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8.2 Quantum Error Mitigation

Quantum Error Mitigation (QEM) wants to translate the improvements of quantum hardware in those of
quantum information and computation. Namely, it is an algorithmic scheme that reduces noise-induced bias in
the expectation value of an observable of interest by post-processing outputs from an ensemble of circuit runs.
To do this, it employs circuits at the same depth as the original unmitigated circuit or above. QEM applies
post-processing directly from the hardware outputs. Thus, if the circuit size, being the product of the circuit
depth times the number of qubits, becomes too large then QEM loses its usefulness.

A good QEM approach should employ a limited number of qubits, while still providing a guaranteed accu-
racy. This converts in a formal error bound, which indicates how well the QEM code works. Moreover, it should
employ only a few (or better none) assumptions about the final state. For example, assuming that the final state
is factorised is not a good assumption. Indeed, it would strongly limit the applicability of the corresponding
QEM algorithm.

Before dwelling in two, among various, algorithms in the QEM context, we provide the general idea of the
QEM approach. We defined the primary circuit as that process that would ideally produce the perfect output
state ⇢̂0. Due to the presence of noises, the primary circuit produces the noisy state ⇢̂. To account how a circuit
works, we consider an observable of interests Ô whose expectation value is the output information we seek.
To compute this, we will run the circuit Nsample times, which is the number of circuit executions. Also in the
noiseless case, a finite value of Nsample implies a finite inaccuracy of the estimated average. This is the so-called

shot noise. However, in such a case, there will be no systematic shift, i.e. bias, in the expectation value of Ô
due to the noise. QEM aims to reduce such a bias. Often, this implies that the corresponding variace increases.
Then, one needs to increase the number of circuit runs N > Nsample to compensate. The sampling overhead is
the cost, in terms of number of repetitions, of the QEM method when compared to the noiseless circuit.

We underline that, conversely to QEC, in QEM there is no monitoring of the errors occurring during the run
of the circuit.

8.2.1 Zero noise extrapolation

The Zero noise extrapolation (ZNE) method extracts the zero-noise expectations from a fitting of the circuit
run at di↵erent values of the noise. We define a time dependent Hamiltonian Ĥ(t) that embeds action of the
noiseless circuit. It can be written as

Ĥ(t) =
X

↵

J↵(t)P̂↵, (8.80)

where J↵(t) are some time dependent couplings that switch on and o↵ the gates of the circuit, which are
implemented by the corresponding N -qubit Pauli operators P̂↵. The full dynamics, including the action of the
noise, is given by the following master equation

d⇢̂�(t)

dt
= � i

~

h
Ĥ(t), ⇢̂�(t)

i
+ �L[⇢̂�(t)], (8.81)

where t 2 [0, T ], with T being the time at which the circuit ends. We assume here that the noise coupling � is
small. Moreover, we assume that the noise dissipator L is invariant under time rescaling and it is independent
of J↵(t).

Now, given the observable of interest Â, we compute the corresponding expectation value on the noisy circuit

as E(�) = Tr
h
Â⇢̂�(T )

i
, where ⇢̂�(T ) is the solution of Eq. (8.81). What we want to do is to estimate E(�) for

� ! 0. Since one cannot reduce the value of �, to construct a series of measurement from where extrapolate the
estimate E(0), we increase the value of �. This can be done by considering the following rescaling. We dilate
the time T at which the circuit is ran and, due to the time invariance of L, this is equivalent to let the noise
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act more on the circuit. Then, one applies this idea with di↵erent values of � and can perform a fit and deduce
the value of E for � ! 0. Practically, we perform the circuit Ncir times, at di↵erent values of the noise rate
�j = cj�, j = 0, . . . , Ncir � 1 with c0 = 1 < c1 < · · · < cNcir�1. For each value of �j , we run the circuit with the
following rescaled Hamiltonian

Ĥ(j)(t) =
X

↵

J (j)
↵ (t)P̂↵, where J (j)

↵ (t) = c�1
j J↵(c�1

j t), (8.82)

for a time Tj = cjT . The rescaled dynamics gives

d⇢̂(j)� (t)

dt
= � i

~

h
Ĥ(j)(t), ⇢̂(j)� (t)

i
+ �L[⇢̂(j)� (t)]. (8.83)

By merging the latter with Eq. (8.82), we obtain

d⇢̂(j)� (t)

dt
= � i

~
X

↵

c�1
j J↵(c�1

j t)
h
P̂↵, ⇢̂

(j)
� (t)

i
+ �L[⇢̂(j)� (t)]. (8.84)

By defining s = c�1
j t, which runs in the interval s 2 [0, T ] since t 2 [0, Tj ], we rewrite the above master equation

as
d⇢̂(j)� (t)

dt
=

d⇢̂(j)� (cjs)

cjds
= � i

~
X

↵

c�1
j J↵(s)

h
P̂↵, ⇢̂

(j)
� (cjs)

i
+ �L[⇢̂(j)� (cjs)]. (8.85)

By multiplying the left and right hand side by cj we obtain

d⇢̂(j)� (cjs)

ds
= � i

~

h
Ĥ(s), ⇢̂(j)� (cjs)

i
+ cj�L[⇢̂(j)� (cjs)], (8.86)

which is Eq. (8.81) with � substituted with cj�. Its solution at time s = T is given by ⇢̂cj�(T ) = ⇢̂(j)� (Tj).

Correspondingly, we compute the expectation value E(�j) = Tr
h
Â⇢̂(j)� (Tj)

i
= Tr

h
Â⇢̂cj�(T )

i
. Experimentally,

for each cj , one performs Nsample runs of the circuit and obtains an estimator Ẽ(�j), which converges to the
true value E(�j) only in the asymptotic limit Nsample ! 1. Specifically, one has

Ẽ(�j) = E(�j) + �̃, (8.87)

where �̃ is a random variable with zero mean and variance E[�̃2] = �2
0/Nsample, with �2

0 corresponding to the
single-shot variance. Here, E is to the mean over the sampling.

Now, the ZNE problem is to construct a good estimator Ẽ(0) for the expectation value E(� = 0) =

Tr
h
Â⇢̂0(T )

i
from the set of estimators Ẽ(�j). Figure 8.2 represents the problem. To be a good estimator,

we want that its bias
Bias(Ẽ(0)) = E[Ẽ(0) � E(0)], (8.88)

and its variance
Var(Ẽ(0)) = E[Ẽ(0)2] � E[Ẽ(0)]2, (8.89)

are both small. We employ the mean squared error (MSE) are a figure of merit with respect to the true unknown
parameter

MSE(Ẽ(0)) = E[(Ẽ(0) � E(0))2],

= Var(Ẽ(0)) + (Bias(Ẽ(0)))2.
(8.90)

If the expectation value E(�) can be an arbitrary function of � without any regularity assumption, then ZNE
is impossible. However, from physical considerations, it is reasonable to have a model for it, for example we can
assume a linear, a polynomial or an exponential dependence with respect to �.
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Fig. 8.2: Graphical representation of the Zero Error Extrapolation. Given the set of estimators Ẽ(�) at di↵erent
values of the noise (black and blue dots and error bars), one performs a fit assuming a specific model (gray
dashed line) with corresponding confidence region (light blue region). In such a way, one extrapolates the value
of Ẽ(0) with its corresponding error bar (red point and error bar).

1 If we assume a linear dependence on �, the corresponding linear model is given by

Elinear(�) = a0 + a1�. (8.91)

In such a case, a simple analytic solution exists, which is that of the ordinary least squared estimator of the
intercept parameter. Namely, we have

Ẽlinear(0) = Ē(�) � S�E

S��
�̄, (8.92)

where

�̄ =
1

Ncir

Ncir�1X

j=0

�j ,

Ē(�) =
1

Ncir

Ncir�1X

j=0

Ẽ(�j),

S�E =
Ncir�1X

j=0

(�j � �̄)(Ẽ(�j) � Ē(�)),

S�� =
Ncir�1X

j=0

(�j � �̄)2.

(8.93)

With respect to the zero noise value Elinear(0), the estimator Ẽlinear(0) is unbiased. Its variance, under the
assumption that the statistical uncertainty is the same for each �j , reads

Var(Ẽlinear(0)) =
�2
0

Nsample

✓
1

Ncir
+

�̄2

S��

◆
. (8.94)
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2 The Richardson’s extrapolation is a special case of the polynomial extrapolation, which is limited at order
Ncir � 1. The corresponding model is given by

ERich(�) = a0 + a1� + · · · + cNcir�1�
Ncir�1. (8.95)

This is the only case in which the fitted polynomial perfectly interpolates the Ncir data points such that, in
the ideal limit of an infinite number of samples Nsample ! 1, the error with respect to the true expectation
value is by construction O(Ncir). Using the Lagrange polynomial, the estimator can be expressed explicitly
as

ẼRich(0) =
Ncir�1X

j=0

Ẽ(�j)�j , (8.96)

where
�j =

Y

m 6=j

cm
cj � cm

. (8.97)

The error of the estimator is O(Ncir) only in the asymptotic limit Nsample ! 1. In other words, O(Ncir)
corresponds to the bias term in Eq. (8.88). In a real scenario, Nsample is finite, and the variance term in
Eq. (8.88) grows exponentially as we increase Ncir.
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