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Classical fluids

- Interactions

- Measurable and interesting physical quantities
- Metropolis Monte Carlo approach (mainly)

- Molecular dynamics

(here: several slides; but today only few basic concepts will be discussed)



Interactions



A very simple interaction

The lattice gas model :

u(r)}

no double site occupancy
(=no overlap)

but in general: ...
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Interactions

assume that the force between any pair of r%aole:-[cule)s depends only on the distance
or atoms

(u(rij) depends only on the magnitude of the distance r;; between particles ¢ and j)

the total potential energy U is a sum of two-particle interactions:

U=u(ri) +u(riz) +- - +u(rss) + Y S‘ u(ri;)

1=1 jg=1+1

REMARK:
this 1s an effective interaction, a simple phenomenological form for u(7)
(it 1s an approximation, since in general, 3-, 4- ... many-body terms are present)







A typical 2-body effective potential

general form
u
repulgion
5 el ;-
‘ attraction
minimuim

a strong repulsion for small r and a weak attraction at large r

'4 N\

consequence of the Pauli exclusion principle mutual polarization of each molecule

core repulsion , van der Waals




Phase diagram

supercritical fluid
fusion
curve >
solid critical
point
vapor pressure
S curve
su(lz)&lrr?:tlon triple
\ point gas

T

A sketch of the phase diagram for a simple material.

A first goal in the study of fluids:

to gain insight into qualitative differences

between different phases
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Measurable and
interesting
physical quantities




Measurable and
Interesting quantities

® pair correlation function g(r)
® cnergy E

® pressure P



Measurable and
Interesting quantities

concepts and qualitative features
expressions useful for computation

® [Palr correlation function g(r) { mathematical formulation and

® cnergy E

® pressure P



Radial distribution function

Definition N

g(r) .l

g( Vv ) dr (dr = infinitesimal volume of the shell)

N
is a conditional probability (dimensionless)
of finding a particle in the shell r = r + dr
\given one at the origin
J

Consider one reference particle at the origin and count the others; then, average
over the reference particles

(Here: spherically symmetric interactions assumed; g depends only on r=Irl)
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Radial distribution function

Normalization
N particles, volume V': density p = N/V

The mean number of particles in the
shell with radius between r and r+dr 1s:

pg(r)dr

(Reminder: spherically symmetric interactions
assumed; g depends only on r=lrl )

volume element dr = 47r?dr (d = 3), 2nrdr (d = 2), or 2dr (d = 1)

0 0]

normalization condition P / g (7“) dr = N -1~ N
0
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Radial distribution function

Physical meaning ]

E:E:E:E:E:h- b
L @
R,

Nt

...........

Gives insight into the structure of a many-body system.
General behavior at short and long distances:
repulsive interactions on short-range scale: g(r — 0) — 0

in general: g(r) — 1 for r — oo
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Radial distribution function

Typical features:

gas: almost structureless
(ideal gas: no interactions or correlations, g(r) = 1 for r large enough)

liquid: some structure with broad peaks
solid: evidence of well separated coordination shells,
zero in between; broadening of the peaks depending on T

5 5
gaseous Ar
4r (90 K) ar
solid argon

= 3t Ii?gucibd}(?r gaseous Ar . 3t
— ¢ K =
> | (300 K) > ol

1l 1l liquid argon

Yooz 0z o8 o8 % 02 04 06 08

distance/nm distance/nm

(credit to: Thomas/Penfold Group, http://rkt.chem.ox.ac.uk/ )
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another example (2D):

Temperature
— 6000 K
5000 K
5+ 4500K ——>
30 4000 K
5 — 0K

Pair correlation function

o] —IL|

T ] T T I I I T T T I T T T

12 13

Graphene pair distance (A)

The initial stages of melting of graphene between 4000 K and 6000 K, E. Ganz et al., Phys. Chem. Chem. Phys.,2017, 19, 3756
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https://pubs.rsc.org/en/results?searchtext=Author%3AEric%20Ganz
https://pubs.rsc.org/image/article/2017/cp/c6cp06940a/c6cp06940a-f1_hi-res.gif

another example (2D):

Temperature
— 6000 K
5000 K
5+ 4500K ——>
30 4000 K
5 — 0K

Pair correlation function

T ] T T I I I T T T I T T T

A 12 13

Graphene pair distance (A)

The initial stages of melting of graphene between 4000 K and 6000 K, E. Ganz et al., Phys. Chem. Chem. Phys.,2017, 19, 3756
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another example (2D):

Temperature
— 6000 K
5000 K
5+ 4500K ——>
30 4000 K
5 — 0K

Pair correlation function

o] —IL|

T ] T T I I I T T T I T T T

12 13

Giaphene pair distance (A)

The initial stages of melting of graphene between 4000 K and 6000 K, E. Ganz et al., Phys. Chem. Chem. Phys.,2017, 19, 3756
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another example (2D):

Temperature
— 6000 K
5000 K
5+ 4500K ——>
30 4000 K
5 — 0K

Pair correlation function

o] —IL|

T ] T ] I I I T T T I T T T

10 11 12 13

Grgphene pair distance (A)

The initial stages of melting of graphene between 4000 K and 6000 K, E. Ganz et al., Phys. Chem. Chem. Phys.,2017, 19, 3756
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Radial distribution function

formulation in case of spherically symmetric interactions:

n(r, Ar)
=N 2wrAr

(two dimensions)

pg(r) =

® first compute n(r, Ar), the number of particles in a spherical (circular) shell

of radius r» and small, but nonzero width Ar

with the center of the shell centered about each particle

® For a given particle i, consider only those with j > i

Integrated all over the space, n(r,4r) gives the number of pairs considered,
which is N(N-1)/2, times the area of the circular shell 2zrAr

Remember: ,O/g(’l“) dr=N -1~ N
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Radial distribution function

Again in the case of spherically symmetric interactions
Mathematical formulation - details for the 2D case:

number of pairs with distance between r and r + Ar

2nrAr - pIN

<= (0. to be considered within
the accuracy of Ar; up to
here: double counting of pairs)

<= (here: no double
counting of pairs)

OK for a numerical implementation
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Simple interaction potentials

® Hard disks (spheres)

® | ennard-Jones



Hard disks

A particular form of interacting potential
(similar to the simplest lattice gas model with no double site occupancy,
but here in a continuum)

o u(r) 4

I ————

+00, r<o

u(r) =
(r) 0, r> o

No minimum; check overlap!
No attractive part => no transition from gas to liquid
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Radial distribution function

Radial Distribution Function

i § at different reduced densities
of hard disks in 2D ,_
7= — o059 <= liquid
& — 0.64
Y — ——  0.66
- 0.68 . .
O 5 [ — 072 <= transition !
o i 0.74 <= solid
~y = soll
3 WY A\
ol : VR T
B\ ‘-/ U/ f=2r
“solid” (hex) phase at max density 1 % 7
' 0 1 1 I 1 I 1 |
1 # 3 4 5
(g / (0)

the appearance of a double structure in the peak around 20
is a fingerprint of the liquid-solid transition
(high density solid: peaks at ~1.7 0 and 2 0)

. . number of particles N
particle (or number) density : p = =
area A

reduced density :  p* = po?

max reduced density :  Pmac = —z = 1.1547

2
V3 24



Lennard-Jones potential

utr) =4e| (5= (%)

repul*sion

|

"\l_—" attraction

minimum




Generalities in
many-body simulations

® periodic boundary conditions

® minimum image



Minimum Image convention

for the interactions

To compute the minimum distance dx between particles 1 and 2 at x(1) and x(2)

NEW! DIFFERENT @ @ @

w.r.t. Ising, lattice gas, hard disks
because here the interactions are not
simply on-site or nearest neighbour

but longer ranged @ @ @
0 ®

O, @
© © ©

©, O O,

LX

Only the interactions with the nearest images are considered
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Collisions and PBC

check collisions!

© © ©

®

B —

L

X

The positions and velocities of disks 1 and 2 are such that disk 1 collides with an image
of disk 2 that is not the image closest to disk 1.
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Two approaches to simulate
the evolution of the system

(to sample the configuration space)

® stochastic (Metropolis Monte Carlo)

® deterministic (integration of the eq. of motion)



Classical fluids:

Metropolis Monte Carlo method
canonical ensemble (NVT)

- calculate E:ot

i> - displace an individual particle by a small amount: calculate AE
(variation of the interaction of that particle with all the others)

- accept/reject the new position with the usual Metropolis factor:
w = min [|, exp (-AE/kT)]

<« - iterate

- accumulate distances to calculate g(r)
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Metropolis Monte Carlo method
for Hard Disks (Spheres)

displace an individual particle by a small amount:
if overlap with another particle: REJECTED
if no overlap with any other particle: ACCEPTED

-Metropolis algorithm with AE=0 or oo

-ergodicity: obvious at low densities;
complicated at high densities
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Molecular dynamics

a deterministic approach to the dynamics of a system

MD generates the dynamical trajectories of a
system of N particles by integrating Newton's
equations of motion

- with suitable initial and boundary conditions

- proper interatomic potentials
- while satisfying thermodynamical (macroscopic) constraints

- and with a ‘smart’ algorithm for numerical integration
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Molecular dynamics

and Newton’s equations of motion

F=ma
But not always easy to solve... In general:
d’x F(x,t,...)
— =ax,t,...) =
dt? m

Analytical solution for constant forces;
but in general not always possible

=> different possible algorithms for
numerical integration
of the eqs. of motion
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Basic idea: discretization - e.g. consider uniformly acc. motion

r(t+ At) = x(t) +v(t) - At + %a(t) - At

x(0) v(0) F(O)  x(1) v(1) F(1)  x(2) v(2) F(2)
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Uniformly accelerated motion in each time interval
t+~t+ At

then iterate!

iterate

r(t) = z(t + At) = z(t + 2At) = x(t + 3Al) = ...
v(t) = v(t + At) = v(t + 2At) = v(t + 3At) = ...

EULER algorithm

—

v(t

S

At)

35

r(t+ At) = z(t) + v(t) At + %a(t)At2

v(t) + a(t)At




DO BETTER: instead of choosing the value of the acceleration
at the beginning of each time interval, take its average value in

the interval ¢ — { + /\{ for the update of the velocity

Velocity-VERLET algorithm

P

r(t + At) = 2(t) + v(t) At + %a(t)AtQ
v(t + At) = v(t) + %(a(t) + a(t + At)) At
5 ¥

iterate

Remark: the new acceleration can be calculated as soon as the new
position is calculated, so that the algorithm is explicit!
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Choice of an integration algorithm

Accuracy - does it give an accurate description of the motion!?

Stability - does it conserve the system energy and temperature (in case of
conservative forces)? (*)

Simplicity - is it easy to implement it in a computer code!?

Speed - does it require only few or a lot of operations!?

Economy - how much memory does it require?

\/
Velocity- Verlet algorithm

a second-order algorithm allows a good energy conservation
if forces are NOT dependent on velocities (*)
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Thermodynamical ensemble

IF POTENTIAL ENERGY does not depend on velocities

(conservative potentials), the TOTAL ENERGY of the system
should be conserved!

Therefore, since Verlet's integration of the Newton's equations will:

Conserve total energy (E=const.)

Keep number of particles constant (N=const.)
Keep volume constant (V=const.)

Thus: Yields an NVE ensemble (“microcanonical ensemble”)
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Energy
in MD - NVE simulations

the TOTAL ENERGY of the system should be conserved!

TO BE CHECKED during simulations
(it may not be conserved because

of a bad integration algorithm)

It is common practice to compute it at each time step in order to check that it is indeed

constant with time.
During the run energy flows back and forth between kinetic and potential: they fluctuate while

their sum remains fixed.

In practice there could be small fluctuations in the total energy, tolerance ~ 1%
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MD vs MC simulations

MD has a kinetic energy contribution to the total energy,
whereas in MC the total energy is determined solely by the
potential energy function.

MD samples naturally from the microcanonical (NVE)
ensemble, whereas Metropolis MC samples from the

canonical (NVT) ensemble.

However, both MC and MD can be modified to sample from
different ensembles.
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