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Although antitumor immunity by T lymphocytes has been 
known for decades, translating it into anticancer therapies 
has been challenging. However, biological advances, such as 

the generation of single-chain antibody fragments (scFv)1, the eluci-
dation of pathways mediating the activation of functional memory 
T cells2,3, and molecular cloning4 have led to the engineering of chi-
meric antigen receptor (CAR) T cells, introducing a new era of can-
cer immunotherapy5,6 and permitting the treatment of large groups 
of patients with genetically augmented patient-derived T cells.

The first generation of CAR T cells fused the scFv antibody 
fragment to T cell signaling domains comprising the immunore-
ceptor tyrosine-based activation motif, offering a relatively simple  
method of endowing T cells with major histocompatibility 
complex-independent recognition of antigens7. Over the following 
two decades, the CAR platform evolved into second- (two-domain) 
and third-generation (three-domain) CARs that incorporated addi-
tional signal transduction domains, including cytoplasmic domains 
from important T cell costimulatory receptors such as CD28, CD137 
(4-1BB) and CD134 (OX-40) (reviewed in refs. 8,9). These additional 
signaling domains promote both the persistence and antitumor 
activity of CAR T cells following adoptive transfer3,10–14, and were 
essential to avoid the anergy observed with first-generation CARs15.

The remarkable ability of a CAR to reprogram T cell specificity 
led to attempts at clinical translation. The earliest clinical applica-
tion used a simple CAR design comprising a CD4 ectodomain fused 
to a CD3ζ cytoplasmic domain to treat human immunodeficiency 
virus-infected patients16, and established both the safety of engi-
neered CAR T cells and the potential for decade-long persistence 
of genetically modified T cells17. Subsequent studies evaluating 
first- and second-generation scFv-based CARs soon followed, lead-
ing to the demonstration of robust activity of CD19-specific CAR T 
(CART19) cells, and ultimately the regulatory approval of two CAR 
T cell therapies for hematologic malignancies in the United States 
(in 2017) and Europe (in 2018).

As preclinical models of adoptive T cell therapy are limited, 
correlative studies performed during their clinical develop-
ment to determine the kinetics and quality of the infused CAR 
T cells, measure tumor cell dynamics and assess cytokine levels and  

repertoires during therapy have proven pivotal in improving  
our understanding of these complex therapies and enhancing their 
clinical application. These correlative studies have highlighted many 
factors that are essential to safely achieving both deep and dura-
ble clinical responses in otherwise treatment-refractory cancers.  
Here, we discuss the important role of correlative science in  
developing CAR T cell therapies, and highlight the challenges still 
faced during clinical application and the new technologies promis-
ing to address these complications to help extend this therapeutic 
modality beyond B cell malignancies.

Efficacy and toxicity of CD19-specific CAR T cell therapies
Normal and malignant B cells uniformly and exclusively express 
CD19 (ref. 18)—the dominant signaling moiety of a tetramolecular 
complex consisting of CD21, CD81 and CD225, which modulates 
B cell receptor signaling and mediates immunoglobulin-induced B 
cell activation19. Given CD19’s broad expression within the B cell 
lineage from early pro-B cells to subsets of plasma cells (Fig. 1), as 
well as its generally uniform expression on B cell malignancies20, this 
molecule became a prime target of CAR T cell approaches. The ini-
tial encouraging results in relatively small studies in non-Hodgkin’s 
lymphoma (NHL)13,21, chronic lymphocytic leukemia (CLL)22–24 and 
acute lymphoblastic leukemia (ALL)24,25 have since been confirmed 
in larger cohorts26–36. So far, the first patients with CLL treated with 
anti-CD19 CAR T cells have sustained remission beyond 9 years37 
and the first ALL patient to be treated with the same engineered 
product has been in remission for more than 7 years25.

Generally, the overall response rate has been highest in B cell 
ALL (>80%), variable in lymphomas (~63–100%) and lower in 
CLL (50–70%)28,35,38,39. Patients with CLL who achieved remission 
with anti-CD19 CAR T cell treatment sustained their disease-free 
state28,35,40. In ALL, however, only 20–40% of patients sustained 
remission on this therapy28,32,33,35,38,39. Loss of CD19 expression is 
a major mechanism of resistance in ALL, accounting for around 
two-thirds of relapse cases and is a well-recognized phenomenon in 
lymphoma as well41–43. Loss of CAR T cell engraftment may account 
for most of the remaining cases of relapse26. Initial small trials13,24 
followed by larger ones32,33,44 also confirmed the immense potential 
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for this therapy in NHL. Both the CD2833 and 4-1BB cosignaling 
anti-CD19 CAR T cells45 induced complete remission in 40–50% 
of patients, most of whom remained disease free. Although clini-
cal responses were generally sustained in NHL, most disease-free 
patients would display normal B cell recurrence and loss of detect-
able CAR T cells, suggesting that other mechanisms were respon-
sible for long-term tumor control in NHL.

Interestingly, although patients with ALL and CLL generally 
achieved their best overall response within the first month follow-
ing CAR T cell infusion, patients with lymphoma often continued 
to improve beyond the first month, with some patients not achiev-
ing their maximum response until 6 months post-CAR T cell treat-
ment32,33,44,46. The reasons for these differences are not understood, 
and remain an important subject of study in the post-marketing 
phase.

Although CD19-specific CAR T cell therapies have shown 
remarkable clinical activity against B cell malignancies, these deep 
and durable responses do come at the cost of some unique adverse 
effects. Cytokine release syndrome (CRS) is the most frequently 
observed adverse event in CART19-treated patients. Most cases of 
CRS are mild or moderate in severity and manageable. However, the 
frequency of severe CRS across studies, reported in 19.8–38.8% of 
treated individuals47, has been clouded by the use of diverse grading 
systems. Fortunately, a new consensus grading system for CRS was 
described recently, the adoption of which should greatly facilitate 
comparing its incidence across different CAR T cell products48. In 
addition to CRS, a somewhat unique and unexpected neurotoxic-
ity has also been observed in CD19-specific CAR T cell-treated 
patients. This toxicity can range from mild delirium to severe 
encephalopathy. The incidence of neurotoxicity may depend on the 
disease and CAR design. Severe neurotoxicity was seldom reported 
in patients with CLL treated with the BBζ-signaling CAR24,28,35,49, 
but was observed in every CAR T cell trial for ALL26,29,33,38,39, more 
prominently with a CD28ζ signaling CAR38,39. Myelosuppression 
has also been observed in patients with lymphoma and leukemia 
treated with anti-CD19 CAR T cells33,36,39,50. Additionally, during the 
first 8 weeks post-infusion, febrile neutropenia and tumor lysis syn-
drome are commonly observed in patients with lymphoma treated 

with BBζ-based CAR T cells44. The majority of adverse events have 
been reversible through supportive care, cytokine inhibitors and 
glucocorticoid treatment51.

Generating hypotheses with correlative studies
Defining the kinetics, homing and bioactivity of the cell therapy 
product and tumor response to treatment in each patient requires 
diligent monitoring, as these are critical components in the contin-
ued translational cycle from the bench to the bed and back again. 
Furthermore, the US Food and Drug Administration (FDA) man-
dates that sponsors observe study participants for delayed adverse 
events for as long as 15 years following the infusion of modified 
cells52. To this end, it is desirable to include a correlative stud-
ies laboratory in an organization that operates according to good 
clinical laboratory practice53 (Fig. 2), to ensure that biospecimens 
from patients on cell therapy are handled by qualified personnel 
following experimental processes specified by standard operating 
procedure (SOP). Sample analytics and biobanking are two critical 
activities in such a laboratory, both of which should be carried out 
using rigorously validated, SOP-defined procedures. As most phase 
I trials are run in academic centers, some of the analytical meth-
ods would have to be developed and validated for novel, innovative 
therapies such as the CRISPR–Cas9-mediated disruption of endog-
enous genes in mature T cells, combined with lentiviral delivery 
of a tumor-targeting T cell receptor54. An example is the frequent 
monitoring of CAR T cell bioactivity in terms of changes in cyto-
kine and soluble cytokine receptor levels22,23,25,55–57 in serum early 
after infusion, given that high-grade toxicities may develop rapidly 
upon treatment.

The value of correlative studies is underscored by the identifica-
tion of a rise in interleukin-6 (IL-6) levels in association with the 
onset of CRS in patients, which played a central role in prompting 
the evaluation of IL-6/IL-6 receptor blockade in severe CRS25. This 
insight proved life saving for many patients, and formed the foun-
dation for co-developing anti-IL-6 and CD19 CAR T cell therapy, 
leading to their concurrent FDA approval for severe CRS58 and 
B cell ALL, respectively. More extensive analyses of serum from 
patients in multiple trials have led to the discovery and validation 
of biomarkers of CRS and neurotoxicity, providing insight into the 
mechanisms that drive them59 and potential paths to predicting 
these complications of CAR T cell therapy. Although not all stud-
ies agree on the precise cytokines56 or biomarkers57 to interrogate, 
they all focus on identifying predictive markers and developing 
algorithms to distinguish patients at increased risk of developing 
life-threatening toxicities.

Biobanked cells from patients have played a critical role in 
identifying mechanisms of resistance to CD19-specific CAR ther-
apy. One of the earliest reports of CART19 in ALL revealed evi-
dence of relapse in the context of loss of CD19 expression, which 
has been demonstrated to be the dominant resistance mechanism 
in ALL, occurring through various genetic mechanisms and rare 
iatrogenic causes60–62. Early loss of CAR T cells preceded by nor-
mal B cell recovery is another commonly observed event associ-
ated with relapse26. Analyses of the T cells used for manufacturing 
the CAR T cells, as well as the product itself, have revealed a num-
ber of associations that link CAR T cell quality to outcome. In 
particular, the presence of naive-like CD27+CD45RO− cells in the 
apheresis product used for CART19 generation was shown to pre-
dict engraftment and clinical response in CLL40. The reinfusion of 
relapsing patients with leukemia with a murine scFv-based CAR 
has been associated with reduced expansion compared with first 
infusion30,31,63, suggesting that an immune-mediated mechanism 
may underlie resistance to retreatment. Humanizing or develop-
ing a fully human scFv fragment might therefore enhance thera-
peutic success63. Recently, defects in death receptor signaling have 
been identified in a subset of ALL that is resistant to CD19-specific 
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Fig. 1 | B cell malignancies at the different stages of B cell development. 
Normal B cell developmental lymphocytes (top) often share 
immunophenotypic characteristics with their malignant counterparts 
(bottom), reflecting the expansion of a dominant clone leading to the 
development of leukemia or lymphoma.
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CAR T cell therapy, providing additional resistance mechanisms 
beyond CD19 loss64.

Correlative studies have also revealed differential kinetics of 
CAR T cells in responding and non-responding patients with 
CLL28 and ALL29,65,66, which led to the development of an in vitro, 
proliferation-based potency assay40,67. This correlation between clin-
ical response and in vivo CART19 cell proliferation was not evident 
in trials of the same product when used for NHL32,44,68, in contrast 
with a CD28-costimulated CAR33, suggesting that the costimulatory 
domain dominated the differential expansion kinetics of CART19 
for NHL.

Correlative studies sometimes also provide unexpected observa-
tions that can lead to new ideas. The rather dramatic expansion of 
an ultra-low dose of CAR T cells (1.4 × 107) followed by the eradica-
tion of a leukemic mass in one patient23 suggested that the prolifera-
tive response was key to the antitumor response10,11.

In aggregate, correlative studies followed by mechanistic inves-
tigations based on samples and data from patients treated with 
CD19-specific CAR T cells in clinical studies continue to improve 
our understanding of therapy-related toxicities and mechanisms  
of escape.

Clinical impact of T cell biology and CAR engineering
Although CART19 therapy has been efficacious in ALL and NHL, 
many factors contributing to patient response remain poorly under-
stood. As patient-derived T cells are used to target a tumor-associated 
cell-surface protein, the immune system is repurposed to treat the 
malignancy. Thus, the therapeutic efficacy still depends on T cell 
memory and effector functions. This also includes T cell fitness, 
which is affected by the malignancy and previous therapies, and, 
most importantly, the ability of the CAR-redirected T cells to sus-
tain the antitumor response, because most tumors exist in actively 
growing and dormant phases, which can last from several years to 
decades69–71. By harnessing T cells, this form of immunotherapy 
abides by similar target cell quiescence–reactivation principles to 
induce a cure. Naive and memory T cells retain the ability to pro-
liferate vigorously in response to cognate antigen recognition, in 

contrast with their effector progeny that have lost that ability and 
instead directly lyse the tumor. Two studies recently confirmed that 
this therapy depends on a functional, self-renewing T cell pool, 
demonstrating that in CLL the advanced age of the patient popu-
lation in combination with effector-memory skewing limited CAR 
T cell functionality (Fig. 3)40,72. Furthermore, response to therapy 
in CLL can be predicted based on the presence of a pool of more 
functional early memory cells40. CAR T cells and other therapies 
that rely on immune system activation may therefore have limited 
effect in malignancies that terminally skew T cell differentiation or 
occur in aged populations where T cells are less functional at base-
line. That baseline functionality of the T cell pool plays a substantial 
role in dictating response rates was confirmed in a separate study, 
which revealed that CD8+ T cell dysfunction at apheresis and the 
rapid expression of immune checkpoint molecules after infusion 
marked CAR T cells from non-responding and partially responding 
patients with ALL66. Therefore, CAR T cells are subject to inhibition 
via endogenous immune checkpoint pathways such as programmed 
cell death protein 1 (ref. 73). Inhibitory receptor–ligand interactions 
normally dampen T cell functions to prevent an overactive immune 
response and sustain a memory T cell pool. In CAR T cells, this 
can result in failure to eliminate the tumor and loss of T cell persis-
tence. Whereas checkpoint blockade can improve responses, other 
immune-suppressive factors in the microenvironment can impair 
CAR T cell function. Immune-suppressive cytokines, metabolic 
competition and high inhibitory ligand expression levels all serve to 
modulate the function of cell-based therapies73–77.

Enhancing CAR T cell potency by genome engineering
Although the natural basis of CAR T cell efficacy, as laid out in the 
previous sections, presents the foundation of immunogene thera-
pies with CAR T cells (and probably other systems that depend on 
sustained tumor control), CAR T cell engineering may also impact 
cell function, as recently reported67,78. CAR T cells produced with 
lentivirus display quasi-random integration of the vector through-
out the genome, introducing the potential for genomic activation 
or disruption events79,80. Although the majority of CAR T cells 
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generated in this process are polyclonal67,79, the CAR T cell popula-
tion undergoes rapid changes after infusion due to, among other 
factors, selective expansion of CAR T cell clones for reasons that 
are currently poorly understood67,79,81. In most patients, a multitude 
of clones contribute to the antitumor response79,81. Two recently 
published reports concern clonal CD8+ CAR T cell expansion in 
two patients, in whom the CAR was shown by sequencing vector 
integration sites to have integrated into the CBL and TET2 gene 
loci. In the case of the TET2 integration, the patient’s CAR T cell 
population underwent delayed expansion accompanied by tumor 
clearance, complete remission status and contraction of the clonal 
population67. The CBL-integrated clone underwent a similar, albeit 
less dramatic, expansion process78. CBL knockdown had previously 
been associated with decreased T cell activation thresholds, reduced 
reliance on costimulation and decreased sensitivity to programmed 
cell death protein 1 inhibition, which could represent mechanisms 
for the therapeutic effect82–85. These cases highlight how lentiviral 
integrations can substantially impact CAR T cell growth, persis-
tence and effector function. Further insight into the fate of CAR 
T cells was provided by analyzing the CAR vector integration site 
landscape in the infusion product and post-infusion aliquots of 58 
patients with CLL and ALL, demonstrating that CAR-mediated 
gene disruptions frequently occur in proliferation-augmenting 
pathways79. These findings suggest that such gene disruptions may 
be as important as T cell quality and CAR design in the outcomes 
observed with CAR T cell therapy79.

Additionally, targeted CAR integrations have revealed 
locus-specific regulation and protective effects. For instance, CAR 
expression from the T cell receptor-α constant (TRAC) locus opti-
mized CAR expression and protected cells from exhaustion com-
pared with integration in other sites86. The genomic landscape of the 
CAR transgene cassette can therefore play an important role in how 
individual CAR T cells function. Unique cases such as the TET2 

and CBL loci integration events are informative not only on how 
genome regulation can influence CAR expression and function, but 
also in terms of novel regulators of these functions. The identifica-
tion of TET2 disruption as an enhancer of T cell persistence has 
sparked a wide array of research focused on knocking out TET2 to 
improve CAR function and determine the mechanisms underlying 
this selective advantage.

Natural killer cells have also been engineered to express a B 
cell targeting CAR combined with constitutive secretion of IL-15 
(ref. 87). Preclinical studies have similarly demonstrated a ben-
eficial effect of CAR T cells co-expressing IL-15 (ref. 88). Based on 
these findings, several clinical trials have been launched to evalu-
ate T cells engineered to express this cytokine in conjunction with 
a tumor-targeting CAR. However, IL-15 was separately demon-
strated to drive antigen-independent growth of T cells, resulting 
in a pre-leukemic disorder in mice89,90. Therefore, the addition of 
a safety switch to the CAR and IL-15 construct should allow for 
control of the infused cells, as indicated in the design of one of 
these trials (NCT03721068), which targets GD2 in brain cancers 
using anti-GD2 CAR with IL-15 and the iCaspase 9 safety switch. 
Moreover, preclinical studies have shown augmented antitumor 
efficacy of IL-18 co-expressing T cells in a CD19-redirected T cell 
model91. Similar combination therapies have been shown to jointly 
blunt tumor function and boost T cell potency92–95. Next-generation 
CAR T cell therapies incorporating such engineering approaches 
are expected to further raise the therapeutic index.

Tumor-redirected T cells encounter numerous inhibitory signals 
in the tumor bed, the most notorious of which is transforming growth 
factor-β96. CAR T cells engineered to express a dominant-negative 
transforming growth factor-β receptor showed augmented potency 
against a solid tumor model97, leading to the development of an ongo-
ing clinical trial to target prostate cancers with a prostate-specific mat-
uration antigen-specific CAR T cell (NCT03089203).
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Tumor resistance to CAR T cell therapy
Extensive clinical data have revealed mechanisms by which tumor 
cells escape CAR T cell targeting, and have informed engineer-
ing advances to overcome this. The anti-CD19 CAR was shown to 
require minute quantities of target antigen to display full effector 
function98; therefore, the tumor cells could only escape this pres-
sure via antigen loss25,60,61,99–101 or antigen masking62. Routine analy-
ses revealed that a pediatric patient with ALL treated with murine 
anti-CD19 CAR relapsed with the original disease two months 
post-treatment25. In the ensuing months and years, similar patterns 
of relapse were observed from routine correlative studies, which were 
later confirmed by clinical pathology25,60,61,99. The molecular basis of 
these and similar cases of antigen loss-related anti-CD19 CAR T cell 
therapy were shown to be related to the acquisition of open reading 
frame-disrupting mutations in the target antigen, compounded by 
altered messenger RNA splicing in tumor cells60,61. Others similarly 
observed antigen-negative relapse in CD19-directed CAR T cell 
therapies30,38,99. Additionally, mixed-lineage leukemia-rearranged 
leukemias displayed lineage switch-related relapse with loss of 
CD19 protein expression99,100, further illustrating how the immense 
immune pressure exerted by CD19-specific CAR T cells mediates 
Darwinian selection of the malignant cell pool. These examples 
demonstrate the impact of T cell and tumor cell physiology on 
clinical responses to single antigen-directed CAR T cell thera-
pies. This knowledge has been used to prevent relapse through a 
bispecific CAR T cell that recognizes two antigens present on the 
tumor surface. This anti-CD19/anti-CD22 bispecific CAR T cell has 
been used successfully to treat an adult patient with ALL who has 
remained disease free for more than 1 year post-therapy102. Antigen 
loss has now also been observed in a patient on CD22-targeting 
CAR treatment103, whereas others have shown that downregulation 
was sufficient to evade CART22 treatment104.

CAR design
As described above, many factors independent of the CAR itself 
impact therapeutic efficacy. Correlative studies by various groups 
targeting the same tumor-associated antigen (TAA) (for example, 
CD19) with an scFv derived from the same monoclonal antibody 
(for example, FMC63) but different spacer domains, cosignaling 
domains and so on have allowed the identification of several pain 

points and success stories of chimeric receptors (Fig. 4). First, it has 
become obvious that costimulation has to be engineered into the 
CAR, as even the transduction of memory T cells could not rescue a 
first-generation CAR105. Hence, around the time that CD28 costim-
ulation was discovered as an essential component to memory T cell 
formation and effector differentiation2, second-generation CARs 
were developed that included this domain106. However, comparative 
clinical studies to demonstrate the differential impact of CD28 and 
other cosignaling domains on effector and memory function in vivo 
are lacking and would be useful, because despite the CAR-contained 
CD28 driving a profound effector differentiation, it can also render 
the T cells dysfunctional with loss of persistence107.

Early data also revealed the profound impact of the spacer 
domain on CAR T cell function (reviewed in ref. 108). Most 
early-generation CARs, including those in first-generation CAR 
designs5,6, used scFv derived from mouse antibodies. T cells discern 
minute differences between cancerous and normal cells, and a sin-
gle difference in amino acid residues can induce a robust immune 
response against this non-self entity109–111. This same selective threat 
elimination machinery deletes recombinant proteins containing 
minimal sequence divergence from the native protein just as effi-
ciently as foreign threats112,113. It should therefore come as no sur-
prise that suicide genes114 and CARs incorporating non-human 
sequences are readily targeted by the immune system30,31,115–117. 
Moreover, the poor expansion of re-infused CAR T cells5,6,26,31,56,118 
was correlated with the detection of patient-derived T cell epitopes 
in the CAR30,31. The field is therefore moving away from incorpo-
rating non-human tumor-targeting moieties into the CAR63. That 
being said, the remarkable response rates with a non-human CAR 
in multiple myeloma recently suggest that deep molecular remis-
sions are possible (see below).

Extending CD19 CAR T cell therapy beyond CD19+ 
malignancies
Although multiple myeloma derives from plasma cells (the termi-
nal stage of B cell differentiation), myeloma precursor cells may 
express CD19. Pilot studies suggested a potential benefit to target-
ing CD19 in myeloma119, yet little or no activity was apparent in the 
vast majority of treated patients, indicating that an alternative target 
antigen is needed to address this disease with CAR T cell therapy98. 
Myeloma cells uniformly express B cell maturation antigen (BCMA) 
(Fig. 1), leading to the development of BCMA-specific CAR T cells. 
Currently, 90 relevant clinical trials are listed on ClinicalTrials.gov, 
with a few moving forward towards their commercial roll-out (see 
Tables 1 and 2 for the constructs and trials furthest along in their 
development).

BCMA has been targeted by various groups using a diverse 
array of chimeric receptors (reviewed in refs. 120,121). Although 
human anti-BCMA CARs gained traction in myeloma122–131, 
non-human-derived BCMA CARs with an anti-BCMA murine132–135 
(or alpaca) immunoglobulin115,136–138 chain are further along in clini-
cal trials (Table 2).

Lymphodepletion using cyclophosphamide and fludarabine 
before adoptive T cell transfer further boosts CAR T cell expan-
sion139 by depleting cytokine sinks140 and immune-suppressive 
cells141,142. Although response rates vary widely among different 
BCMA-specific CAR T cell products, the biggest challenge remains 
the durability of response, with patients appearing to ultimately 
progress regardless of the product136.

The mechanisms that underlie myeloma resistance to BCMA 
CAR T therapy are coming to light through correlative analysis of 
biobanked specimens from early-phase clinical trials. Comparisons 
are difficult to make across trials, institutions and therapies, even 
though they all target the same myeloma-associated antigen, as dif-
ferences in the cell manufacturing process, vector used, CAR design 
and trial participant selection criteria, among other factors, are 
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  from CD4, CD8α or CD28)
• Engineer out the interaction domains
• Use cosignaling domain designed to
  boost persistence
• Mutate ITAM to reduce CAR T cell
  dysfunction
• Pharmacological control of the CAR
  activity (for example, using dasatinib)

• lmmunogenicity of the scFv
• Undesired interactions within T cells and
  other cell types (for example, macrophages)
• CAR T becomes dysfunctional or loses
  functional persistence in vivo (CD28)

scFv

Spacer
(hinge or transmembrane)

Costimulatory domain
(for example, 4-1BB or
CD28)

CD3

Fig. 4 | CAR design limitations that affect clinical responses following 
CAR T cell treatment, and potential solutions. Most CARs are made up 
of a TAA-binding scFv fragment (for example, CD19 fused in-frame with 
a T cell signaling domain) enhanced with a costimulatory domain (for 
example, CD28 or 4-1BB) that is separated from the scFv by a spacer 
sequence. The design of this synthetic receptor affects various aspects 
of its in vivo performance, and ultimately clinical responses. Additionally, 
small molecules such as dasatinib may tone dysfunction-inducing CAR 
signaling190. ITAM, immunoreceptor tyrosine-based activation motif.
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likely to affect outcomes. Modulation of BCMA expression may also 
play a role. Early studies preselected patients based on the expres-
sion of BCMA. Although to date no notable association between 
baseline BCMA expression and clinical response to BCMA CAR T 
therapy has been reported in the published literature, several stud-
ies have observed a reduction in BCMA expression following ther-
apy, which may be contributing to resistance122. The mechanism of 
BCMA downregulation in myeloma is not entirely understood, but 
this protein is shed naturally from the cell surface by the γ-secretase 
protease complex143–145. The resulting increased concentrations 
of soluble BCMA could also block CAR binding to the native, 
cell-bound protein, thereby limiting the clinical impact of BCMA 
CAR T cells further. The preliminary results of a clinical trial that 
included patients who had failed previous BCMA-targeted therapy, 
and combined a γ-secretase inhibitor (JSMD194) with a low dose of 
BCMA CAR T cells, showed a 100% response rate146.

T cell-intrinsic mechanisms similar to those seen with 
CD19-specific CAR T cells in ALL and CLL may also be contributing 
to resistance. In this latter setting, patient T cells expressing a fully 
human, BBζ-signaling CAR exhibited the most dramatic expansion 
kinetics in complete responders, whereas non-responders exhib-
ited little expansion in the first month after infusion. This led to 
the discovery of an early memory T cell subset in apheresed (that 
is, pre-CAR engineering) T cells that is associated with responses 
in CLL40. Similarly, data from a phase I study of BCMA-specific  
CAR T cell therapy showed that the expansion and persistence of 
CAR T cells in non-responders were substantially lower than in 

responders68,122,147. Again, the frequency of naive-like, early memory 
T cells within the apheresis product used to generated the CAR 
T cells showed a correlation with early engraftment. Although pros
pective studies using selected subsets of T cells are necessary to  
confirm the role of these T cells in outcome, these data suggest that 
some resistance to therapy may be intrinsic to the T cell product.

CAR T cell therapy for solid tumors
Although CAR T cells can mediate deep and durable cancer remis-
sion in B cell malignancies, achieving comparable clinical responses 
in non-hematopoietic solid cancers remains a daunting task. 
Nevertheless, a complete response to CAR T cell therapy of recur-
rent multifocal glioblastoma was achieved using multiple intracavi-
tary and intraventricular infusions of autologous T cells genetically 
redirected to IL-13 receptor α2 (ref. 148), laying the foundation for 
additional investigations into how to apply effective CAR T cell 
therapy in this and other non-hematopoietic solid cancers5,6,149–151. 
CAR T cell trials have established that deep, durable remissions with 
CAR-engineered cells correlate with a minimal proportion of early 
memory T cells in pre- and post-CAR engineering T cells. Critical 
features include early memory T cell differentiation in responding 
patients and an absence or low levels of T cell dysfunction, glycol-
ysis, effector cell and exhaustion40. These findings were validated 
in functional studies and additional cohorts of leukemias, but also 
myeloma and NHL68. CAR T cells targeting solid tumor antigens 
may have a different set of requirements to achieve efficacy than 
those targeting B-lineage malignancies. In addition to identifying 

Table 1 | Summary of BCMA-targeted CAR structures

Manufacturer CAR name Gene delivery 
system

Species of 
antigen-binding 
domain

Structure of 
antigen-binding 
domain

Hinge and 
transmembrane 
domain

Signaling 
domain

Satety switch

National Cancer 
Institute

CAR-BCMA Retroviral vector Mouse scFv CD8α CD28-CD3ξ No

bluebird bio/
Celgene

Idecabtagene 
vicleucel/
bb2121

Lentiviral vector Mouse scFv CD8α 4-1BB-CD3ξ No

bb21217 Lentiviral vector Mouse scFv CD8α 4-1BB-CD3ξ No

Hrain 
Biotechnology

BCMA CAR T Retroviral vector Mouse scFv NA 4-1BB-CD3ξ EGFRt

Nanjing Legend/
Janssen

Ciltacabtagene 
autoleucel/
LCAR-B38M

Lentiviral vector Alpaca VHH CD8α 4-1BB-CD3ξ No

University of 
Pennsylvania

CART-BCMA Lentiviral vector Human scFv CD8α 4-1BB-CD3ξ No

Memorial Sloan 
Kettering Cancer 
Center

MCARH171 Retroviral vector Human scFv CD8α 4-1BB-CD3ξ EGFRt

Memorial Sloan 
Kettering Cancer 
Center

JCARH25 Lentiviral vector Human scFv CD28 4-1BB-CD3ξ No

Fred Hutchinson 
Cancer Research 
Center

FCARH143 Lentiviral vector Human scFv NA 4-1BB-CD3ξ EGFRt

CARsgen 
Therapeutics

CT053 Lentiviral vector Human scFv NA 4-1BB-CD3ξ No

IASO 
Biotherapeutics

CT103A Lentiviral vector Human scFv CD8α 4-1BB-CD3ξ No

Poseida 
Therapeutics

P-BCMA-101 piggyBac DNA 
modification system

Human Centyrin NA 4-1BB-CD3ξ Yes (activated 
by rimiducid)

EGFRt, truncated epidermal growth factor receptor; VHH, variable heavy-chain domain; NA, not applicable.
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appropriate target antigens, these requirements include the need for 
CAR T cells to: (1) traffic to sites of disease; (2) migrate through 
tumor endothelial and stromal barriers before infiltrating into 
tumors; (3) broadly attack cancer cells in the face of heterogeneous 
antigen expression; and (4) thrive in a harsh tumor microenviron-
ment (TME) characterized by hypoxia, oxidative stress, nutrient 
deprivation and acidic pH, as well as many immunosuppressive sol-
uble cytokines and factors, overexpression of inhibitory molecules 
with coordinated expression of inhibitory receptors on T cells, and 
the presence of an array of immune cells with immunosuppres-
sive function, including regulatory T cells, tumor-associated mac-
rophages, myeloid-derived suppressor cells and tumor-associated 
neutrophils (Fig. 3). Ultimately, CAR T cell therapy may achieve 
greater efficacy in patients harboring solid tumors once approaches 
are developed that address each of these barriers together.

An expanding cadre of tumor-specific antigens and TAAs that 
could be targeted using CAR T cell therapy in non-hematopoietic 
solid cancers have been identified, including mesothelin, folate 
receptor alpha, human epidermal growth factor receptor 2 (HER2), 
IL-13 receptor α2, epidermal growth factor receptor variant III 
(EGFRvIII), claudin 18.2, mucin 1, cell-surface associated (MUC1), 
glypican-2, carbonic anhydrase IX and others. Nevertheless, iden-
tification of an antigen with restricted expression on solid cancer 
cells has been challenging. Ideally, CAR T cells should be highly 
specific for a tumor-restricted antigen, expressed uniformly and 
at high levels on cancer cells, but not on vital healthy tissue. The 
importance of antigen exclusivity was demonstrated in CAR T cell 
trials targeting TAAs such as HER2 and carbonic anhydrase IX, 
which are expressed by both cancer cells and normal tissues, and 
which resulted in severe toxicity6,152. The need for consistent anti-
gen expression was illustrated in a clinical trial targeting mutant 
EGFRvIII, a CAR target antigen with highly restricted but hetero-
geneous expression in glioblastoma. Although intravenous T cell 
infusion resulted in CAR T cell trafficking to the brain with accom-
panied antigen-directed activity against EGFRvIII+ cancer cells, 
the heterogeneous EGFRvIII expression and potential antigen loss 
resulted in outgrowth of antigen-negative disease150. In some cases, 
targeting antigens with more restricted and uniform expression in 
tumors, or those preferentially expressed on organs that are not 
essential for patient survival, such as follicle-stimulating hormone 
receptor153, may pave the way toward broader and safer antitumor 
activity. Nevertheless, heterogeneous TAA expression is common in 
solid tumors, highlighting the need to develop multi-antigen tar-
geting approaches or strategies that improve epitope spreading and 
engagement of endogenous antitumor immunity. Evidence already 
exists for epitope spreading and bolstering of endogenous immunity 
in clinical trials and in preclinical models of CAR T cells in solid 
tumors154,155, suggesting that antigen spreading may be necessary to 
improve activity. As an alternative approach to address both anti-
gen heterogeneity and the threat of antigen loss, so-called universal 
immune receptors (UIRs) were created (reviewed in ref. 156). These 
CARs do not directly recognize the tumor antigen, but rather recog-
nize a tag, such as biotin157, on an antigen-targeted ligand (for exam-
ple, an antibody or scFv fragment) that serves as an immunologic 
bridge between the CAR and TAA. UIRs allow the modified T cells 
to recognize multiple distinct TAAs simultaneously or sequentially, 
thus addressing both the heterogeneity and TAA loss observed with 
monospecific CARs, with the added benefit of dose-dependent 
control of T cell activity. Clinical trials of UIR T cells are ongoing 
(for example, NCT03680560, NCT03266692 and NCT03189836). 
Another approach, referred to as dual or tandem CARs, allows CAR 
T cells to recognize two or more distinct antigens rather than one. 
Proof of this principle has been established in solid tumor mod-
els using a HER2/MUC1 bispecific CAR for breast cancer cells 
in vitro158, a HER2/IL-13 receptor α2 bispecific CAR for the treat-
ment of a glioma xenograft in vivo159, and an EGFR/epithelial cell M
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adhesion molecule/HER2 tri-specific against Raji lymphoma cells 
engineered to express these TAAs160. Alternatively, diversifica-
tion of TAAs recognized by single CAR T cell products for solid 
tumor treatment may be achieved using SynNotch systems for the 
conditional expression of a second CAR following engagement of a 
primary CAR with a cognate TAA, thereby allowing for potential 
localized expression of a CAR specific for a distinct antigen at the 
site of primary target encounter161. An alternative approach would 
be through bicistronic vectors for the engineered co-expression of a 
CAR specific for one antigen and a soluble bispecific T cell engager 
specific for a second antigen162.

Although for hematopoietic cancers intravenous infusion of CAR 
T cells may target cancer cells in natural immune cell environments  
such as the blood, lymph nodes and bone marrow, it remains chal-
lenging to deliver CAR T cells targeting solid tumors to distant tumor 
deposits. In some cases, direct intratumoral or regional delivery  
of T cells may facilitate and improve T cell infiltration and antitumor  
activity, particularly for compartmentalized cancers148,163,164. Lympho
depleting chemotherapy as a preconditioning regimen may also  
augment CAR T cell accumulation in solid tumors after intravenous 
infusion. Following intravenous administration of indium-111-labeled 
tumor-infiltrating lymphocytes to patients with metastatic melanoma,  
the cells rapidly accumulated in the lungs, liver and spleen before 
progressively localizing in tumor deposits165. In these trials, tumor- 
infiltrating lymphocyte accumulation was enhanced with previous 
lymphodepletion and associated with an improved clinical response 
to treatment165,166. Still, the natural trafficking of T cells to tumors 
requires that they respond to chemokines produced in the TME167, 
and that tumor-derived chemokines be matched to the expression of 
the appropriate chemokine receptors on the infused T cells to permit 
trafficking168. Although most CAR T cells do not naturally express 
cognate receptors for the chemokines produced by tumors, it is pos-
sible to engineer matched chemokine receptor expression to achieve 
enhanced infiltration and killing of solid tumors169–171. CAR T cells 
may also be outfitted to produce chemokine ligands, such as CCL19 
and other factors, to foster chemokine receptor-dependent recruit-
ment of endogenous T cells and dendritic cells to tumor sites when 
infused without previous lymphodepletion172.

CAR T cells trafficking to solid tumor sites also encounter for-
midable physical barriers that can both block T cell infiltration 
and disable T cell function. Major barriers include the fibrotic 
tumor stroma, comprised of extracellular matrix (ECM) and 
cancer-associated fibroblasts (CAFs), and the abnormal vasculature 
at the tumor site. Solid malignancies, such as pancreatic, ovarian and 
breast cancers, often contain fibrotic tumor stroma that may impede 
effective delivery of drugs including CAR T cells. CAR T cells natu-
rally express low levels of enzymes that degrade ECM components, 
but engineering the expression of heparanase was shown to improve 
their capacity to degrade ECM proteoglycans, thereby promoting 
CAR T cell entry into stroma-rich tumors and antitumor activity173.

CAFs contribute to ECM remodeling, modulate tumor angio-
genesis and promote metastasis, with CAF depletion fostering 
endogenous antitumor immunity in an autochthonous model 
of pancreatic ductal adenocarcinoma174. Thus, engineering CAR 
T cells against fibroblast activation protein, which is expressed by 
CAFs and myofibroblasts, was shown to target stromal CAFs and 
inhibit cancer progression without notable toxicity in multiple solid 
tumors175. However, fibroblast activation protein-targeted CARs 
also recognized multipotent bone marrow stromal cells, resulting in 
lethal bone toxicity and cachexia in other tumor models176.

CAR T cells can also be designed to target and disrupt the 
tumor vasculature to allow T cell infiltration and restrict the flow 
of blood and nutrients to solid tumors. For instance, targeting vas-
cular endothelial growth factor receptor 2 using CARs can aug-
ment T cell infiltration and inhibit the progression of different 
types of vascularized syngeneic solid tumors177,178. CARs specific 

for prostate-specific membrane antigen can ablate prostate-specific 
membrane antigen-positive vessels and limit tumor progression 
in vivo through indirect loss of tumor cells (related to the disrup-
tion of the vasculature179), and CARs targeting the angiogenic inte-
grin αvβ3 on the vascular endothelium can disrupt tumor vessels 
and suppress tumor outgrowth180. CAR T cells may also be com-
bined with antivasculature agents, including antivascular endo-
thelial growth factor or prostaglandin E2 antibodies181, antitumor 
endothelial marker 1/endosialin immunotoxin182 or agents target-
ing molecules on the tumor endothelium, such as Fas ligand, which 
establishes a tumor endothelial death barrier and kills incoming 
effector CD8 T cells181. Together, these findings provide rationale 
for further investigation and the use of stroma-disrupting strategies 
as both preparative and combinatorial regimens to augment T cell 
entry into solid tumors in TAA-targeted CAR T cell trials.

In the stroma and tumor bed, CAR T cells contend with overex-
pression of inhibitory checkpoint ligands with coordinated expres-
sion of inhibitory receptors on T cells, immunosuppressive soluble 
cytokines and factors, various immunosuppressive cell types and 
a hypoxic and nutrient-deprived environment. Both tumor cells 
and immune cells in the TME can regulate CAR T cell activation 
through the expression of inhibitory signals that block T lympho-
cyte activation and function, thereby circumventing otherwise 
effective immune control of tumor progression.

Future prospects
Over the past decade, an astounding series of proof-of-concept 
trials have taken place, with validation of early results in phase II 
trials39,44,183–186 leading to the approval of CD19-specific CAR T cell 
therapies for select B cell malignancies. Separately, insight into the 
biology of CRS has led to biomarker-driven trials (NCT02906371) 
and the discovery and validation of a novel biomarker profile of this 
potentially lethal toxicity59. Additional observations from routine 
and translational studies have revealed mechanisms of resistance 
and response, as well as identification of the natural basis of success-
ful and failed CAR T cell therapy40,66,68. Novel therapies started to 
incorporate small molecules, which proved to augment T cell func-
tion and simultaneously inhibit the malignant population35,93,95,187. 
Combination trials also targeted more than one surface protein, 
either on the same target cell (as with CD19 and CD22) or on pre-
cursors and progeny of the tumor (as with CD19 and CD20, CD22 
or BCMA)185,188,189. In the next few years, we are likely to witness 
increased efficacy of CAR T cells for solid tumors—a major current 
focus in this field. However, a better understanding and monitoring 
of the tumor will be essential for CAR T cell therapy to be offered to 
patients in the early stages of their disease, before genomic instabil-
ity and evolution of the tumor complicate treatment.
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