
Corso Abilità Informatiche e Telematiche 2024/2025
Exam

Teacher: Dr. Milena Valentini, milena.valentini@units.it
Teacher: Dr. David Goz, david.goz@units.it

1 Exam instructions

• Choose and solve four out of the eight Bash exercises proposed;

• in addition, solve the Python exercise proposed;

• create a repository on GitHub (https://github.com/) containing the scripts of the solved
problems. The README.md file associated with the GitHub repository is meant to tell the
teachers about your exam, i.e.: i) the list of exercises you have addressed, ii) how to use your
scripts, iii) the output that your scripts will produce and where it will be displayed and saved.
Create a directory for each exercise which contains the script(s) that perform(s) the task(s)
required by the problem and the additional files if necessary. The teachers should be able to
test your script(s) by simply entering the associated directory and following your instructions;

• send an email to the two teachers attaching the link to the GitHub repository. The teachers
should be able to clone your repository smoothly; they will try to execute your scripts by
following your instructions, and then have a look at the scripts themselves;

• the exam material must be posted to the teachers at least one week before the examination
date;

• the candidate must register online for the examination date.

2 Exercises

1

mailto: milena.valentini@units.it
mailto: david.goz@units.it
https://github.com/

Problem 1: Bash scripting

Write a shell script that:

• through a for loop creates a bunch of dummy files within the working directory;

• creates an array containing all the files (not directories) in the current working directory;

• checks if the list is empty, otherwise it displays on the standard output all the files in
the current directory;

• it renames all files to begin with today’s date in the following format: YYYY-MM-DD.
For example, if a picture of my dog was in the current directory and today was December
10, 2024 it would change the name from my dog.jpg to 2024-10-12-my dog.jpg ;

• Hint: touch, and date commands might help. The latest prints the system date and
time. Look through the documentation to set the correct format;

• Suggestion: the script’s comments and documentation are highly recommended.

Problem 2: Bash scripting

Write a shell script to check and see if:

• the file /etc/shadow exists;

• if it does exist;

– display ”Shadow passwords are enabled” in the standard output;

– show the file content in the standard output;

• if it does not exist return a non-zero exit status;

• next, check if you have the permission to write in the file;

– if you can, display ”You have permission to edit /etc/shadow”. Return a zero
exit status;

– if you cannot, display ”You do NOT have permissions to edit /etc/shadow”. Re-
turn a non-zero exit status.

• Hint: $ help test command might help!

• Suggestion: the script’s comments and documentation are highly recommended.

Problem 3: Bash scripting

Write a shell script that:

• consists of a function that displays the number of files (not directories!) in the current
directory;

• name this function ”file count” and call it within the bash script;

2

• if you use a variable in your function, remember to make it a local variable;

• constraint: the function can only use the ls, grep, and wc commands to accomplish
the task;

• Hint: a pipe among ls, grep, wc might help. Test the correctness of the implementa-
tion by creating a bunch of dummy files within the working directory using the touch

command;

• Suggestion: the script’s comments and documentation are highly recommended.

Problem 4: Bash scripting

Modify the script from the previous exercise.

• make the ”file count” function accept a directory as an argument;

• the function tests if the passed argument is a regular directory, otherwise it handles the
error providing a meaningful message, and returns a non-zero exit status;

• the function displays the name of the directory followed by a colon;

• finally, the function displays the number of files in the standard output on the next line;

• call the function three times: first on the ”/etc”, next on the ”/var” directory and
finally on the ”/usr/bin” directory.

• Example function output:
/etc:
110 files

• Suggestion: the script’s comments and documentation are highly recommended.

Problem 5: Bash scripting

Write a shell script that:

• creates an empty file;

• writes on that file a column containing the first ten integer numbers (from 1 to 10)
using a for or while loop;

• it evaluates the total sum of the integer numbers through the awk command (or the
corresponding GNU implementation gawk) and prints the total sum on the standard
output;

• Hint. The result can be checked using the Gauss summation formula;

• Suggestion: the script’s comments and documentation are highly recommended.

3

Problem 6: Bash scripting

Write a shell script that:

• writes a file with the following content:

con t r o l o f memory requi rements
BoundaryLayerFactor 3 . 0
MaxMem 512
MaxMemPerParticle 240
PredPeakFactor 0 .8

• it changes in place (i.e. changes must be saved in the same file) the value of MaxMem
from 512 to 1024 using the awk command (or the corresponding GNU implementation
gawk);

• Suggestion: the script’s comments and documentation are highly recommended.

Problem 7: Bash scripting

Write a shell script that:

• displays on the standard output and saves on file lscpu.txt information about the CPU
architecture using the lscpu command;

• writes a new file with the following format and content:

CPU a r ch i t e c t u r e :
Cpu name : ${CPU}
Threads : ${THREADS}
Cores : ${CORES}
NUMAs : ${NUMA}

where CPU, THREADS, CORES, NUMA are the corresponding values extracted from the
lscpu command of ”Model name”, ”Thread(s) per core”, ”Core(s) per socket”, ”NUMA
node(s)” respectively;

• Suggestion: the script’s comments and documentation are highly recommended.

Problem 8: Bash scripting

Write a shell script that:

• accepts a directory as an argument;

• checks that the directory exists, otherwise it handles the error providing a meaningful
message, and returns a non-zero exit status;

• enters the directory;

• lists just all the regular files;

4

• lists just the files that are directories;

• lists just the empty files;

• Suggestion: the script’s comments and documentation are highly recommended.

Problem 9: Python scripting

Download the following file: click here to access the file to analyse its content.
The file has been produced by post-processing a cosmological hydrodynamical simulation of
structure formation, at redshift z = 6.
The header of the file describes its content and tells you the units of measure of the quantities
in each of the file columns. Each line contains properties of a halo or cosmological structure,
which features multiple components: black holes, stars, dark matter (DM), gas.
Write one (or more, if needed) Python routine(s) that:

• plot the DM mass of each halo as a function of its baryonic mass (i.e. the sum of the
stellar and the gas mass); try to overplot a linear fit, and comment.

• Focus on the most massive structure (by just selecting it from the first column with e.g.
the numpy.where() instruction); compute the distance of each of the other structures
from the most massive one, and plot results in the plane y=total mass VS x=distance;
make tests to understand which combinations of axis scales (e.g., linear-linear, log-
linear, log-log, ...) allows you to better appreciate the distribution.

• Plot the histogram that shows the DM mass distribution of the haloes; overplot mean
and median of the distribution as vertical lines; remember to always put a legend and
to write on the plot relevant information (e.g., values of the mean and median).

• Plot the projected distribution of all the haloes in the file in the planes x-y (left-hand
panel) and z-y (right-hand panel). Assign each halo (point in the scatter plot) a colour
which encodes its gas mass, and a size which scales with its stellar mass. Try to add a
third panel (at the bottom of one of the former two) by including the x-z projection.

• Plot the BH mass (y-axis) VS stellar mass (x-axis) relation, for all those haloes having
a BH mass larger than 8× 105 M⊙/h; try to overplot a linear fit, and comment.

• Produce a cumulative 2-D histogram providing the number of haloes per bin of mass
(x axis) and distance from each of the other haloes (y axis) for those haloes whose
mass is larger than 3.07×109 M⊙/h. The final (cumulative) histogram will be obtained
by summing up the histograms of each of the haloes (5 in total) more massive than
3.07× 109 M⊙/h. The colour in each bin will encode the number of haloes in the mass-
distance bin. (Hint: adopt the same mass and distance bins in all the histograms, i.e.
in each histogram for each of the 5 haloes).

Comment: The Python script has to be properly commented and documented. Figures
produced have to be publication-quality: make sure all the axis have the proper label, that
there is the legend, that quantities are fully readable (i.e. evaluate whether a linear or a log
scale fits better your need for each plot, ...)

5

https://github.com/MilenaValentini/TRMD_2024/blob/main/file2_Groups_AGN-wWU_500Mpc_Data.txt

	Exam instructions
	Exercises

