

Simulazioni stellari con modelli 3D

Federico Rizzuti (Università di Trieste, IT / Keele University, UK)

Da Trieste a Keele

Modellistica di stelle 3D (pre-supernova)

Victoria CA Santa Barbara CA

Le equazioni di struttura stellare

Statica

$$\begin{cases}
\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \varrho} & \text{mass continuity} \\
\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{\partial^2 r}{\partial t^2} \frac{1}{4\pi r^2} & \text{pressure balance} \\
\frac{\partial I}{\partial m} = \varepsilon_n - \varepsilon_\nu - c_P \frac{\partial T}{\partial t} + \frac{\delta}{\varrho} \frac{\partial P}{\partial t} & \text{energy conservation} \\
\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla & \text{energy transport} \\
\varrho = \varrho(P, T, X_i) & \text{equation of state} \\
\frac{dX_i}{dt} = \frac{\partial X_i}{\partial t} + \frac{\partial}{\partial m} \left(D' \frac{\partial X_i}{\partial m} \right) & \text{nuclear species, } i \in [1, I] \\
\text{where } \varepsilon_n \text{ is the nuclear energy release rate, } \varepsilon_n \text{ the neutrino loss rate, } \nabla \text{ the} \\
\text{temperature gradient defined at } \nabla := d\ln(T)/d\ln(P) \text{ and } D' \text{ the diffusion} \\
\text{coefficient. For completeness, it is worth mentioning that also } \varepsilon_n, \varepsilon_\nu \text{ and other} \\
\text{quantities in (3.1) are function of } P, T, X_i, \text{ but their values are known and} \\
\text{tabulated.}
\end{cases}$$

I criteri di convezione

Figure 1.4: Schematic representation of the physical mechanism for the generation of a convective instability. Figure taken from Salaris & Cassisi (2005).

Derivazione matematica del criterio

Equazioni del moto della goccia

Soluzione del sistema: frequenza di Brunt-Vaisala

$$\mathbf{V}^2 = \frac{g \cdot \delta}{H_{\mathrm{P}}} \left(\nabla_{\mathrm{ad}} - \nabla + \frac{\varphi}{\delta} \nabla_{\mu} \right) \tag{2.15}$$

This equation represents the condition for stability of a displaced fluid element; N is commonly known as the "Brunt-Väisälä frequency". If $N^2 > 0$, then Nis real and the element keeps oscillating around its original position, according to the solution $\Delta r = A_r e^{i|N|t}$. But if $N^2 < 0$, N would be imaginary, therefore $\Delta r = A_r e^{|N|t}$ and the element will move exponentially away from its original position, giving rise to a convective instability (for more details about the derivation, see Salaris & Cassisi, 2005).

"Schwarzschild criterion" (Schwarzschild, 1958):

$$abla_{
m ad} >
abla_{
m rad}$$

 $abla_{\mathrm{ad}} + rac{arphi}{\delta}
abla_{\mu} >
abla_{\mathrm{rad}}
abla_{\mathrm{rad$

the "Ledoux criterion" (Ledoux, 1947).

Implementazione nei modelli stellari

- In realtà, i gradienti dell'elemento e del surrounding sono sempre intermedi: vanno calcolati
- Va assunta una distanza di mixing: mixing length theory (MLT) (*Böhm-Vitense 1958*)

$$\nabla_{\rm ad} = \frac{P \,\delta}{T \,\varrho \,c_{\rm P}}$$
$$\nabla_{\rm rad} = \frac{3}{16\pi a \,c \,G} \frac{\kappa \,L \,P}{M \,T^4}$$

$$\nabla_{ad} < \nabla_e < \nabla_s < \nabla_{rad}$$

• Stable region

• Convective region

 ℓ_{MLT}

Il problema dell'overshoot

- Il fluido non si arresta all'interfaccia: $a = 0 \text{ ma } v \neq 0$
- Penetrazione nella zona stabile
- overshooting/diffusion/ entrainment/convective boundary mixing (CBM)

Convective Boundary Mixing (CBM)

L'entrainment law per l'overshoot

 Entrainment law: creata per la geofisica, ma applicata agli ambienti stellari (Meakin & Arnett 2007)

$$E = \frac{v_{\rm e}}{v_{\rm c}} = A \ R i_{\rm B}^{-n}$$

$$Ri_B = \frac{\ell \Delta b}{v_c^2} ; \quad \Delta b = \int_{r_1}^{r_2} N^2 dr \qquad (2.26)$$

with ℓ the length scale of turbulent motions, Δb the buoyancy jump, N the Brunt-Väisälä frequency, r_1 and r_2 two radii that encompass the boundary location. A common choice is $r_1 = r_b - \ell/2$ and $r_2 = r_b + \ell/2$ with r_b being the boundary location, so that the integration length of N^2 around r_b is exactly ℓ . There is no strict definition for ℓ , so it is usually taken to be large enough to include completely the peak in N^2 during the integration, as we shall later

I problemi dei modelli stellari 1D

Vantaggi:

- si può modellare l'intera stella per tutto il suo tempo di vita
- confronto immediato con le osservazioni
- esplorazione dello spazio dei parametri

Svantaggi:

- assunzione di simmetria sferica
- necessità di parametrizzare i fenomeni multi-D: mass loss, convection, rotation, magnetic fields, opacity, binarity (and their interplay)

I modelli stellari 3D

Si costruisce una 'scatola' che contiene alcune parti della stella

Vantaggi:

- non si assume più simmetria sferica
- si possono includere i processi multi-D (convezione, rotazione, campi magnetici...)

Svantaggi:

- alto costo (sia di tempo che di risorse)
- tempo stellare limitato (ore o minuti)
- dimensioni limitate (strati stellari)

321D: il legame tra 1D e multi-D

Idrodinamica stellare: l'equazione di Navier-Stokes

Equazio

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \boldsymbol{v}) = 0; \quad \text{Conservatione massa}$$

$$\rho \frac{\partial \boldsymbol{v}}{\partial t} + \rho \, \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\nabla p + \rho \, \mathbf{g}; \quad \text{Conservatione momento}$$

$$\rho \frac{\partial E_{t}}{\partial t} + \rho \, \boldsymbol{v} \cdot \nabla E_{t} + \nabla \cdot (p \, \boldsymbol{v}) = \rho \, \boldsymbol{v} \cdot \mathbf{g} + \rho(\epsilon_{\text{nuc}} + \epsilon_{v}); \quad \text{Conservatione energia}$$

$$\frac{\boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \, \boldsymbol{v} \right) = -\boldsymbol{\nabla} P + \eta \nabla^{2} \boldsymbol{v} + \left(\frac{1}{3}\eta + \zeta\right) \boldsymbol{\nabla} \left(\boldsymbol{\nabla} \cdot \boldsymbol{v}\right) + \varrho \, \boldsymbol{g}$$

L'equazione di Navier-Stokes per descrivere il moto del fluido:

2 -

- Non ha soluzione esatta (problema del millennio): premio da 1 milione di \$ a chi trova la soluzione (o dimostra che non esiste)
- Va risolta numericamente

Approccio euleriano vs lagrangiano

La simulazione consiste in:

- approccio euleriano: una griglia di celle (cartesiana, sferica...)
- approccio lagrangiano: un insieme di particelle (SPH, n-body...)

Le equazioni di struttura stellare 3D

	$\int \frac{D\varrho}{Dt} = -\varrho \boldsymbol{\nabla} \cdot \boldsymbol{v}$	mass conservation	
	$\frac{D\boldsymbol{v}}{Dt} = -\frac{1}{\varrho}\boldsymbol{\nabla}P + \boldsymbol{g}$	momentum conservation	
	$E = \frac{1}{2}v^2 + E_{\mathrm{I}}(T,\varrho,X_i)$	energy definition	(2.20
Ì	$\frac{DE}{Dt} = -\frac{1}{\varrho} \nabla \cdot (Pv) + v \cdot g + \varepsilon_{\rm n} - \varepsilon_{\nu}$	energy conservation	(3.32
	$P = P\left(T, \varrho, X_i\right)$	equation of state	
	$\frac{DX_i}{Dt} = \frac{m_i}{\varrho} \left(\sum_j R_{j,i} - \sum_k R_{i,k} \right)$	nuclear burning, $i \in [1, I]$	

where I used the total derivative notation $\frac{D}{Dt} := \frac{\partial}{\partial t} + v \cdot \nabla$, which describes the temporal change of a quantity under the velocity field v. As before, ε_n is the nuclear energy release rate, ε_{ν} the neutrino loss rate, m_i the species mass, and $R_{a,b}$ the rate of the reaction that transforms species $a \to b$.

Scelte possibili per un setup

Per prima cosa, il problema fisico:

→ una stella di una certa massa, età, metallicità...

Quindi:

- Condizioni iniziali da un modello stellare 1D
- Geometria e risoluzione: piani paralleli, sferica...
 → attenzione alle singolarità
- Boundary conditions: periodic, reflective...
- Gravità: costante, monopolo, polinomiale...
- Energy generation e nuclear network

Herwig et al. (2014)

Le fasi di evoluzione stellare

La vita di una stella è una sequenza di bruciamenti, che dipende dalla sua massa iniziale

Le fasi di evoluzione stellare

Table 1.1: The nuclear burning stages of a 25 M_{\odot} star and relevant properties: nuclear burning time-scale, central temperature and density, main ashes. Adapted from Phillips (1994), who takes the data from Rolfs & Rodney (1988).

Stage	Time-scale	Temperature (K)	$\begin{array}{c} \text{Density} \\ (\text{kg m}^{-3}) \end{array}$	Products
Hydrogen burning Helium burning Carbon burning Neon burning Oxygen burning Silicon burning	7 Myr 0.5 Myr 600 yr 1 yr 6 months 1 day	$egin{array}{c} 6.0 imes10^7\ 2.3 imes10^8\ 9.3 imes10^8\ 1.7 imes10^9\ 2.3 imes10^9\ 4.1 imes10^9 \end{array}$	$\begin{array}{c} 5\times 10^{4} \\ 7\times 10^{5} \\ 2\times 10^{8} \\ 4\times 10^{9} \\ 1\times 10^{10} \\ 3\times 10^{10} \end{array}$	Helium Carbon, oxygen, neon Neon, sodium, magnesium Oxygen, magnesium, silicon Magnesium to sulphur Iron-peak elements

Elwyn Elms

La sequenza principale: stelle piccole

- Le stelle di tipo sole (< 1.3 ${
 m M}_{\odot}$)
- Producono energia nel nucleo, ma in maniera poco energetica
- Nucleo radiativo (stabile): energia trasportata da radiazione
- Inviluppo convettivo: energia trasportata da **convezione**

La sequenza principale: stelle massicce

- Le stelle più grandi del sole (>1.3 M_{\odot})
- Producono energia nel nucleo, in maniera molto energetica
- Nucleo convettivo: energia trasportata da convezione
- Inviluppo radiativo (stabile): energia trasportata da radiazione

La 'Onion-ring structure'

- Proprio come i bruciamenti nel nucleo, gli stessi bruciamenti anche nei gusci di stelle massicce
- H \rightarrow He \rightarrow C \rightarrow Ne \rightarrow O \rightarrow Ne \rightarrow Si
- Struttura a gusci concentrici
- Più facili da simulare in 3D: più piccoli e di breve durata
- Solo nelle stelle massicce, solo alla fine dell'evoluzione

Bruciamenti nucleari nei modelli 1D

- Modelli 1D usano semplici network (21-isotope network)
- Coprono tutte le fasi (hydrogen- to silicon-), ma con approssimazioni
- Network più grandi (100s isotopi), ma no one is perfect

Timmes, cococubed.com

Bruciamenti nucleari nei modelli 3D

- Bisogna considerare il costo computazionale
- Time-independent: fixed heating profile da 1D model
- Time-dependent: set esplicito di isotopi e reazioni nucleari
- → più accurato, ma molto più costoso!

Un semplice network per i modelli 3D

• 12-isotopes nuclear burning network:

→ n, p, ⁴He, ¹²C, ¹⁶O, ²⁰Ne, ²³Na, ²⁴Mg, ²⁸Si, ³¹P, ³²S, ⁵⁶Ni

• Energy generation for different environments:

 \rightarrow He-burning: ⁴He(2 α , γ)¹²C(α , γ)¹⁶O(α , γ)²⁰Ne;

 \rightarrow C-burning: ¹²C(¹²C, α)²⁰Ne; ¹²C(¹²C,p)²³Na; ²³Na(p,α)²⁰Ne; ²³Na(p,γ)²⁴Mg;

 \rightarrow Ne-burning: ²⁰Ne(γ, α)¹⁶O; ²⁰Ne(α, γ)²⁴Mg; ²⁴Mg(α, γ)²⁸Si

 \rightarrow O-burning: ¹⁶O(¹⁶O, α)²⁸Si; ¹⁶O(¹⁶O,p)³¹P; ³¹P(p,α)²⁸Si(α,γ)³²S

• Si impiegano database di reazioni nucleari (JINA-REACLIB)

'Boosting' per i rate nucleari

- Per accelerare le simulazioni, si moltiplicano i tassi di reazione nucleare per un boosting factor
- Larger energy release \rightarrow larger convective velocities \rightarrow smaller timescale
- Ma come reagisce il fluido?
- Tutti i processi fisici scalano allo stesso modo?
- → Possiamo estrapolare i risultati?
 Abbiamo bisogno di confrontare con simulazioni senza boosting

Fine prima parte

I modelli stellari 1D

Simulazioni 3D di una neon-burning shell

Ne-burning shell, 20 M_{\odot} , Z_{\odot} :

- "scatola" sferica 3D di r = 3.6 8.5 $\times 10^8$ cm; angolo ~ 26°
- convezione alimentata da 12-isotopes network per Ne-burning
- più simulazioni con diversa risoluzione e "boosting factors"

Convezione e moti del fluido

Sezione verticale: velocity 1.0×10^{7} magnitude in colour scale. -7.5×10^{6} Possiamo vedere: $R (10^8 \, cm)$ 5.5 -5.0×10^{6} Internal gravity waves 5.0Convective boundary mixing -2.5×10^{6} \rightarrow Entrainment: all'interfaccia, lo shear mixing erode materiale dalle zone stabili 0.0×10^{0} 4.000 $+10^{\circ}$ -10° 32 Θ (deg) Rizzuti et al. (2023)

flow speed (cm s⁻¹), time = 10343 s

Caratteristiche delle simulazioni

Table 5.1: Properties of the 3D hydrodynamic simulations presented in this chapter: model name; resolution $N_{r\theta\varphi}$; boosting factor of the driving luminosity ε ; starting t_{start} and ending t_{end} time of the simulation; convective turnover time τ_{c} ; number of convective turnovers simulated in the quasi-steady state n_{c} ; root-mean-square convective velocity v_{rms} ; sonic Mach number Ma; cost required to run the simulation in CPU core-hours.

name	$N_{r\theta\varphi}$	ε	$t_{ m start}$ (10 ³ s)	$t_{ m end} \ (10^3{ m s})$	$ au_{\rm c}$ (s)	$n_{ m c}$	$v_{ m rms}$ $(10^6 m cm/s)$	Ma (10 ⁻²)	$ \cos t $ $(10^6 hr)$
r256e1	256×128^2	1	0	60	155	96	3.29	0.83	2.08
r256e5	$256 imes 128^2$	5	0	29	59	25	6.55	1.76	0.89
r256e10	256×128^2	10	0	19	50	16	8.06	2.15	0.60
r256e50	$256 imes 128^2$	50	0	30	30	5	13.1	3.48	0.96
r512e1	512×256^2	1	16	19	136	22	3.83	0.99	1.66
r512e5	$512 imes 256^2$	5	0	2	59	25	6.65	1.80	0.80
r512e10	$512 imes 256^2$	10	0	1	49	16	8.28	2.23	0.50
r512e50	512×256^2	50	0	0.49	30	5	13.4	3.61	0.20
r1024e1	1024×512^2	1	10	10.4	127	3	3.26	0.84	2.88
r2048e1	2048×1024^2	1	10.01	10.03	113	0	3.85	0.99	2.02

Caratteristiche delle simulazioni

Figure 4.4: Radial profiles of different velocity components: in black, the mixing-length-theory velocity of the 1D model; in red, the root-mean-square velocity at the beginning of Ex1_512; in blue solid, the root-mean-square velocity at the end of Ex1_512; in blue dotted and dashed, the radial and horizontal components of $v_{\rm end}$ respectively. The shaded area is the convective zone according to the 1D stellar model.

Figure 4.3: Initial profiles from the 1D GENEC input model: temperature (T, solid black line), density (ρ , red dashed line), nuclear energy generation rate (ε_{nuc} , blue dot-dashed line), and neutrino energy loss rate (ε_{neu} , green dotted line). Figure taken from Rizzuti et al. (2022).

Cambiare risoluzione e boosting

35

Evoluzione delle abbondanze

I profili di abbondanza

- Horizontally-averaged abundance profiles
- In questo modo studiamo la distribuzione e l'evoluzione delle abbondanze: dall'inizio (dashed) alla fine (solid)
- Un plateau: well-mixed convective zone
- \rightarrow un modo utile per definire i bordi convettivi

Il trasporto delle specie tra strati

- Studiamo i profili radiali di flusso per ogni specie
- Neon è consumato: flusso negativo (downward)
- O, Mg, Si prodotti: flussi positivi
- Il trasporto nella zona convettiva da moti turbolenti

2D versus 3D

Perché non simulare la stessa cosa in 2D?

- Costo nettamente inferiore
- Ma possibili effetti sulla fisica: velocità più alte, influenza della 'scatola'
- Viene comunque fatto: i benefici possono superare gli svantaggi

||vel||, time = 92 s

Confronto 3D e 1D

Profili:

- i profili di abbondanze sono simili
- i profili di entropia no: il 3D è più corretto

I gradienti di temperatura:

- adiabatico nella zona convettiva
- non adiabatico fuori
- il 3D più smooth

Evoluzione della shell ed entrainment

- La zona convettiva cresce nel tempo, per via dell'entrainment, fino all'esaurimento del neon
- L'evoluzione è simile, ma il tempo scala dipende dal boosting factor

Calcoliamo la legge dell'entrainment

Table 5.2: List of measurements from the simulations in this chapter used for the entrainment analysis: model name; root-mean-square convective velocity $v_{\rm rms}$; upper entrainment rate $v_{\rm e}^{\rm up}/v_{\rm rms}$; lower entrainment rate $v_{\rm e}^{\rm low}/v_{\rm rms}$; upper bulk Richardson number ${\rm Ri}_{\rm B}^{\rm up}$; lower bulk Richardson number ${\rm Ri}_{\rm B}^{\rm low}$.

name	$v_{\rm rms}~({\rm cm~s^{-1}})$	$v_{ m e}^{ m up}/v_{ m rms}$	$v_{\rm e}^{\rm low}/v_{ m rms}$	$\rm Ri_B^{up}$	${\rm Ri}_{\rm B}^{\rm low}$
r512e1 r512e5 r512e10 r512e50	$3.83 \times 10^{6} \\ 6.65 \times 10^{6} \\ 8.28 \times 10^{6} \\ 1.34 \times 10^{7}$	$\begin{array}{l} 1.01 \times 10^{-3} \\ 5.03 \times 10^{-3} \\ 8.25 \times 10^{-3} \\ 2.72 \times 10^{-2} \end{array}$	5.38×10^{-5} 3.69×10^{-4} 6.54×10^{-4} 1.84×10^{-3}	51.3 13.8 8.91 2.63	224 64.7 42.5 15.3

 Parametrizziamo il tasso di entrainment con il "bulk Richardson number", che rappresenta la "rigidità" del bordo

$$E = \frac{v_{\rm e}}{v_{\rm rms}} = A \cdot R i_B^{-n}$$

(Meakin & Arnett 2007)

Calcoliamo la legge dell'entrainment

$$E = \frac{v_{\rm e}}{v_{\rm rms}} = A \cdot Ri_B^{-n}$$

(Meakin & Arnett 2007)

 Confrontiamo simulazioni idrodinamiche di fasi different: C-shell, Ne-shell, O-shell

Collegare l'1D al 3D

Simulazioni 3D di uno shell-merging event

Shell merging: andare oltre in modello onion-ring

Cosa succede?

• O, Ne e C-shell possono trovarsi così vicini da fondersi in un'unica shell

Nucleosintesi peculiare:

- C-O merging shell come fonte di ³¹P, ³⁵Cl, ³⁹K, ⁴⁵Sc
- nucleosintesi esplosiva attraversa gli strati merged: γ-process

Un nuovo setup con geometria 4π

- 20 ${\rm M}_{\odot}$, ${\rm Z}_{\odot}$
- Geometria quasi-4π: 360° x 90°
- Merging di C-, Ne- e O-burning shells
- Bruciamento nucleare con 12-isotope network
- no boosting
- Formazione di una grande zona convettiva
- Forti dinamiche

Evoluzione cinetica

- 3 shell singole prima del merging
- Merging di C- e Ne-burning shells a 1200 s
- Improvviso aumento di energia cinetica
- Confronto con l'1D: no merging con oxygen shell; timescale più veloce

Profili di velocità: la differenza dal 1D

 Stesse shells, ma velocità 3D più grandi che 1D: la ragione per il timescale veloce

Preliminary results

Differenze nelle abbondanze: 1D vs 3D

- Diversa estensione delle zone convettive: struttura 3D diversa
- Diverse le frazione finali: composizione 3D diversa

Differenze nei profili energetici

• Energia di ogni bruciamento: i bruciamenti avvengono in zone diverse

Trasporto di specie e nucleosintesi

- I flussi positivi/negativi riflettono produzione/distruzione di specie
- Dopo il merging: solo una zona convettiva, con C- e Ne-burning

Fig. 4. As in Fig. 3, but comparing 2.5D and 3D simulations with a boost factor of $b = 10^5$ performed on grids of 256×128 and 256×128^2 cells, respectively. In the 3D case, a slice with the spherical angle $\varphi = 0$ is shown. Andrassy et al. (2024)

- Andare verso una geometria pienamente sferica (4π)
- Indagare i bruciamenti del nucleo

5258 V. Varma and B. Müller

 Studiare l'effetto della rotazione sulla struttura ed evoluzione della stella e delle zone convettive

• Studiare l'impatto dei campi magnetici sui moti convettivi

Inoltre: • finire di simulare tutti i bruciamenti in 3D (H-core, He-core...)

> estendere il nuclear network (H-burning, Si-burning)

Domande?