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Classical fluids
- Interactions
- Measurable and interesting physical quantities
- Metropolis Monte Carlo approach (mainly)
- Molecular dynamics 
   (here: several slides; but today only few basic concepts will be discussed)
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Interactions
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A very simple interaction

r

U(r)

a

no double site occupancy 
(=no overlap)

The lattice gas model :

but in general: ...
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Interactions
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are averages over the trajectories, rather than the trajectories themselves. Questions such as these
are addressed by statistical mechanics and many of the ideas of statistical mechanics are discussed
in this chapter. However, the only background needed for this chapter is a knowledge of Newton’s
laws of motion.

8.2 The Intermolecular Potential

The first step is to specify the model system we wish to simulate. For simplicity, we assume that
the dynamics can be treated classically and that the molecules are spherical and chemically inert.
We also assume that the force between any pair of molecules depends only on the distance between
them. In this case the total potential energy U is a sum of two-particle interactions:

U = u(r12) + u(r13) + · · · + u(r23) + · · · =
N−1
∑

i=1

N
∑

j=i+1

u(rij), (8.1)

where u(rij) depends only on the magnitude of the distance rij between particles i and j. The
pairwise interaction form (8.1) is appropriate for simple liquids such as liquid argon.

In principle, the form of u(r) for electrically neutral molecules can be constructed by a first
principles quantum mechanical calculation. Such a calculation is very difficult, and it usually is
sufficient to choose a simple phenomenological form for u(r). The most important features of u(r)
for simple liquids are a strong repulsion for small r and a weak attraction at large r. The repulsion
for small r is a consequence of the Pauli exclusion principle. That is, the electron clouds of two
molecules must distort to avoid overlap, causing some of the electrons to be in different quantum
states. The net effect is an increase in kinetic energy and an effective repulsive force between the
electrons, known as core repulsion. The dominant weak attraction at larger r is due to the
mutual polarization of each molecule; the resultant attractive force is called the van der Waals
force.

One of the most common phenomenological forms of u(r) is the Lennard-Jones potential:

u(r) = 4ϵ
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A plot of the Lennard-Jones potential is shown in Figure 8.1. The r−12 form of the repulsive part of
the interaction has been chosen for convenience only. The Lennard-Jones potential is parameterized
by a length σ and an energy ϵ. Note that u(r) = 0 at r = σ, and that u(r) is essentially zero
for r > 3 σ. The parameter ϵ is the depth of the potential at the minimum of u(r); the minimum
occurs at a separation r = 21/6σ. The parameters ϵ and σ of the Lennard-Jones potential which
give good agreement with the experimental properties of liquid argon are ϵ = 1.65 × 10−21 J and
σ = 3.4 Å.
Problem 8.1. Qualitative properties of the Lennard-Jones interaction
Write a short program or use a graphics package to plot the Lennard-Jones potential (8.1) and the
magnitude of the corresponding force:

f(r) = −∇u(r) =
24ϵ
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REMARK: 
this is an effective interaction, a simple phenomenological form for   u(r)
(it is an approximation, since in general, 3-, 4- ... many-body terms are present)

(or atoms)
(
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u

r
ε

σ

Figure 8.1: Plot of the Lennard-Jones potential u(r). Note that the potential is characterized by
a length σ and an energy ϵ.

What is the value of u(r) for r = 0.8σ? How much does u increase if r is decreased to r = 0.72σ,
a decrease of 10%? What is the value of u at r = 2.5σ? At what value of r does the force equal
zero?

8.3 The Numerical Algorithm

Now that we have specified the interaction between the particles, we need to introduce a numerical
integration method for computing the trajectory of each particle. As might be expected, we need
to use at least a second-order algorithm to maintain conservation of energy for the times of interest
in molecular dynamics simulations. We adopt the commonly used algorithm:

xn+1 = xn + vn∆t + 1
2an(∆t)2 (8.4a)

vn+1 = vn + 1
2 (an+1 + an)∆t. (8.4b)

To simplify the notation, we have written the algorithm for only one component of the particle’s
motion. The new position is used to find the new acceleration an+1 which is used together with
an to obtain the new velocity vn+1. The algorithm represented by (8.4) is a convenient form of
the Verlet algorithm (see Appendix 5A).

repulsion

attraction
minimum

general form
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A first goal in the study of fluids:
to gain insight into qualitative differences 

between different phases
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Figure 17.4: A sketch of the phase diagram for a simple material.

densities? Can a solid form in the absence of an attractive interaction? What are the physically
relevant quantities for a system with an interaction of the form (17.38)? There are no thermal
quantities such as the mean potential energy because this quantity is always zero. The major
quantity of interest is g(r) which yields information on the correlations of the particles and the
equation of state. If the interaction is given by (17.38), it can be shown that (17.37) reduces to

βP

ρ
= 1 +

2π

3
ρσ3g(σ) (d = 3) (17.39a)

= 1 +
π

2
ρσ2g(σ) (d = 2) (17.39b)

= 1 + ρσg(σ). (d = 1) (17.39c)

We will calculate g(r) for different values of r and then extrapolate our results to r = σ (see
Problem 17.16b).

Because the application of molecular dynamics and Monte Carlo methods to hard disks is
similar, we discuss the latter method only briefly and do not include a program here. The idea is
to choose a disk at random and move it to a trial position as implemented in the following:

LET itrial = int(N*rnd) + 1
LET xtrial = x(itrial) + (2*rnd - 1)*delta
LET ytrial = y(itrial) + (2*rnd - 1)*delta

If the new position overlaps another disk, the move is rejected and the old configuration is retained;
otherwise the move is accepted. A reasonable, although not necessarily optimum, choice for the
maximum displacement δ is to choose δ such that approximately one half of all trial states are
accepted. We also need to fix the maximum amplitude of the move so that the moves are equally
probable in all directions.
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Measurable and  
interesting   

physical quantities
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interesting  quantities

• pair correlation function  g(r) 

• energy  E 

• pressure   p 

• ...
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• pair correlation function  g(r) 

• energy  E 

• pressure   p 

• ...

concepts and qualitative features

mathematical formulation and 
expressions useful for computation
{
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Radial distribution function

(*)
is a conditional probability
of finding a particle in the shell r ÷ r + dr

given one at the origin

g(r)dr

g(r)

(dr = infinitesimal volume of the shell)

Definition

Consider one reference particle at the origin and count the others; then, average 
over the reference particles 
(Here: spherically symmetric interactions assumed; g depends only on r=|r| )

(dimensionless)
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(Reminder: spherically symmetric interactions 
assumed; g depends only on r=|r| )

Radial distribution function

N particles, volume V : density ρ = N/V

CHAPTER 8. THE DYNAMICS OF MANY PARTICLE SYSTEMS 239

distribution function g(r) is the most common measure of this correlation and is defined as
follows. Suppose that N particles are contained in a region of volume V with number density
ρ = N/V . (In two and one dimensions, we replace V by the area and length respectively.) Choose
one of the particles to be the origin. Then the mean number of other particles in the shell between
r and r + dr is given by ρg(r) dr, where the volume element dr = 4πr2dr (d = 3), 2πrdr (d = 2),
or 2 dr (d = 1). If the interparticle interaction is spherically symmetric and the system is a gas or
a liquid, then g(r) depends only on the separation r = |r|. The normalization condition for g(r) is

ρ

∫

g(r) dr = N − 1 ≈ N. (8.13)

Equation (8.13) implies that if we choose one particle as the origin and count all the other particles
in the system, we obtain N − 1 particles. For an ideal gas, there are no correlations between the
particles, and g(r) = 1 for all r. For the Lennard-Jones interaction, we expect that g(r) → 0
as r → 0, because the particles cannot penetrate one another. We also expect that g(r) → 1 as
r → ∞, because the effect of one particle on another decreases as their separation increases.

The radial distribution function can be measured indirectly by elastic radiation scattering
experiments, especially by the scattering of X-rays. Several thermodynamic properties also can be
obtained from g(r). Because ρg(r) can be interpreted as the local density about a given particle, the
potential energy of interaction between this particle and all other particles between r and r + dr is
u(r)ρg(r) dr, if we assume that only two-body interactions are present. The total potential energy
is found by integrating over all values of r and multiplying by N/2. The factor of N is included
because any of the N particles could be chosen as the particle at the origin, and the factor of 1/2 is
included so that each pair interaction is counted only once. The result is that the mean potential
energy per particle can be expressed as

U

N
=

ρ

2

∫

g(r)u(r) dr. (8.14)

It also can be shown that the relation (8.10) for the mean pressure can be rewritten in terms of
g(r) so that the equation of state can be expressed as

PV

NkT
= 1 − ρ

2dkT

∫

g(r) r
du(r)

dr
dr. (8.15)

To determine g(r) for a particular configuration of particles, we first compute n(r,∆r), the
number of particles in a spherical (circular) shell of radius r and small, but nonzero width ∆r,
with the center of the shell centered about each particle. A subroutine for computing n(r) is given
in the following:

SUB compute_g(ncorrel)
DECLARE PUBLIC x(),y()
DECLARE PUBLIC N,Lx,Ly
DECLARE PUBLIC gcum(),nbin,dr
DECLARE DEF separation
! accumulate data for n(r)
FOR i = 1 to N - 1
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Normalization

ρg(r)dr

The mean number of particles in the 
shell with radius between r and r+dr is:

0

∞
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Radial distribution function

repulsive interactions on short-range scale: g(r → 0) → 0
in general: g(r) → 1 for r → ∞

Gives insight into the structure of a many-body system.
 General behavior at short and long distances:

g(r)
Physical meaning

14



Radial distribution function
Typical features:

      gas: almost structureless 
(ideal gas:  no interactions or correlations,  g(r) = 1  for r large enough)

liquid: some structure with broad peaks
solid: evidence of well separated coordination shells, 
zero in between; broadening of the peaks depending on T

(credit to:  Thomas/Penfold Group, http://rkt.chem.ox.ac.uk/ )
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The initial stages of melting of graphene between 4000 K and 6000 K, E. Ganz et al., Phys. Chem. Chem. Phys., 2017, 19, 3756

 

another example (2D):
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Radial distribution function
formulation in case of spherically symmetric interactions:
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distribution function g(r) is the most common measure of this correlation and is defined as
follows. Suppose that N particles are contained in a region of volume V with number density
ρ = N/V . (In two and one dimensions, we replace V by the area and length respectively.) Choose
one of the particles to be the origin. Then the mean number of other particles in the shell between
r and r + dr is given by ρg(r) dr, where the volume element dr = 4πr2dr (d = 3), 2πrdr (d = 2),
or 2 dr (d = 1). If the interparticle interaction is spherically symmetric and the system is a gas or
a liquid, then g(r) depends only on the separation r = |r|. The normalization condition for g(r) is

ρ

∫

g(r) dr = N − 1 ≈ N. (8.13)

Equation (8.13) implies that if we choose one particle as the origin and count all the other particles
in the system, we obtain N − 1 particles. For an ideal gas, there are no correlations between the
particles, and g(r) = 1 for all r. For the Lennard-Jones interaction, we expect that g(r) → 0
as r → 0, because the particles cannot penetrate one another. We also expect that g(r) → 1 as
r → ∞, because the effect of one particle on another decreases as their separation increases.

The radial distribution function can be measured indirectly by elastic radiation scattering
experiments, especially by the scattering of X-rays. Several thermodynamic properties also can be
obtained from g(r). Because ρg(r) can be interpreted as the local density about a given particle, the
potential energy of interaction between this particle and all other particles between r and r + dr is
u(r)ρg(r) dr, if we assume that only two-body interactions are present. The total potential energy
is found by integrating over all values of r and multiplying by N/2. The factor of N is included
because any of the N particles could be chosen as the particle at the origin, and the factor of 1/2 is
included so that each pair interaction is counted only once. The result is that the mean potential
energy per particle can be expressed as

U

N
=

ρ

2

∫

g(r)u(r) dr. (8.14)

It also can be shown that the relation (8.10) for the mean pressure can be rewritten in terms of
g(r) so that the equation of state can be expressed as

PV

NkT
= 1 − ρ

2dkT

∫

g(r) r
du(r)

dr
dr. (8.15)

To determine g(r) for a particular configuration of particles, we first compute n(r,∆r), the
number of particles in a spherical (circular) shell of radius r and small, but nonzero width ∆r,
with the center of the shell centered about each particle. A subroutine for computing n(r) is given
in the following:

SUB compute_g(ncorrel)
DECLARE PUBLIC x(),y()
DECLARE PUBLIC N,Lx,Ly
DECLARE PUBLIC gcum(),nbin,dr
DECLARE DEF separation
! accumulate data for n(r)
FOR i = 1 to N - 1
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experiments, especially by the scattering of X-rays. Several thermodynamic properties also can be
obtained from g(r). Because ρg(r) can be interpreted as the local density about a given particle, the
potential energy of interaction between this particle and all other particles between r and r + dr is
u(r)ρg(r) dr, if we assume that only two-body interactions are present. The total potential energy
is found by integrating over all values of r and multiplying by N/2. The factor of N is included
because any of the N particles could be chosen as the particle at the origin, and the factor of 1/2 is
included so that each pair interaction is counted only once. The result is that the mean potential
energy per particle can be expressed as

U

N
=

ρ

2

∫

g(r)u(r) dr. (8.14)

It also can be shown that the relation (8.10) for the mean pressure can be rewritten in terms of
g(r) so that the equation of state can be expressed as

PV

NkT
= 1 − ρ

2dkT

∫

g(r) r
du(r)

dr
dr. (8.15)

To determine g(r) for a particular configuration of particles, we first compute n(r,∆r), the
number of particles in a spherical (circular) shell of radius r and small, but nonzero width ∆r,
with the center of the shell centered about each particle. A subroutine for computing n(r) is given
in the following:

SUB compute_g(ncorrel)
DECLARE PUBLIC x(),y()
DECLARE PUBLIC N,Lx,Ly
DECLARE PUBLIC gcum(),nbin,dr
DECLARE DEF separation
! accumulate data for n(r)
FOR i = 1 to N - 1
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FOR j = i + 1 to N
LET dx = separation(x(i) - x(j),Lx)
LET dy = separation(y(i) - y(j),Ly)
LET r2 = dx*dx + dy*dy
LET r = sqr(r2)
LET ibin = truncate(r/dr,0) + 1
IF ibin <= nbin then

LET gcum(ibin) = gcum(ibin) + 1
END IF

NEXT j
NEXT i
LET ncorrel = ncorrel + 1 ! # times n(r) computed

END SUB

The results for n(r) for different configurations are accumulated in the array gcum; the latter array
is normalized in SUB normalize g listed below. The use of periodic boundary conditions in SUB
compute g implies that the maximum separation between any two particles in the x and y direction
is Lx/2 and Ly/2 respectively. Hence for a square cell, we can determine g(r) only for r ≤ 1

2L.
To obtain g(r) from n(r), we note that for a given particle i, we consider only those particles

whose j is greater than i (see SUB compute g). Hence, there are a total of 1
2N(N − 1) separations

that are considered. In two dimensions we compute n(r,∆r) for a circular shell whose area is
2πr∆r. These considerations imply that g(r) is related to n(r) by

ρg(r) =
n(r,∆r)

1
2N 2πr∆r

. (two dimensions) (8.16)

Note the factor of N/2 in the denominator of (8.16). The following subroutine normalizes the array
gcum and yields g(r):

SUB normalize_g(ncorrel)
DECLARE PUBLIC N,Lx,Ly
DECLARE PUBLIC gcum(),dr
LET density = N/(Lx*Ly)
LET rmax = min(Lx/2,Ly/2)
LET normalization = density*ncorrel*0.5*N
LET bin = 1
LET r = 0
OPEN #2: name "gdata", access output,create new
DO while r <= rmax

LET area_shell = pi*((r + dr)^2 - r^2)
LET g = gcum(bin)/(normalization*area_shell)
PRINT r+dr/2,g
PRINT #2: r+dr/2,g
LET bin = bin + 1
LET r = r + dr

LOOP
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distribution function g(r) is the most common measure of this correlation and is defined as
follows. Suppose that N particles are contained in a region of volume V with number density
ρ = N/V . (In two and one dimensions, we replace V by the area and length respectively.) Choose
one of the particles to be the origin. Then the mean number of other particles in the shell between
r and r + dr is given by ρg(r) dr, where the volume element dr = 4πr2dr (d = 3), 2πrdr (d = 2),
or 2 dr (d = 1). If the interparticle interaction is spherically symmetric and the system is a gas or
a liquid, then g(r) depends only on the separation r = |r|. The normalization condition for g(r) is

ρ

∫

g(r) dr = N − 1 ≈ N. (8.13)

Equation (8.13) implies that if we choose one particle as the origin and count all the other particles
in the system, we obtain N − 1 particles. For an ideal gas, there are no correlations between the
particles, and g(r) = 1 for all r. For the Lennard-Jones interaction, we expect that g(r) → 0
as r → 0, because the particles cannot penetrate one another. We also expect that g(r) → 1 as
r → ∞, because the effect of one particle on another decreases as their separation increases.

The radial distribution function can be measured indirectly by elastic radiation scattering
experiments, especially by the scattering of X-rays. Several thermodynamic properties also can be
obtained from g(r). Because ρg(r) can be interpreted as the local density about a given particle, the
potential energy of interaction between this particle and all other particles between r and r + dr is
u(r)ρg(r) dr, if we assume that only two-body interactions are present. The total potential energy
is found by integrating over all values of r and multiplying by N/2. The factor of N is included
because any of the N particles could be chosen as the particle at the origin, and the factor of 1/2 is
included so that each pair interaction is counted only once. The result is that the mean potential
energy per particle can be expressed as

U

N
=

ρ

2

∫

g(r)u(r) dr. (8.14)

It also can be shown that the relation (8.10) for the mean pressure can be rewritten in terms of
g(r) so that the equation of state can be expressed as

PV

NkT
= 1 − ρ

2dkT

∫

g(r) r
du(r)

dr
dr. (8.15)

To determine g(r) for a particular configuration of particles, we first compute n(r,∆r), the
number of particles in a spherical (circular) shell of radius r and small, but nonzero width ∆r,
with the center of the shell centered about each particle. A subroutine for computing n(r) is given
in the following:

SUB compute_g(ncorrel)
DECLARE PUBLIC x(),y()
DECLARE PUBLIC N,Lx,Ly
DECLARE PUBLIC gcum(),nbin,dr
DECLARE DEF separation
! accumulate data for n(r)
FOR i = 1 to N - 1

Remember:

Integrated all over the space, n(r,Δr) gives the number of pairs considered, 
which is  N(N-1)/2, times the area of the circular shell

For a given particle  i,  consider only those with  j > i
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Radial distribution function
Again in the case of spherically symmetric interactions

Mathematical formulation - details for the 2D case:

g(r) =
number of pairs with distance between r and r + ∆r

2πr∆r · ρN

ρ

ρ

OK for a numerical implementation

<= (δ: to be considered within 
the accuracy of Δr ;  up to 
here: double counting of pairs)

<= (here: no double           
counting of pairs)
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Simple interaction potentials

• Hard disks (spheres)

• Lennard-Jones

• ...

22



Hard disks
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CLOSE #2
END SUB

The shell thickness ∆r needs to be sufficiently small so that the important features of g(r) are
found, but large enough so that each bin has a reasonable number of contributions. The value of ∆r
can be specified in SUB initial; a reasonable compromise choice for its magnitude is dr = 0.025.
Problem 8.11. The structure of g(r) for a dense liquid and a solid

1. Incorporate SUB compute g and SUB normalize g into your molecular dynamics program
and determine g(r) for some of the same densities and temperatures that you have considered
in previous problems. What are the qualitative features of g(r)?

2. Compute g(r) for a system of N = 64 particles that are fixed on a triangular lattice with
Lx = 8 and Ly =

√
3Lx/2. What is the density of the system? What is the nearest neighbor

distance between sites? At what value of r does the first maximum of g(r) occur? What is
the next nearest distance between sites? At what value of r does the second maximum of
g(r) occur? Does your calculated g(r) have any other relative maxima? If so, relate these
maxima to the structure of the triangular lattice.

3. Use your molecular dynamics program to compute g(r) for a dense fluid (ρ > 0.6, T ≈ 1.0)
using at least N = 32 particles. How many relative maxima can you observe? In what ways
do they change as the density is increased? How does the behavior of g(r) for a dense liquid
compare to that of a dilute gas and a solid?

8.9 Hard disks

How can we understand the temperature and density dependence of the equation of state and the
structure of a dense liquid? One way to gain more insight is to modify the interaction and see how
the properties of the system change. In particular, we would like to understand the relative role
of the repulsive and attractive parts of the interaction. For this reason, we consider an idealized
system of hard disks for which the interaction u(r) is purely repulsive:

u(r) =

{

+∞, r < σ

0, r ≥ σ .
(8.17)

The length σ is the diameter of the hard disks (see Figure 8.6). In three dimensions the interaction
(8.17) describes the interaction of hard spheres (billiard balls); in one dimension (8.17) describes
the interaction of hard rods.

Because the interaction u(r) between hard disks is a discontinuous function of r, the dynamics
of hard disks is qualitatively different than it is for a continuous interaction such as the Lennard-
Jones potential. For hard disks, the particles move in straight lines at constant speed between
collisions and change their velocities instantaneously when a collision occurs. Hence the problem
becomes finding the next collision and computing the change in the velocities of the colliding pair.
We will see that the dynamics can be computed exactly in principle and is limited only by computer
roundoff errors.
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σ

Figure 8.6: The closest distance between two hard disks is σ. The disks exert no force on one
another unless they touch.

The dynamics of a system of hard disks can be treated as a sequence of two-body elastic
collisions. The idea is to consider all pairs of particles i and j and to find the collision time tij for
their next collision ignoring the presence of all other particles. In many cases, the particles will be
going away from each other and the collision time is infinite. From the collection of collision times
for all pairs of particles, we find the minimum collision time. We then move all particles forward
in time until the collision occurs and calculate the postcollision velocities of the colliding pair.

We first determine the particle velocities after a collision. Consider a collision between particles
1 and 2. Let v1 and v2 be their velocities before the collision and v′

1 and v′
2 be their velocities

after the collision. Because the particles have equal mass, it follows from conservation of energy
and linear momentum that

v′1
2 + v′2

2 = v1
2 + v2

2 (8.18)

v′
1 + v′

2 = v1 + v2. (8.19)

From (8.19) we have

∆v1 = v′
1 − v1 = −(v′

2 − v2) = −∆v2. (8.20)

When two hard disks collide, the force is exerted along the line connecting their centers,
r12 = r1 − r2. Hence, the components of the velocities parallel to r12 are exchanged, and the
perpendicular components of the velocities are unchanged. It is convenient to write the velocity of
particles 1 and 2 as a vector sum of its components parallel and perpendicular to the unit vector
r̂12 = r12/|r12|. We write the velocity of particle 1 as:

v1 = v1,∥ + v1,⊥, (8.21)

where v1,∥ = (v1 · r̂12)r̂12,

v′
1,∥ = v2,∥ v′

2,∥ = v1,∥ (8.22a)

and
v′

1,⊥ = v1,⊥ v′
2,⊥ = v2,⊥. (8.22b)

A particular form of interacting potential 
(similar to the simplest lattice gas model with no double site occupancy, 

but here in a continuum)

No minimum; check overlap!
No attractive part  =>  no transition from gas to liquid

u(r)

r
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of hard disks in 2D

/σ

σ

2σ σ
√

3

at different reduced densities 

<= liquid

<= solid
<= transition ?

the appearance of a double structure in the peak around 2σ 
is a fingerprint of the liquid-solid transition

(high density solid: peaks at ~1.7 σ  and  2 σ )

Radial distribution function

max reduced density :

f =
⇡

4
⇢⇤

1

24

particle (or number) density : ρ =
number of particles

area
=

N

A

reduced density : ρ
∗

= ρσ
2

ρ
∗

max
=

2
√

3
= 1.1547

“solid” (hex) phase at max density



Lennard-Jones potential
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are averages over the trajectories, rather than the trajectories themselves. Questions such as these
are addressed by statistical mechanics and many of the ideas of statistical mechanics are discussed
in this chapter. However, the only background needed for this chapter is a knowledge of Newton’s
laws of motion.

8.2 The Intermolecular Potential

The first step is to specify the model system we wish to simulate. For simplicity, we assume that
the dynamics can be treated classically and that the molecules are spherical and chemically inert.
We also assume that the force between any pair of molecules depends only on the distance between
them. In this case the total potential energy U is a sum of two-particle interactions:

U = u(r12) + u(r13) + · · · + u(r23) + · · · =
N−1
∑

i=1

N
∑

j=i+1

u(rij), (8.1)

where u(rij) depends only on the magnitude of the distance rij between particles i and j. The
pairwise interaction form (8.1) is appropriate for simple liquids such as liquid argon.

In principle, the form of u(r) for electrically neutral molecules can be constructed by a first
principles quantum mechanical calculation. Such a calculation is very difficult, and it usually is
sufficient to choose a simple phenomenological form for u(r). The most important features of u(r)
for simple liquids are a strong repulsion for small r and a weak attraction at large r. The repulsion
for small r is a consequence of the Pauli exclusion principle. That is, the electron clouds of two
molecules must distort to avoid overlap, causing some of the electrons to be in different quantum
states. The net effect is an increase in kinetic energy and an effective repulsive force between the
electrons, known as core repulsion. The dominant weak attraction at larger r is due to the
mutual polarization of each molecule; the resultant attractive force is called the van der Waals
force.

One of the most common phenomenological forms of u(r) is the Lennard-Jones potential:

u(r) = 4ϵ

[

(σ

r

)
12

−
(σ

r

)
6
]

. (8.2)

A plot of the Lennard-Jones potential is shown in Figure 8.1. The r−12 form of the repulsive part of
the interaction has been chosen for convenience only. The Lennard-Jones potential is parameterized
by a length σ and an energy ϵ. Note that u(r) = 0 at r = σ, and that u(r) is essentially zero
for r > 3 σ. The parameter ϵ is the depth of the potential at the minimum of u(r); the minimum
occurs at a separation r = 21/6σ. The parameters ϵ and σ of the Lennard-Jones potential which
give good agreement with the experimental properties of liquid argon are ϵ = 1.65 × 10−21 J and
σ = 3.4 Å.
Problem 8.1. Qualitative properties of the Lennard-Jones interaction
Write a short program or use a graphics package to plot the Lennard-Jones potential (8.1) and the
magnitude of the corresponding force:

f(r) = −∇u(r) =
24ϵ

r

[

2
(σ

r
)12 −

(σ

r

)6
]

r̂. (8.3)
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u

r
ε

σ

Figure 8.1: Plot of the Lennard-Jones potential u(r). Note that the potential is characterized by
a length σ and an energy ϵ.

What is the value of u(r) for r = 0.8σ? How much does u increase if r is decreased to r = 0.72σ,
a decrease of 10%? What is the value of u at r = 2.5σ? At what value of r does the force equal
zero?

8.3 The Numerical Algorithm

Now that we have specified the interaction between the particles, we need to introduce a numerical
integration method for computing the trajectory of each particle. As might be expected, we need
to use at least a second-order algorithm to maintain conservation of energy for the times of interest
in molecular dynamics simulations. We adopt the commonly used algorithm:

xn+1 = xn + vn∆t + 1
2an(∆t)2 (8.4a)

vn+1 = vn + 1
2 (an+1 + an)∆t. (8.4b)

To simplify the notation, we have written the algorithm for only one component of the particle’s
motion. The new position is used to find the new acceleration an+1 which is used together with
an to obtain the new velocity vn+1. The algorithm represented by (8.4) is a convenient form of
the Verlet algorithm (see Appendix 5A).

repulsion

attraction

minimum
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• periodic boundary conditions

• minimum image

Generalities in  
many-body simulations
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8.4 Boundary Conditions

A useful simulation must incorporate all the relevant features of the physical system of interest.
The ultimate goal of our simulations is to understand the behavior of bulk systems—systems of
the order of N ∼ 1023 – 1025 particles. In bulk systems the fraction of particles near the walls
of the container is negligibly small. However, the number of particles that can be studied in a
molecular dynamics simulation is typically 103 – 105, although as many as 106 particles or more,
can be studied on present-day supercomputers. For these small systems the fraction of particles
near the walls of the container is significant, and hence the behavior of such a system would be
dominated by surface effects.

The most common way of minimizing surface effects and to simulate more closely the properties
of a bulk system is to use what are known as periodic boundary conditions. First consider
a one-dimensional “box” of N particles that are constrained to move on a line of length L. The
ends of the line serve as imaginary walls. The usual application of periodic boundary conditions is
equivalent to considering the line to be a circle (see Figure 8.2). The distance between the particles
is measured along the arc, and hence the maximum separation between any two particles is L/2.

The computer code for periodic boundary conditions is straightforward. If a particle leaves
the box by crossing a boundary, we add or subtract L to the coordinate. One simple way is to use
an IF statement after the particles have been moved:

IF x > L then
LET x = x - L

ELSE IF x < 0 then
LET x = x + L

END IF

To compute the minimum distance dx between particles 1 and 2 at x(1) and x(2) respectively, we
can write

LET dx = x(1) - x(2)
IF dx > 0.5*L then

LET dx = dx - L
ELSE IF dx < -0.5*L then

LET dx = dx + L
END IF

The generalization of this application of periodic boundary conditions to two dimensions is straight-
forward if we imagine a box with opposite edges joined so that the box becomes the surface of a
torus (the shape of a doughnut and a bagel).

We now discuss the motivation for this choice of boundary conditions. Imagine a set of N
particles in a two-dimensional cell. The use of periodic boundary conditions implies that this
central cell is duplicated an infinite number of times to fill two-dimensional space. Each image cell
contains the original particles in the same relative positions as the central cell. Figure 8.3 shows
the first several image cells for N = 2 particles. Periodic boundary conditions yield an infinite
system, although the motion of particles in the image cells is identical to the motion of the particles
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Figure 8.3: Example of the minimum image approximation in two dimensions. The minimum
image distance convention implies that the separation between particles 1 and 2 is given by the
shorter of the two distances shown.

of interest are shown in Table 8.1. All program variables are in reduced units, e.g., the time in
our molecular dynamics program is expressed in units of σ(m/ϵ)1/2. As an example, suppose that
we run our molecular dynamics program for 2000 time steps with a time step t. = 0.01. The total
time of our run is 2000 × 0.01 = 20 in reduced units or 4.34 × 10−11 s for argon (see Table 8.1).
The total time of a typical molecular dynamics simulation is in the range of 10 – 104 in reduced
units, corresponding to a duration of approximately 10−11 – 10−9 s.

8.6 A Molecular Dynamics Program

In the following, we develop a molecular dynamics simulation of a two-dimensional system of
particles interacting via the Lennard-Jones potential. We choose two rather than three dimensions
because it is easier to visualize the results and the calculations are not as time consuming. The
structure of Program md is given in the following:

PROGRAM md
PUBLIC x(36),y(36),vx(36),vy(36),ax(36),ay(36)
PUBLIC N,Lx,Ly,dt,dt2

Minimum Image convention 
for the interactions

Only the interactions with the nearest images are considered
27

NEW! DIFFERENT  
w.r.t. Ising, lattice gas, hard disks 
because here the interactions are not 
simply on-site or nearest neighbour 
but longer ranged 



Collisions and PBC
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Figure 8.7: The positions and velocities of disks 1 and 2 are such that disk 1 collides with an image
of disk 2 that is not the image closest to disk 1. The periodic images of disk 2 are not shown.

DECLARE DEF pbc
FOR k = 1 to N

LET collision_time(k) = collision_time(k) - tij
LET x(k) = x(k) + vx(k)*tij
LET y(k) = y(k) + vy(k)*tij
LET x(k) = pbc(x(k),Lx)
LET y(k) = pbc(y(k),Ly)

NEXT k
END SUB

The function pbc allows for the possibility that a disk has moved further than the linear
dimension of the central cell between a collision. We have written it as a separate function to
emphasize its purpose.

DEF pbc(pos,L)
LET pbc = mod(pos,L)

END DEF

The function separation is identical to the function listed in Program md and is not listed here.
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DECLARE DEF pbc
FOR k = 1 to N

LET collision_time(k) = collision_time(k) - tij
LET x(k) = x(k) + vx(k)*tij
LET y(k) = y(k) + vy(k)*tij
LET x(k) = pbc(x(k),Lx)
LET y(k) = pbc(y(k),Ly)

NEXT k
END SUB

The function pbc allows for the possibility that a disk has moved further than the linear
dimension of the central cell between a collision. We have written it as a separate function to
emphasize its purpose.

DEF pbc(pos,L)
LET pbc = mod(pos,L)

END DEF

The function separation is identical to the function listed in Program md and is not listed here.
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Figure 8.7: The positions and velocities of disks 1 and 2 are such that disk 1 collides with an image
of disk 2 that is not the image closest to disk 1. The periodic images of disk 2 are not shown.

DECLARE DEF pbc
FOR k = 1 to N

LET collision_time(k) = collision_time(k) - tij
LET x(k) = x(k) + vx(k)*tij
LET y(k) = y(k) + vy(k)*tij
LET x(k) = pbc(x(k),Lx)
LET y(k) = pbc(y(k),Ly)

NEXT k
END SUB

The function pbc allows for the possibility that a disk has moved further than the linear
dimension of the central cell between a collision. We have written it as a separate function to
emphasize its purpose.

DEF pbc(pos,L)
LET pbc = mod(pos,L)

END DEF

The function separation is identical to the function listed in Program md and is not listed here.

check collisions!
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Two approaches to simulate 
the evolution of the system 

(to sample the configuration space)

• stochastic (Metropolis Monte Carlo)

• deterministic (integration of the eq. of motion)

29



Classical fluids:  
Metropolis Monte Carlo method 

canonical ensemble (NVT)  

- calculate Etot 

   

- displace an individual particle by a small amount: calculate ΔE
  (variation of the interaction of that particle with all the others) 

- accept/reject the new position with the usual Metropolis factor:
  w = min [1, exp (-ΔE/kT)]
                  

- iterate

- accumulate distances to calculate g(r)

30



Metropolis Monte Carlo method  
for Hard Disks (Spheres)

displace an individual particle by a small amount:
if overlap with another particle: REJECTED

if no overlap with any other particle: ACCEPTED

-Metropolis algorithm with                     ∆E = 0 or ∞

-ergodicity: obvious at low densities;
complicated at high densities
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MD generates the dynamical trajectories of a 
system of N particles by integrating Newton’s 
equations of motion 
- with suitable initial and boundary conditions 
- proper interatomic potentials 
- while satisfying thermodynamical (macroscopic) constraints 

- and with a ‘smart’ algorithm for numerical integration

Molecular dynamics
a deterministic approach to the dynamics of a system
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Molecular dynamics

Analytical solution for constant forces;
but in general not always possible 

=> different possible algorithms for 
numerical integration
of the eqs. of motion

and Newton’s equations of motion

33

d2x
dt2

= a(x, t, . . . ) =
F(x, t, . . . )

m

F = ma
But not always easy to solve… In general: 



x(t) = x(0) + v(0)t +
1
2

F

m
t2

x(2) v(2) x(3) v(3)x(0) v(0) F(0) ... ...

F
F

F

F

v

v
v

v

x(1) v(1) F(1) x(2) v(2) F(2)

Basic idea: discretization - e.g. consider uniformly acc. motion

x(t + ∆t) = x(t) + v(t) · ∆t +
1

2
a(t) · ∆t

2
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x(t + ∆t) = x(t) + v(t)∆t +
1

2
a(t)∆t

2

EULER algorithm

Uniformly accelerated motion in each time interval                                               

then iterate!
t ÷ t + ∆t

x(t) =⇒ x(t + ∆t) =⇒ x(t + 2∆t) =⇒ x(t + 3∆t) =⇒ . . .

iterate

v(t) =⇒ v(t + ∆t) =⇒ v(t + 2∆t) =⇒ v(t + 3∆t) =⇒ . . .

v(t + ∆t) = v(t) + a(t)∆t
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Velocity-VERLET algorithm

DO BETTER: instead of choosing the value of the acceleration 
at the beginning of each time interval, take its average value in 
the interval                         for the update of the velocity

iterate

t ÷ t + ∆t

x(t + ∆t) = x(t) + v(t)∆t +
1

2
a(t)∆t

2

v(t + ∆t) = v(t) +
1

2

(

a(t) + a(t + ∆t)
)

∆t

Remark: the new acceleration can be calculated as soon as the new 
position is calculated, so that the algorithm is explicit!
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Choice of an integration algorithm

•  Accuracy - does it give an accurate description of the motion?
•  Stability - does it conserve the system energy and temperature (in case of 

conservative forces)?
•  Simplicity - is it easy to implement it in a computer code?
•  Speed - does it require only few or a lot of operations?
•  Economy - how much memory does it require?

Velocity- Verlet algorithm
a second-order algorithm allows a good energy conservation

if forces are NOT dependent on velocities (*)

(*)
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Thermodynamical ensemble

IF POTENTIAL ENERGY does not depend on velocities
(conservative potentials), the TOTAL ENERGY of the system 

should be conserved!

Therefore, since Verlet’s integration of the Newton’s equations will: 

Conserve total energy (E=const.)  

Keep number of particles constant (N=const.)  

Keep volume constant (V=const.)  

Thus: Yields an NVE ensemble (“microcanonical ensemble”) 
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the TOTAL ENERGY of the system should be conserved!

TO BE CHECKED during simulations
(it may not be conserved because 

of a bad integration algorithm)

Energy
in MD - NVE simulations

In practice there could be small fluctuations in the total energy, tolerance ~ 1%

It is common practice to compute it at each time step in order to check that it is indeed 
constant with time. 
During the run energy flows back and forth between kinetic and potential: they fluctuate while 
their sum remains fixed.
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MD has a kinetic energy contribution to the total energy,  
whereas in MC the total energy is determined solely by  the 
potential energy function.  

MD samples naturally from the microcanonical (NVE)  
ensemble, whereas Metropolis MC samples from the  
canonical (NVT) ensemble.  

However, both MC and MD can be modified to sample from 
different ensembles. 

MD vs MC simulations
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