
The structure and evolution of 
stars

Lecture 12:White dwarfs, neutron 
stars and black holes
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Learning Outcomes

The student will learn 

• How to derive the equation of state of a degenerate gas

• How polytropic models can be applied to  degenerate stars - white 
dwarfs

• How to derive the stable upper mass limit for white dwarfs

• How the theoretical relations compare to observations

• What a neutron star is and what are their possible masses

• How to measure the masses of black-holes and what are the likely 
production mechanisms
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Introduction and recap

So far have assumed that stars are composed of ideal gases

In lecture on low mass stars: 

• Several times have mentioned degeneracy pressure - in the case of low-
intermediate mass stars, they develop a degenerate He core. 

• Degeneracy pressure can resist the gravitational collapse

• We will recap this idea in this lecture

• Will use our knowledge of polytropes and the Lane-Emden equation

In lecture on high mass stars:

• Found that that high mass stars develop Fe core at the end of their lives

• What will happen when core is composed of Fe ?
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Equation of state of a degenerate gas
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At high densities, gas particles may be so close, that that interactions between 

them cannot be neglected.  

What basic physical principle will become important as we increase the density 

and pressure of a highly ionised ideal gas ?

The Pauli exclusion principle - the e– in the gas must obey the law: 

No more than two electrons (of opposite spin) can occupy the same 

quantum cell

The quantum cell of an e– is defined in phase space, and given by 6 values:

x, y, z, px, py, pz

The volume of allowed phase space is given by

The number of electrons in this cell must be at most 2
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Consider the centre of a star, as the density increases

The e–  become crowded, eventually 2 e– occupy almost same position

Volume of phase space “full” (from exclusion principle)

Not possible for another e– to occupy space, unless δp significantly different

Consider a group of electrons occupying a volume V of position space which have 

momenta in the range p+δp. The volume of momentum space occupied by these 

electrons is given by the volume of a spherical shell of radius p, thickness δp:

Volume of phase space occupied is volume occupied in position space multiplied 

by volume occupied in momentum space 

Number of quantum states in this volume is Vph divided by volume of a quantum 
state (h3)  
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Define Npδp = number of electrons with momenta in the range p+δp. 

Pauli’s exclusion principle tells us:

Define a completely degenerate gas : one in which all of momentum states up to 

some critical value p0 are filled, while the states with momenta greater than p0 are 

empty.

The pressure P is mean rate of transport of momentum across unit area

Where

vp= velocity of e–  with momentum p

⇒
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Use relation between p and vp from theory of special relativity

Where me=rest mass of e– 

Combining the three expressions for N, P, and vp , we obtain pressure of a 

completely degenerate gas

Non-relativistic degenerate gas (p0 <<mec) 
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By defining ne=N/V and recalling

The electron degeneracy pressure for a non-relativistic degenerate 

gas:

Relativistic degenerate gas 

(p0 >> mec ; when v approaches c and momentum→ ∞ ) 
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Aim is to obtain equation of state for a degenerate gas. We must convert ne to 

mass density ρ (using similar arguments to derivation of mean molecular weight: 

lecture 7). For each mass of H (mH) there is one e– . For He and  heavier 

elements there is approximately 1/2 e–  for each mH. Thus:

In a completely degenerate gas the pressure depends only on the 

density and chemical composition. It is independent of temperature

Suggested further reading: See Prialnik (Chapter 3), Taylor (Appendix 3) for full discussions of derivation 



Degenerate stars
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There is not a sharp transition between relativistically degenerate and non-

relativistically degenerate gas. Similarly, there is no sharp transition between 

an ideal gas and a completely degenerate one. Partial degeneracy situation 

requires much more complex solution.   

White dwarfs

Intrinsically faint, hot stars. Typical observed masses 0.1-1.4M


 

Calculate typical radius and density of a white dwarf     (σ= 5.67x10-8 Wm-2K-4)

Thin 

nondegenerate

surface layer

of H or He
Isothermal

degenerate

C/O core
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Example of WD discovered in Globular 

cluster M4

Cluster age ~ 13Myrs

WDs represent cooling sequence

Similar intrinsic brightness as MS 

   members, but much hotter (hence bluer)



The Chandrasekhar mass
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Recall the equations of state for a degenerate gas - what could these be used 

for ?

 

A polytrope of index n=1.5 with K=K1 would describe non-relativistic case, and 

n=3, K=K2 would describe relativistic case. 

Now recall from Lecture 7, the mass of a polytropic star is given by
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Using this, and eliminating ρc and substituting in for α (as from previous lecture). 

We obtain a relation between stellar mass and radius:

Mn and Rn are constants that vary with polytropic index n (from solution of 

Lane-Emden equation shown in Lecture 7). 

For n=1.5, the relation between mass - radius, and mass density become

Imagine degenerate gaseous spheres with higher and higher masses, what 

will happen ? 
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Density becomes so high that the degenerate gas becomes relativistic, hence 

the degenerate gaseous sphere is still a polytrope but with index  n=3

Substituting in for K2, gives us this limiting mass. First found by 

Chandrasekhar in 1931, it is the Chandrasekhar mass

Inserting the values for the constants we get

For X~0 ;     MCh = 1.46M
 (He, C, O…. composition)

⇒



Measured WD masses
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Mass estimates for 129 white dwarfs

From Bergeron et al. 1992, ApJ

N  

Mean M = 0.56 ± 0.14 M


How is mass determined ?

Note sharp peak, and lack of high 

mass objects. 



Observed mass-radius relation
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Mass/radius relation and initial mass vs. final mass estimate for WD in 

stellar clusters. How would you estimate the initial mass of the 

progenitor star of a WD ?

Koester & Reimers 1996, A&A, 313, 810 White 

dwarfs in open clusters (NGC2516)
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Without nuclear reactions, a white dwarf will slowly cool over time, radiating away its 

thermal energy.

• In normal stars the mean free path for photons is much greater than that of electrons or 

heavier particles; consequently, energy transport is mainly by radiative diffusion.

• In a white dwarf, degenerate electrons can travel long distances before losing energy in 

a collision with a nucleus, since the vast majority of lower-energy electron states are 

already occupied.

• Thus, in a white dwarf energy is carried by electron conduction (similar to conduction in 

metals) rather than by radiation.

• Electron conduction is so efficient that the interior of a white dwarf is nearly isothermal,

with the temperature dropping significantly only in the non-degenerate surface layers.

• The thin (  1% of the white dwarf radius) non-degenerate envelope transfers heat less

efficiently and acts as an insulating “blanket” allowing energy to leak out slowly.

• A steep temperature gradient near the surface results in the outer non-degenerate 

envelope  being convective.

• The initial temperature of a white dwarf may be estimated by recalling that it forms

from the contraction of a thermally unsupported stellar core, a process which is eventually 

stopped by degeneracy pressure.

White Dwarf Cooling I
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White Dwarf Cooling II
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White Dwarf Cooling III
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White Dwarf Cooling IV
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Neutron stars
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Will see in next lecture that the collapse of the Fe core of a massive star results 

in neutron star formation. 

Landau (1932) - postulated formation of “one gigantic nucleus” from stars more 
compact than critical value. Walter Baade and Fritz Zwicky (1934) suggested 

they come from supernovae

Neutrons are fermions - neutron stars supported from gravitational collapse 

by neutron degeneracy. 

NS structure can be approximated by a polytrope of n=1.5 (ignoring 

relativistic effects) which leads to similar mass/radius relation. But constant 

of proportionality for neutron star calculations implies much smaller radii. 

1.4M
 NS has  R~10-15 km

                                        ρ ~ 6 x 1014 gm cm-3 (nuclear density)
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Relativistic treatment of the equation of state imposes upper limit on NS mass. 

Above this mass, degeneracy pressure unable to balance self-gravity. 

Complications:

General Theory of Relativity 

required

Interactions between neutrons 

(strong force) important

Structure and maximum mass 
equations too complex for this 

course

Outer Crust: Fe and n-rich nuclei, 
relativistic degenerate e–
Inner Crust: n-rich nuclei, relativistic 
degenerate e–
Interior: superfluid neutrons
Core: unknown, pions ?quarks ?

Various calculations predict 
Mmax=1.5 – 3M

 solar



Neutron star properties
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Neutron stars are predicted to rotate fast and have large magnetic fields. Simple 

arguments:

Initial rotation period is uncertain but if it is similar to typical WDs (e.g. 40Eri 
B has PWD=1350s),  PNS ~ 4 ms
Magnetic field strengths in WDs typically measured at B=5x108 Gauss, hence 
BNS~1014 Gauss (compare with B


 ~2 Gauss!) 

Similar luminosity to Sun, but mostly in X-rays (optically very faint)



Discovery of neutron stars
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1967: Hewish and Bell discovered regularly spaced radio pulses P=1.337s, 

repeating from same point in sky.  

Approx. 1500 pulsars now known, with periods on range 0.002 <  P <  4.3 s

Crab pulsar  - embedded in Crab nebula, which is remnant of 

supernova historically recorded in 1054AD

Crab pulsar emits X-ray, optical, radio 

pulses P=0.033s

Spectrum is power law from hard X-rays 
to the IR

 Synchrotron radiation: relativistic 

electrons spiralling around magnetic 

field lines. 



Pulsar mechanism
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Rapidly rotating NS with strong 

dipole magnetic field. 

Magnetic field axis is not aligned 

with rotational axis. 

Spectrum of Crab pulsar is non-

thermal. Suggestive of synchrotron 

radiation - relativistic charged 

particles emit radiation dependent 
on particle energy. 

Charged particles (e-) accelerated 

along magnetic field lines, radiation 

is beamed in the the acceleration 

direction. If axes are not aligned, 

leads to the “lighthouse effect” 



Black Holes
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Description of a black hole is entirely based on theory of General Relativity - 

beyond scope of this course. But simple arguments can be illustrative:

Black holes are completely collapsed 

objects - radius of the “star” becomes 

so small that the escape velocity 

approaches the speed of light:

Escape velocity for particle from an 

object of mass M and radius R

If photons cannot escape, then vesc>c. 

Schwarzschild radius is
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Object M (M


) Rs

Star 10 30 km

Star 3 9 km

Sun 1 3 km 

Earth 3x10-6 9 mm

Size of black holes determined by mass. Example Schwarzschild radius for 

various masses given by:

The event horizon is located at Rs 

- everything within the event 

horizon is lost. The event horizon 

hides the singularity from the 

outside Universe.  

Two more practical questions:

What could collapse to form a 

black hole ?

How can we detect them and 

measure their masses ?



Black hole and neutron star masses from binary systems
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From J. Caseres, 2005, astro-ph/0503071



How to determine compact object masses
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P = orbital period

Kc = semiamplitude of 
companion star

i = inclination of the orbit to 

the line of sight (90o for orbit 
seen edge on)

MBH and Mc = masses of 
invisible object and 

companion star

Keplers Laws give:

The LHS is measured from observations, and is called the mass function f(m).

f(m) < MBH always, since sin i <1 and Mc>0

Hence we have firm lower limit on BH mass from relatively simple measurements
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https://www.esa.int/ESA_Multimedia/Videos/2023/03/Ga
ia_discovers_a_unique_black_hole
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https://ligo.northwestern.edu/media/mass-
plot/index.html



Summary
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• There is an upper limit to the mass of a white dwarf - we do not see WDs with 
masses > 1.4 M

 

• We will see in next lectures what the implications of this are for other 
phenomena in the Universe. It actually led to the discovery of dark energy!

• The collapse of massive stars produces two types of remnants - neutron stars 
and black holes. 

• Their masses have been measured in X-ray emitting binary systems 

• NS masses are clustered around 1.4 M
 

• The maximum limit for a stable neutron star is 3-5M
 

• Hard lower limits for masses of compact objects have been determined which 
have values much greater than this limit

• These are the best stellar mass black hole candidates - with masses of 5-15 
M
 they may be the collapsed remnants of very massive stars. 
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