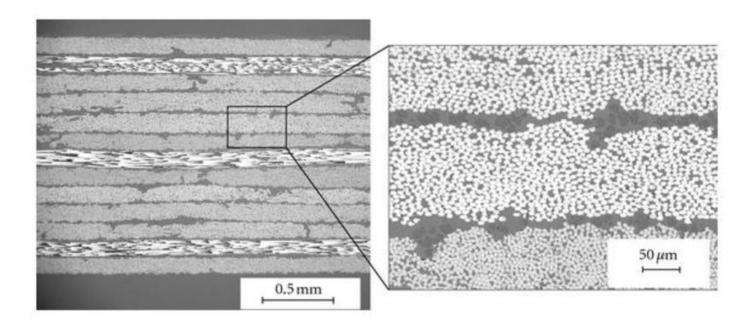
Nicola Scuor - nscuor@units.it



Difetti nei PMC

Possibili difetti:

- porosità
- zone ricche di resina
- micro-fratture (stress residui, umidità, ecc.)
- delaminazioni
- disallineamenti delle fibre
- ecc.


Proprietà dei PMC

Percentuale di fibre (v/v)

• Composito con fibre unidirezionali: sino al 65%

Composito con fibre bidirezionali: sino al 50%

Composito con fibre in direzione random nel piano: sino al 30%

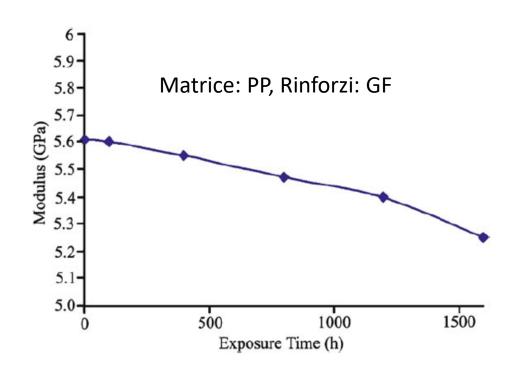
Proprietà dei PMC

Materials	Density (g/cm ³)	Tensile modulus			Tensile strength						Longitudinal
		Longitudinal (GPa)	Transverse (GPa)	Shear modulus (GPa)	Longitudinal (MPa)	Transverse (MPa)	Compressive strength longitudinal (MPa)	Flexural modulus (GPa)	Flexural strength (MPa)	ILSS ^b (MPa)	coefficient of thermal expansion (10^{-6} K^{-1})
Unidirectional E glass 60 v/o	2	40	10	4.5	780	28	480	35	840	40	4.5
Bidirectional E glass cloth 35 v/o	1.7	16.5	16.5	3	280	280	100	15	220	60	11
Chopped strand mat E glass 20 v/o	1.4	7	7	2.8	100	100	120	7	140	69	30
Boron 60 v/o	2.1	215	24.2	6.9	1,400	63	1,760	_	_	84	4.5
Kevlar 29 60 v/o	1.38	50	5	3	1,350	-	238	51.7	535	44	-
Kevlar 49 60 v/o	1.38	76	5.6	2.8	1,380	30	276	70	621	60	-2.3

Effetto dell'umidità

Nel caso dei polimeri (matrici e fibre), l'umidità agisce come un plastificante, riducendo:

- modulo elastico
- resistenza a trazione
- Tg
- ✓ Gli effetti combinati di umidità e temperatura possono avere effetti rilevanti sui PMC.
- ✓ Una resina epossidica, a titolo di esempio, può assorbire sino all'1% in peso di acqua!



Effetto della radiazione UV

La porzione della radiazione solare nella banda UV o altre sorgenti di radiazione UV possono provocare trasformazioni nei materiali costituenti le matrici polimeriche e nelle fibre polimeriche:

- fotodegradazione
- post-curing
- cristallizzazione

Creep

Notevole sensibilità al creep dei PMC rinforzati con fibre polimeriche, molto contenuto in quelli rinforzati con fibre di carbonio.

GENx Turbofan

GENx Turbofan

Riciclo dei PMC

La separazione di fibre e matrice, nonché di altre eventuali fasi presenti (ad es. verniciatura) è spesso difficile.

I materiali termoindurenti non sono riutilizzabili.

Possibilità:

Macinazione e impiego delle polveri risultanti come riempitivi.

Decomposizione termica della frazione polimerica e reimpiego dei prodotti di decomposizione, come materia prima o come combustibili.

I rinforzi

- Fibre di vetro
- Fibre di carbonio
- Fibre polimeriche

Le matrici

- Matrici polimeriche
- Matrici metalliche (cenni)
- Matrici ceramiche (cenni)

Interfacce

I compositi a matrice polimerica (PMC)

- Processi
- Interfacce
- Struttura e proprietà
- Applicazioni
- Riciclo

Micromeccanica dei materiali compositi Macromeccanica dei materiali compositi Resistenza, fatica e creep

