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Attenzione al contesto: in alcuni casi la notazione U e usata per 'energia potenziale
totale, in altri per il potenziale di coppia



VIBRAZIONI RETICOLARI

Assumiamo che

- la posizione di eq. di ogni ione sia un sito di un
reticolo di Bravais

- Lo spostamento di ogni ione dalla sua posizione
di equilibrio sia «piccolo» rispetto alle distanze
interatomiche tra primi vicini



VIBRAZIONI RETICOLARI

Assumiamo che

- la posizione di eq. di ogni ione sia un sito di un
reticolo di Bravais
=> NO DIFFUSIONE
- Lo spostamento di ogni ione dalla sua posizione
di equilibrio sia «piccolo» rispetto alle distanze
interatomiche tra primi vicini
=> APPROSSIMAZIONE ARMONICA

Per ogni ione, ad un dato tempo ¢:
r(R) = R+ u(R)




Lennard-Jones potential
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U(r) e un potenziale di coppia effettivo
Energia totale = somma di potenziali di coppia
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the harmonic approximation

the mean equilibrium position of each atom 1s a Bravais lattice site Le

typical displacements of each ion are small compared to interatomic spacing

the pair potential energy of the einasdd-Jones form CD (r)= B — A
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is approximated by the quadratic term ()= (Deq +@.... ! \

2 van der Waals attraction
@harm oC (7" o re ) . .
1 dominating at large r

repulsion due to the

1 , Pauli exclusion principle
Ueq — Ez CI)(R — R ) dominating at small
RR/
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Uharm — Ez[u(R) o U(R')]D(R o R,)[U(R) o U(R')]
RR7/ Dynamical matrix | 02(I)(r)
D, (r) = :
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Step by step we now face:

- Normal modes of a 1D monoatomic
Bravais lattice

- Normal modes of a 1D Bravais lattice with
basis

- Generalization



A chain of N particles linked by springs
(one-dimensional analogue of atoms in a crystal)
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Linear interaction (Hooke’s law):
(force)

- There are N 'normal' modes

(i.e., patterns of motion in which all parts of the system oscillate with the same frequency
and with a fixed phase relation)

- The energy given to a single 'normal’ mode
always remains in that mode.



Example with 2 oscillators:
'normal’ modes

http://fisicaondemusica.unimore.it/Oscillatori_accoppiati.html

More on: https://fisicaondemusica.unimore.it/Catena_di_Fermi-Pasta-Ulam.html



assume that
only
neighbor
atoms
Interact

normal modes of a 1D monoatomic lattice
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(n—1)a na (n+ 1)a u(na) is displacement of atom about na

Uy = K3 [u010) = u(ln + 1)

arm

force from left spring force from right spring

d’u(na) . ou

M — = —K|u(na)—u([n-1]a)|- K [u(na) —u([n+1]a)] =
7 Su(nd) [u(na) —u([n —1]a)] - K [u(na) —u([n +1]a)]
=-K [2u(na) —u([n—1]a)—u([n+ l]a)]
u(na,t) o ei(kna—a)t)
M@ = _K [2 — e M _ ot } g tkna=an) sin(a/2)*2=(1-cos q)
K|. 1 i i
o(k) = 2, | == |sin—ka dlspersmp of waves | L a_ [cosa
M 9) propagating along the chain 2 2
o0 if k is changed by —rja<k<r/a
m27la = covers all independent values of &

u(na,t) does not change  kand k + m27/a are equivalent
periodic boundary conditions for N atoms u([N +1]a) = u(a)

eikNa — 1
27 : :
allowed values of k k= —7[#, J 18 an integer
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R ——————
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there are N values of & that yield distinct solutions




(k) = 2\/5 sin|l/2 kal

v =0w/ Ok the group velocity — the transmission
velocity of a wave packet,
the velocity of energy propagation

v k<<z/a (A>>a) long wavelength limit

/ K
w(k)=a M VC‘ (typical behaviour of a sound wave)

/ K
v=a,|—  sound velocity
M

v=_0 standing wave



optical normal modes of a 1D lattlce with a basis
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Up =5 10 10) =1, n)] + 23 [i,10) = 0 + 1)

M d%;t(zna) = — ;ui](h:;’) = —K[ul(na) — uz(na)] — G[ul(na) —u,([n— l]a)]

M d2u2 (na) _ — OU sapm = —K[u2 (na)—u, (na)] — G[u2 (na)—u,([n + l]a)]

i ou,(na)

i(kna—ot)

u(na,t) oc &e Substituting and setting to 0 the determinant of

u,(na,t) o £, the homogeneous system :
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Two solutions for each value of k => 2N normal modes:

w2=K+GiA1/[\/K2+G2+2KGcoska ik/’;z\tﬁ_z\lf
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the motion of primitive cells 1s 1dentical
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= §va £ ==& optical WSV W TSNS T ST Ve

the motion changes by 180 from cell to cell

in the acoustic mode the atoms within a cell move together
in the optical mode the atoms within a cell move 180 out of phase




Monoatomic 3D Bravais lattice:

1
yhm = > ) u,R)D,,R-R)u,R)

RR’ uv

Exploiting symmetry properties of the dynamical matrix:
1) D,R-R)=D,(R"-R)
2) D,R-R)=D, R -R) D(R) = D(—R)

3) 2D, R) =0 Y D®R) =0
R

R



These symmetries allow to simplify the eqs.

Mii(R) = - ) D(R - R)u(R))
=

We seek for a solution of the form:

u(R, 1) = eikR-on
1

Polarization vector of the normal mode
(the direction in which the ion moves)

Substituting we obtain:

Mw?€ = D(K)E win D(k) = Y DR)e *R
R



normal modes of a 3D lattice
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Iongltudmal wave e
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o 1 A
® L ] * ¢ s ‘”ﬂ -: R " .k.-“: |
| . — correspond to 3 translatlonal and 3p F3 V|brat|onal
@
o $ ! 3 degrees of freedom of a p atomic molecule
l . ? ! ? 4 with p atoms per primitive cell and N primitive cells
| i [ | there are pN atoms

3 degrees of freedom for each atom, one for each direction:

transverse wave a total 3pN degrees of freedom for the crystal

3D lattice with monoatomic basis: i+ ber of allowed e branch
for each k there are 3 acoustic modes ¢ numbet Ot aflowed «in a single branc
for one Brillouin zone Is N:

1 longitudinal and 2 transverse 3p phonon branches accommodate 3pN degrees of freedom



phonons

, Oy, | vibration of N-1on harmonic crystal correspond to
1{ L0 3N independent oscillators whose frequencies are
i ~_——TO those of the 3N normal modes
i
|
|

energy vibrations are quantized:
@y, can have only the discrete set of values

1
E = (nks +5)ha)ks

n, =0, 1,2 ...1s the excitation number of the normal mode

equivalent corpuscular description of the normal modes:

phonon — the quanta of the 1onic displacement field < similar to photon — the
quanta of the radiation field

the normal mode of branch s with wave vector £ 1s 1n its n, th excited state

!

there are n,, phonons of type s with wave vector K present in a crystal

thermal vibrations in a crystal are thermally excited phonons



| lattice specific heat

£ = hws(k)[ns(kﬂﬂ

energy of n (k) phonons of
type s with wave vector k

n.(K) = 1 number of phonons of type s with
ePhes () wave vector k at temperature T
S = 1 the Planck distribution |
kT = BE distribution with =0/, (E) = —z5—
e J—

(Bose-Einstein)
_(oF

g _[aNl,V

F=E-TS

S = In(number of states)

} the energy density of a harmonic crystal

N | —

u=u" +%Zha)s(k){ns(k)+

1 0 1
c, = % %: o ho,(K) o the specific heat of a harmonic crystal

high temperature specific heat

hw
X = pho T 1« O k,T 1
B c,R—) —ho (k) — atomSkB
1 1 V&' oT ho (k) V
e’ —1 T X c, = 3nk, | the classical law of Dulong and Petit

additional terms in the expansion yield the high-temperature quantum corrections to the Dulong and Petit law



specific heat at low temperatures

| Oy v i Phs the Debye model:

—— T L w=ck | 1.all branches of the vibrational
LA ' spectrum are replaced with 3
branches with @ = ck

« | 2.the integral over the 15t Brillouin
>

/é zone 1s replaced by an integral
P | over a sphere of radius k,, chosen
I 9 ho(k) BN 0 z j dk ho/(K) to contain N allowed wave vectors
oT (27[)

volume in k-space per

integration over the .
S wave vector is (272)3/V

15t Brillouin zone

l Jk = K2 dkd O for ](\f2 at;ms .
T
c = (9 3hc J‘kD k3dk 3N V = 357[/(13)
" oT 277 Y0 M 2 \3
k, = (67z n)
wp =kpc Debye frequency

k,©, =hw, Debye temperature — a measure of the temperature above which all modes

begin to be excited, and below which modes begin to be “frozen out”

@D _ %(672_271)1/3
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phonon density of states

N
@p 25 . —
without equilibrium u= .fo hoD(w)n(w)dw | /k |
energy and the energy of ; LT |
the zero-point vibrations T Op/T X dx E s /
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at low temperatures ¢, ~ 7°
at low temperatures 7' << O,

3 3
u=9nk,T (@lj j%/T X dx —> 9nkBT(i)
D

X @D
2zt (1Y 7Y
c, = nk, [@—j = 234nk, (®—] —» fit to 73 at low temperatures — O,

T x3d T\
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5
D D O, K
Li 400
Na 150
at low temperatures ¢, ~ T° K 100

at high temperatures ¢, ~ 3nk, Dulong an Petit result



understanding 7' 3 law

hek, =k, T
suppose that ¢ y 7

all phonon modes with wavevector less than &

have the classical thermal energy k,T

and modes with k > k.. are not excited

of the 3N possible modes, the fraction excited is (k. /k,)’ =(T/®,)’
the energy density is u~k,T-3n(T/®,)’

and the specific heatis ¢, =ou/0T ~12nk,(T/©,)’




o . 127 7Y
the phonon contribution to specific heat ¢, = nk,| —

the electronic contribution to specific heat ¢, =

Celectron ~ Cphonon at
Z@ 1/2
T, =0.145( D] 0,
TF

~ a few degrees Kelvin

C/T, in mJ/mol-K®
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the Einstein model
the Einstein approximation replaces the frequency of each optical branch by a frequency @,

each optical branch will contribute to the thermal energy density and to the specific heat

nho, ¢
oo kT ]

I (ha)E ]Z o0 kg T
v B k, T (eha)E/kBT _1)2

2
o . . ho _
at low T the contribution of the optical modes to ¢, drops exponentially ¢ = nk, [ £ ] e s ksl
it 1s difficult to excite thermally optical modes at low T

u =

¢, (cal/mole-K)

[ =] Lad J n
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