## Financial Econometrics

## May 27th 2016

**Exercise 1 (3/10)** Consider a fund F and the market portfolio M. You have observed a sample of returns over 100 periods and estimated a CAPM-style model of the excess returns of the fund  $r_F$ :

$$r_F = \alpha + \beta r_M + \varepsilon$$

Suppose that your model be statistically admissible in that it passed the "usual" tests. Let the resulting parameters be  $\hat{\alpha}=-0.3,\,\hat{\beta}=1.2$  with standard errors, respectively, 0.10 and 0.25. The number of observations is 100.

• What can you say about the ability of the fund manager? (hint: look at the model intercept as *Jensen's*  $\alpha$ )

**Exercise 2 (3/10)** Consider a stock A, the market portfolio M and an inflation index  $\pi$ . You have estimated an APT-style model of the excess returns  $r_A$ :

$$r_A = \gamma_0 + \gamma_1 r_M + \gamma_2 \pi + \varepsilon$$

resulting in  $\hat{\gamma_0} = -0.2$ ,  $\hat{\gamma_1} = 1.5$  and  $\hat{\gamma_2} = -0.5$  with standard errors, respectively, 0.1, 0.5 and 0.2.

• What is your best point forecast for  $r_A$  next year if the market grows by 6 (*percent*), inflation is 2 (percent) and the risk-free rate is 4 (percent)?

Exercise 3 (4/10) Consider the linear model

$$y = X\beta + \varepsilon$$

where the regressors  $x_1,\dots x_K$  are nonstochastic and the classical properties hold, so that  $\hat{\beta}_{OLS}$  is BLUE.

- Derive the covariance matrix of  $\hat{\beta}_{OLS}$ , highlighting which properties of  $\varepsilon$  underlie each step of the proof
- State how the standard errors  $SE(\hat{\beta}_{OLS})$  have to be calculated.