

Data Preparation Strategies in a Machine Learning Application: A Case Study on Voting Intentions

Luca Pennella December 12th, 2024

Overview

- 1. Introduction
- 2. Data Preparation
- 3. Choosing a good 'model'
- 4. Results

What we will learn today (I hope)

- How to prepare data for statistical analysis.
- How to solve the most common problems in data preparation.
- How to try to do research in data analysis.
- The main characteristics of the voters of the different party coalitions (relative to 2017-2019).

Who am I?

- PhD student in Applied Data Science and Artificial Intelligence (ADSAI) at the University of Trieste with the support of Rachael (Spinoff by SWG, the University of Trieste and SISSA).
- Guest Scholar at IMT of Lucca for projects on blockchain and Decentralized Finance.
- Bachelor in Economics, Master in Statistics from the University of Bologna and Master in Data Science and AI from the University of Florence and IMT of Lucca.
- A few years of experience as data analyst and data scientist in Jakala, Data Reply, Crif and Diennea.

Goals

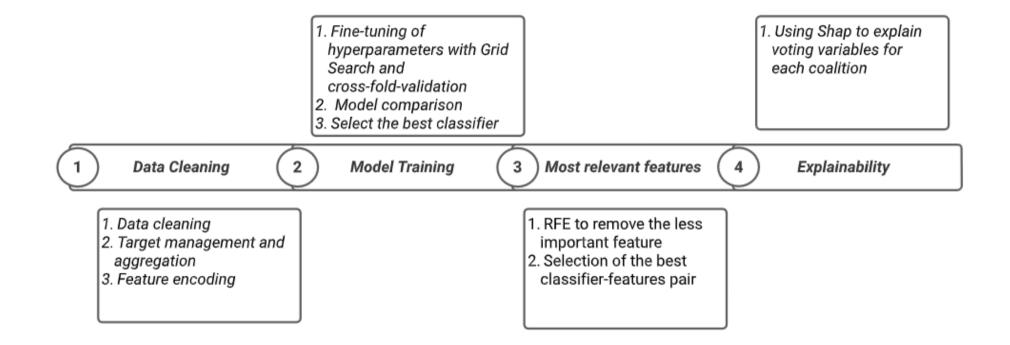
- **Understanding voting intentions** using demographic and values-based variables.
- **Classify party voting intentions** with high accuracy using machine learning methods.
- Apply eXplainable Artificial Intelligence (XAI) techniques to interpret the **impact of the most relevant features** for each class of target variable.

Data Preparation

Data

- Data collected annually from the **SWG and Rachael Monitoring survey** (sample of 1500 units each year from SWG Panel).
- We focus on the **interviews conducted from 2017 to 2019**.
- The data are totally anonymous.
- Initial dataset includes 4,504 users and 116 variables.

Pipeline



Data preparation

- 1. Data normalisation for consistency across the survey year.
- 2. Data cleaning and handling missing data.
- 3. Apply **one-hot and ordinal encoding** for categorical variables.
- 4. Group each party into one of the three main coalitions (center-left (Sx/Csx), center-right (Dx/CDx) and Movimento 5 Stelle (M5S)).

Respondent profile variables

PERSONAL DATA	Gender Age Region Education
FAMILY	Marital status Children Family unit composition Socio-economic status
EMPLOYMENT	Employment status Occupation Sector of economic activity
CONSUMPTION HABITS	Decision makers Purchases and consumption Focus on automotive, financial/insurance services, power providers, holidays, food, household appliances, technology
LIFESTYLE	Travel Sport Volunteering Reading habits Internet use

Respondent opinions and attitudes

- What is your opinion on the **legalisation of soft drugs**?
- Do you think the **Islamic religion is a danger to society**?
- Will the new generations be able to improve the world in which they live?
- What is your **opinion on immigrants** in terms of job evaluation or crime?

Single Closed-ended questions:

• Single binary/categorical or Likert Scale answers.

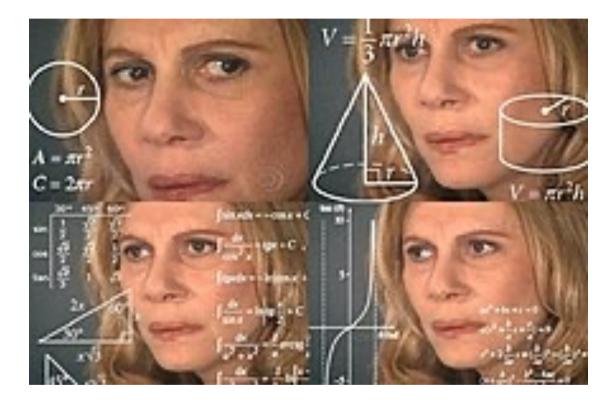
Data Description

Gender	Sample (%)	Population (%)
Male	50	49.7
Female	50	51.3
Age Group	Sample (%)	Population (%)
15-24	7.8	11.4
25-34	15.1	12.7
35-44	18.9	15.7
45-54	20.0	18.9
55-64	16.5	16.0
65-90	21.2	22.6

Sample (%)	Population (%)
27.0	26.8
20.0	19.4
19.3	19.8
22.5	23.1
11.1	10.9
	27.0 20.0 19.3 22.5

Education Level	Sample (%)	Population (%)
Low (no title, primary, lower secondary)	18.0	50.9
Middle (upper secondary, post-secondary non-tertiary)	47.4	35.1
High (tertiary)	35.0	14.1

How do I convert a categorical variable into a number?



Any suggestions?

Encoding

One-hot Encoding

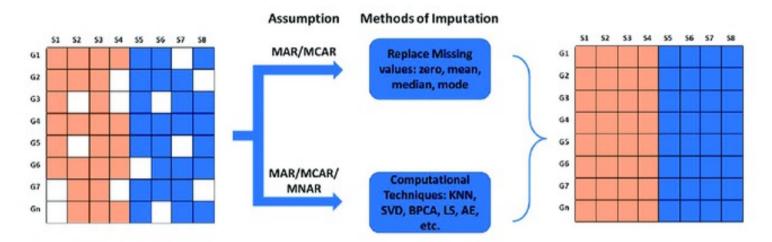
Gender Location Gender_Male Location_North Location_West Location_East Male South 0 1 0 0 Female North 0 1 0 0 Male West 0 1 0 1 Male East 0 0 1 1

Original Encoding	Ordinal Encoding
Poor	1
Good	2
Very Good	3
Excellent	4

Different variables names and modalities across the three years

Ordinal encoding

Imputation of missing values



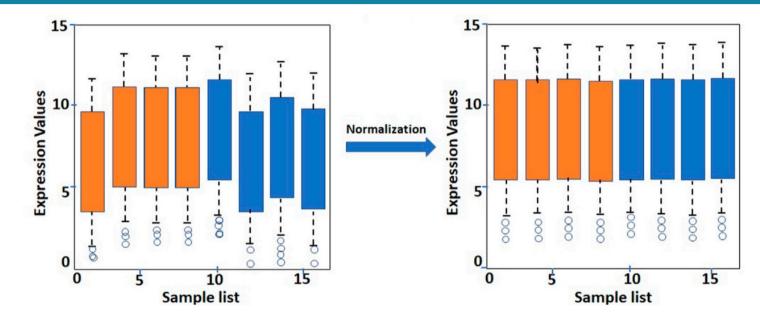
Missing data are typically grouped into three categories: Missing Completely At Random (MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR).

In **MCAR**, the missing data is **independent of their unobserved values and** independent of the **observed data**. In other words, the data is completely missing at random, independent of the nature of the investigation.

In MAR, the missingness of data is random but conditionally dependent on observed and unobserved values.

In MNAR, the missingness depends on the observed and/or unobserved data.

Standardization



Standardization is crucial for classification tasks because it **ensures that all input features have a similar scale**. This **helps algorithms** (especially those based on distances, like K-Nearest Neighbors or SVM) work more effectively by **preventing larger values from dominating smaller ones.**

Feature and rows selection

Feature selection in classification refers to the process of selecting the most relevant features from the dataset that contribute significantly to the target variable.

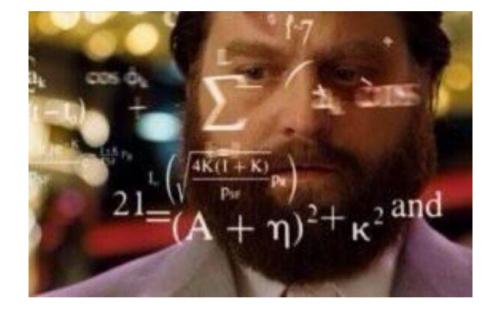
By removing irrelevant, redundant, or noisy features, feature selection improves usually model performance.

Rows selection how to deal with missing data

The target variable – The voting intention!

sono indeciso	695	Liberi e Uguali	56
Partito Democratico-PD	608	La Sinistra	54
MoVimento 5 Stelle	580	Fratelli d'Italia-Alleanza Nazionale	44
Partito Democratico	364	+Europa	44
Lega con Salvini	299	piu' Europa con Emma Bonino	42
Movimento 5 stelle	289	Potere al Popolo	39
Lega	244	voterei scheda bianca / scheda nulla	32
Forza Italia	214	Verdi	30
Lega Nord	173	Rifondazione Comunista	26
non andrei a votare	157	Italia dei Valori	9
preferisco non rispondere	150	Noi con l'Italia UDC;	8
Fratelli d'Italia	112	Nuovo Centro Destra con UDC e PPI	8
voterei scheda bianca /		Scelta Civica;	7
annullerei la scheda	85	altro partito di area	
Sinistra italiana (SEL + altri)	67	di governo (SVP, Centro Democratico)	4
х, , , , , , , , , , , , , , , , , , ,		Italia Unica di Corrado Passera	2

The target variable - Suggestion for managing the variables?



a small hint

The target variable - behind the scenes

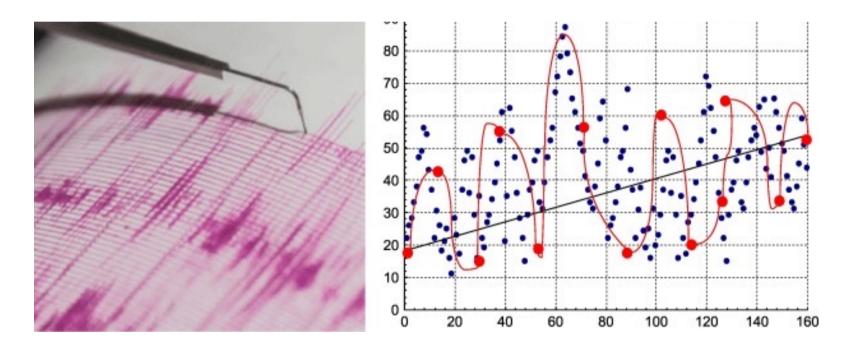
m_p_int_voto	
Sx/CSx	1348
Dx/CDx	1102
M5S	869
indecisi	695
astensione/bianca/nulla	274
preferisco non rispondere	150
Altro partito	66

- Group each party into one of the three main coalitions (centre-left (Sx/Csx), centre-right (Dx/CDx) and Movimento 5 Stelle (M5S)) (inside the paper).
- We also try to classify and explain the absentees and undecideds, but it is very difficult, for this reason we decide to exclude these groups.

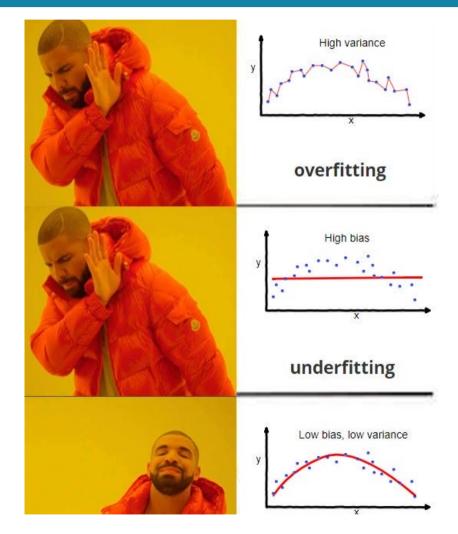
Choosing a good 'model'

Is a fitting line a good choice?

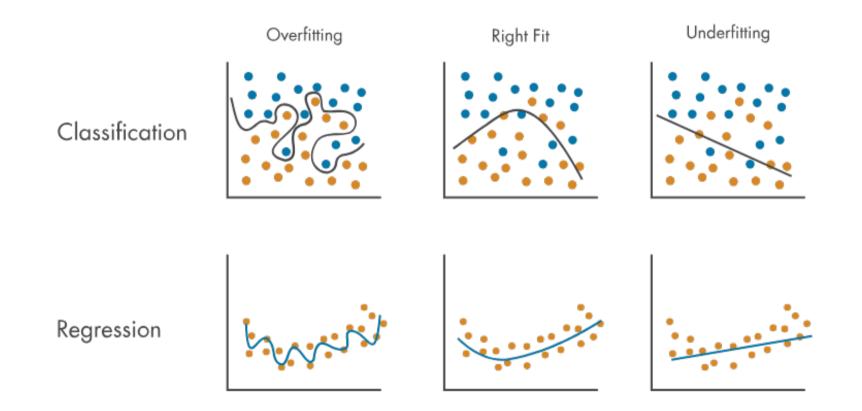
One needs to know priors on the phenomenon studied



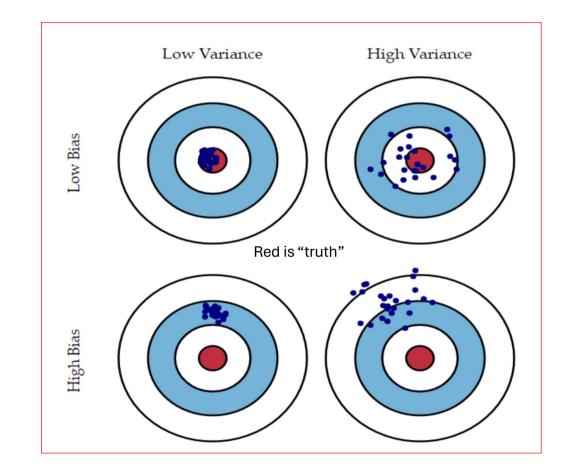
Bias-variance tradeoff and model complexity



Bias-variance tradeoff and model complexity



Bias and Variance



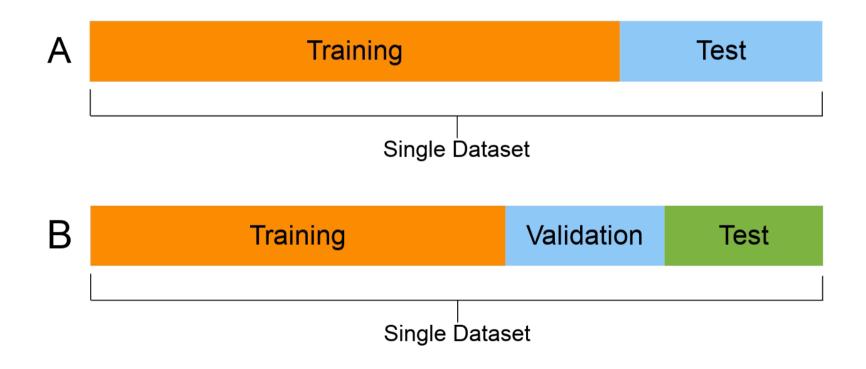
Bias and Variance

	Underfitting	Just right	Overfitting
Symptoms	 High training error Training error close to test error High bias 	 Training error slightly lower than test error 	 Very low training error Training error much lower than test error High variance
Classification illustration			
Possible remedies	Complexify model Add more features		 Perform regularization Get more data

Train longer

How 'good' is the model?

The ability to predict well is called **Generalization**

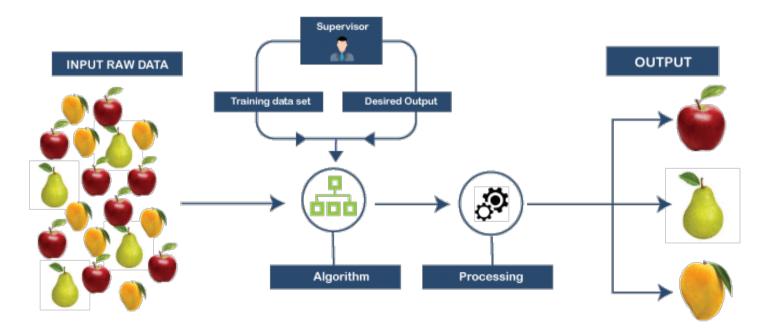


Results

Classifier

A **classifier** in machine learning is a model that takes data with features and predicts a label or category for each row.

For example, if you have a table of customer data, a classifier might predict whether each customer will "buy" or "not buy."



Model Training

- We evaluated the performance of three classifiers: Random Forest (RF), XGBoost and the Light Gradient Boosting Machine (LGBM).
- The dataset is divided into an **80% training set and a 20% test set**, with stratification based on the target variable.
- **5-fold cross-validation** procedure.

Result Model Training Step

A comparison of the result of the grid search of three classifiers

Classifier	Accuracy	Precision	Recall	F1
Random Forest	0.68	0.68	0.68	0.66
LGBM	0.69	0.68	0.69	0.67
XGBoost	0.68	0.67	0.68	0.67

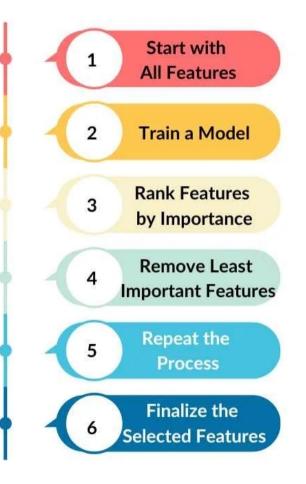
Identification of the most relevant features

- We take LGBM as the best classifier.
- To select the best subset of variables, we used the **Recursive Feature Elimination (RFE) algorithm**.
- We obtain a final dataset with **71 variables**.

Best subset varaibles based on feature importance

Features Selection

How Recursive Feature Elimination Works



Result

	Accuracy	Precision	Recall	F1	
Best set	0.70	0.70	0.70	0.69	

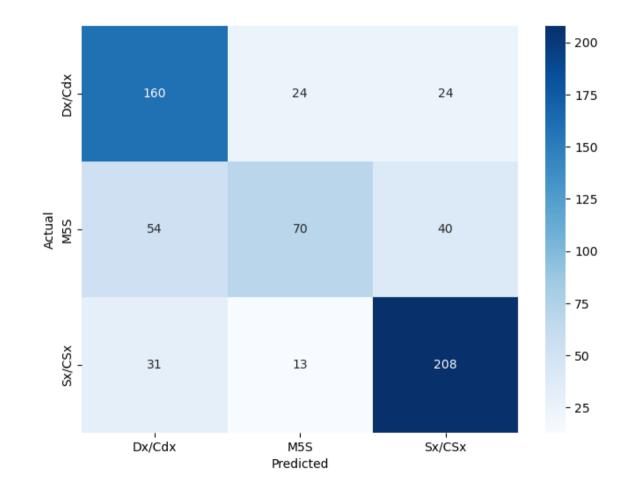
We can see how the best classifier-dataset pair performs better with only 71 features compared to the initial 120.

Confusion Matrix

		Predicted		
		Negative (N) -	Positive (P) +	
Actual	Negative -	True Negatives (T N)	False Positives (F P) Type I error	
	Positive +	False Negatives (F N) Type II error	True Positives (T P)	

Fonte: https://www.nbshare.io/

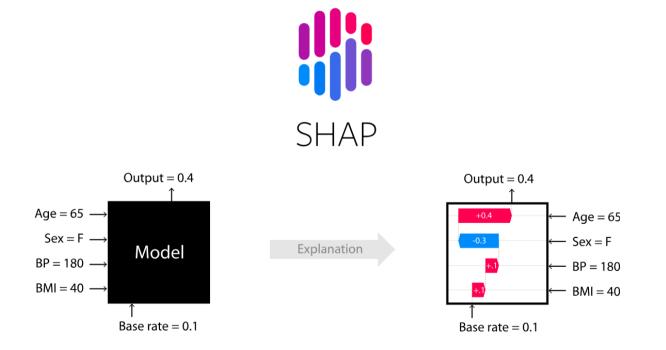
Result



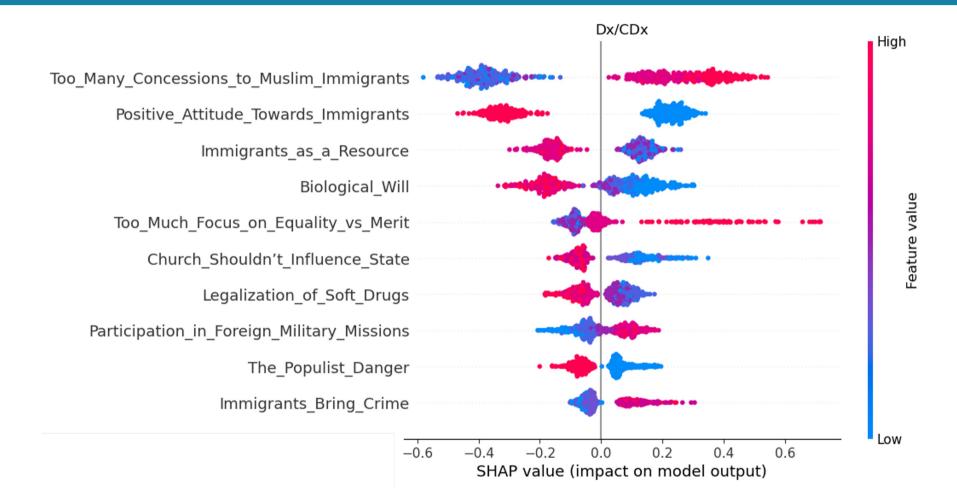
Shap Values

SHAP (SHapley Additive exPlanations) is a powerful tool in the machine learning world that draws its roots from game theory.

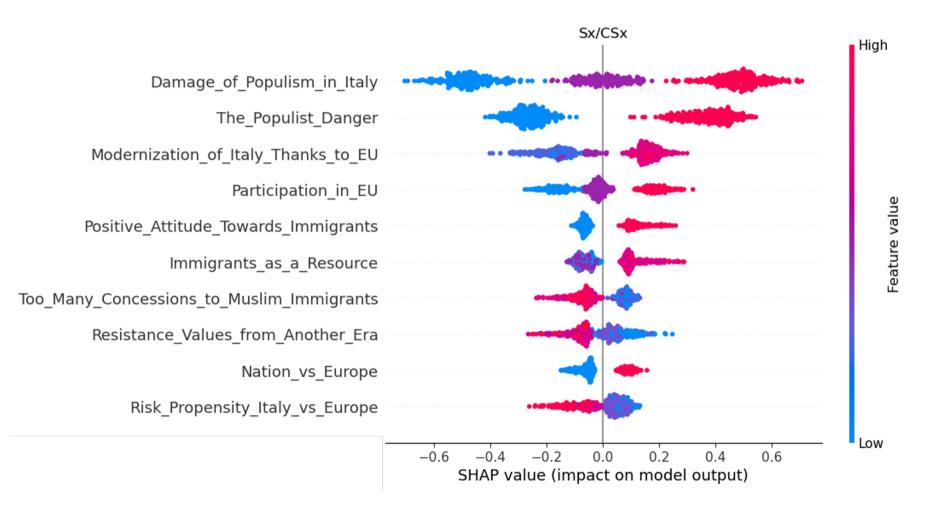
In simple terms, SHAP values allow you to break down a machine learning model's predictions by assigning each feature a "fair" contribution to the final output.



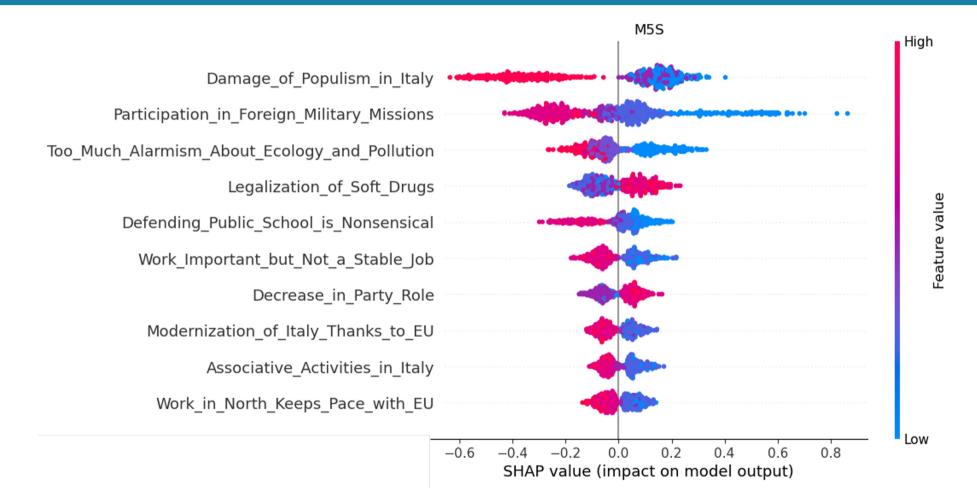
Explainability- Dx/CDx



Explainability- Sx/CSx



Explainability- M5S



Thank you for your attention!

Email: <u>luca.pennella@phd.units.it</u> LinkedIn: https://www.linkedin.com/in/luca-pennella-4171a2192/