

1

Rivelatori e Apparati

Slides_6 – Deriva di silicio

Verso i rivelatori a drift (deriva) di silicio

b) L'impianto n+ non deve per forza coprire l'intero lato opposto: puo' essere spostato in un angolo e lo spessore polarizzato si formera' comunque intorno a p+

c) Si puo' replicare p+ sul lato opposto, si formeranno due giunzioni

d) Applicando una polarizzazione tra n+ e i p+, si svuota tutto lo spessore, creando un minimo di potenziale ove gli elettroni creati per effetto termico o per generazione da passaggio di particella si accumulano. Tali e- poi si possono spostare per diffusione finche non raggiungono le vicinanze di n+, ove vengono raccolte velocemente per deriva verso n+

Partizione di tensione sui p+ segmentati

- A questo punto posso segmentare gli impianti p+, e polarizzarli a tensioni gradualmente diverse, mantenendo uguale potenziale sugli impianti opposti, che aumentano all'avvicinarsi all'elettrodo n+, creando un campo elettrico nella direzione longitudinale
- Alimentare singolarmente i diversi impianti comporterebbe un aumento di rumore resistivo e una complessita' costruttiva notevoli

Simulazione del potenziale in sensore a drift

 'Minimo' di potenziale (-U) a meta' spessore diminuisce gradualmente mano a mano che ci si avvicina all'anodo

Silicon Drift Detector – Deriva di silicio

- Regione di deriva: minimo potenziale sul piano di simmetria dello spessore, decresce lungo la direzione perpendicolare alle strip p+
 - Il potenziale viene formato fornendo la differenza di potenziale tra la prima e ultima strip, e diviso grazie a
 corrente di lacune che fluisce tra le strip non connesse a bias, finche esse si posizionano a livelli equidistanti nel
 potenziale
- Regione di raccolta: potenziale ha un'asimmetria verso l'anodo di raccolta, anche aiutato da un contropotenziale sul lato opposto
 - In corrisponenza dell'anodo di raccolta sul lato opposto gli impianti hanno potenziale costante o addirittura piu' alto per aumentare la differenza rispetto a n+

Limitazioni potenziale tra strip p+

- Potenziale visto dagli e- cala in tutte le direzioni dal contatto p+: in questo modo non ci puo' essere flusso di buche
- Le resistenze esterne sulle due strip estreme limitano la corrente.
- La tensione viene divisa con collegamento a catena tra strip vicine.
- Alimentarle tutte esternamente provocherebbe una corrente elevata di lacune e un rumore ingestibile
- Non si puo' aumentare piu' di tanto la differenza di potenziale tra strip p+, altrimenti si annulla la barriera di potenziale per le Buche
 - Se usiamo 15 V il potenziale si deforma al punto da crescere a partire dall'impianto, creando una grande corrente di buche tra strip p+ adiacenti

15 V tra strip adiacenti

Per misura di posizione: simmetria left-right

Simmetria rispetto all'asse centrale, raccolta da entrambi i lati opposti del sensore, in modo da utilizzare un solo partitore di tensione per entrambe le sezioni, e ottenere la stessa deriva con meta' tensione

Segmentazione dell'anodo

- La seconda coordinata e' fornita dalla segmentazione dell'anodo di raccolta
- La segmentazione deve essere proporzionata alladimensione della nuvola di elettroni, che ha avuto modo di espandersi durante la lunga deriva

9

Drift detector – Movimento delle cariche

- Lacune derivano ai catodi p+ (non letti)
- e- derivano lungo y seguendo il minimo del potenziale in un tempo t_D di deriva e poi derivano all'anodo sul lato per la raccolta:
 - La segmentazione dell'anodo fornisce la coordinata x
 - Il tempo di deriva lungo y fornisce la seconda coordinate: y~5 um/ns

Per spettroscopia: simmetria centrale

- Piccolo anodo al centro: 100 fF
- Campo di deriva simmetrico
- Contatto inferiore continuo p+

Prestazioni prima camera a deriva di silicio

- Velocita' di deriva
 - T deve essere mantenuta stabile (v varia di ~ 1% /K)
 - Velocita' deve essere calibratea e mappata
- Rumore:
 - La corrente di bias non influenza la corrente di leakage all'anodo
 - La corrente di lacune che entrano nel partitore di tensione modifica il potenziale
 - 4nA leakage dopo divisione della tensione
- · Capacita'
 - Anodi piccoli (25um) introducono piccola capacita (2pF)
- Misura Perdita energia particelle

Prestazioni deriva di silicio

- Risoluzione temporale in funzione di campo di deriva:
 - Riferita a distanza fissa
- Linearita'
- Necessita di un tempo zero
- Velocita' di deriva in funzione del campo di deriva
- Stima della mobilita' degli e- in funzione del campo

The SDD was selected to equip the 3rd and 4th layers of the Inner Tracking System (ITS) of the ALICE experiment at LHC. The finger print of this silicon drift detector is:

➤Wafer type:

5" Neutron Transmutation Doped <111> 3 kΩ.cm, 300 µm thick

►Area:

- sensitive: 7.02 × 7.53 cm², divided into two drift regions
- total: 7.25 × 8.76 cm², (ratio = 0.83)

>Each drift region:

- 35 mm long
- 291 cathodes driven by built-in voltage divider
- 256 anodes 294 μm pitch
- 3 rows of 33 MOS charge injectors (for the drift velocity calibration)

➤Guard regions:

independent built-in voltage dividers

Typical operating parameters:

- > Drift bias voltage: -2.4 kV, 8V/cathode E=670V/cm
- Maximum drift time : 4.3 μ s, vd =8 μm/ns
- Power dissipation on board: 0.95 W
 - > equivalent Rtot of all drift + guard dividers 4781 kΩ
 - total current in all dividers ~0.40 mA

Struttura iniettore MOS e partitori di tensione

72.5 mm 70.2 mm

DEGLI STE

Drift Velocity Calibration

 $\label{eq:Vdrift} V_{drift} \sim 8 \ \mu\text{m/ns}$ But V_{drift} = f(HV, T) \propto T^-2.4 During the experiment, T must be stable within 0.1 K

 \Rightarrow Cooling system based on water flowing in tubes along the support Calibration by using electron injectors (MOS) located at precise locations

In SDD, there is 3 lines of 33 injectors 1 close to the anods 1 in the middle 1 at the far side

The drift time allows to deduce the velocity of electrons and therefore to make the conversion $T_{drift} \rightarrow Position$

Deviations in Position

Defects in the doping induce Parasitic field (up to ~ 15%) \Rightarrow Error on the true position

Deviations :

 Pos_{meas} – $\text{Pos}_{\text{real}} \rightarrow \pm 500 \ \mu\text{m}$ (drift direction)

Systematic effect

Measured with a laser in order to « map » each detector

ANNA CONTRACTOR

ALICE SDD

- Prestazioni misurate
 - Risoluzione spaziale in funzione distanza
 - Risoluzione spaziale vs pt particelle
 - Stabilita' velocita' deriva

Chiaro segnale anche ad alta molteplicita'

Altre applicazioni

- Spettroscopia + ricostruzione posizione 2D
 - Risoluzione all'anodo di decine di um per X-rays con 2 keV
 - Lunghezza di deriva piu' grossolana: non c'e' rivelazione di tempo zero (6 mm per E > 3.5 keV)
 - \Rightarrow Medical field: Compton camera
 - \Rightarrow Nuclear physics precision spectroscopy
 - \Rightarrow X-ray astronomy/astrophysics
 - \Rightarrow X-ray imaging for Advanced Light Sources (SR and FEL)

2-D imaging with photons?

The charge cloud has a Gaussian shape. Its width depends on the drift time which, for a constant electric field, is a linear function of the drift distance:

$$D = \frac{k_B T}{q} \mu \quad \text{diffusion coefficient}$$
$$v = \mu E \quad \text{drift velocity}$$
$$t = \frac{x}{v} \quad \text{drift time}$$

$$\sigma = \sqrt{2Dt + \sigma_0^2} = \sqrt{2 \cdot \frac{k_B T}{q} \mu \cdot \frac{x}{\mu E} + \sigma_0^2} = \sqrt{2 \frac{k_B T}{q E} x + \sigma_0^2}$$

For low energy X-ray photons it is possible to take $\sigma_0 \approx 0$

10

15

Drift distance [mm]

20

25

30

35

35

Compromesso segmentazione anodi

- Per aumentare la risoluzione in energia a scopi spettrografici: vorrei che la carica fosse divisa al massimo tra 2 anodi (la risoluzione dipende da $\sqrt{N_{anodi}}$ tra cui e' divisa la carica)
- Per aumentare la precisione spaziale a scopi di imaging: vorrei che l'anodo fosse segmentato di piu' per sfruttare condivisione di carica, a scapito della risoluzione energetica (anche se mitigate da capacita' e corrente di leakage piu' basse)

Room temperature spectroscopic performance of the ALICE SDD

- Very good noise performance: ENC = 25 e⁻rms @ +20 °C using a sub-optimal front-end electronics, only 2× worse than the best commercial SDDs operated below -20°C
- Good energy resolution for such area: < 570 eV FWHM @ 20 °C with a full instrumented ASIC read-out (realistic simulation)

SDD DESIGN OPTIMIZATION FOR X-RAY SPECTROSCOPY AND IMAGING

Detector development activity performed in the framework of the XDXL and ReDSoX R&D INFN programs

Prototypes designed, manufactured and tested in collaboration between INFN, INAF and FBK.

(Rachevski et al., JINST, 2015) SUBSTRATE OPTIMIZATION FOR X-RAY

DETECTION

MATERIAL: NTD \rightarrow FZ GEOMETRIC AREA (filling factor): 5" \rightarrow 6" wafer <100> RESISTIVITY: 4 k Ω cm \rightarrow 9 k Ω cm THICKNESS (QE): 300 μ m \rightarrow 450 μ m

DESIGN OPTIMIZATION FOR X-RAY

DETECTION AND SPACE APP.

VOTLAGE DIVIDER: reduced power SURFACE CURRENT: minimization Si-SiO₂ INTERFACE GAP: minimization FIELD PLATE: optimization for minimal surface current QUANTUM EFFICIENCY: optimization for low E_{ph} ANODE PITCH: opt. for spectral-timing & imaging

Restringimento gap tra p⁺ vicine

- Densita' di elettroni in rosso
- Corrente di leakage di superficie avviene tra SiO e bulk
- Per restringere la zona non svuotata basta aumentare il rapporto tra area degli impianti e area del gap.
- Anche la zona svuotata sotto l'ossido si restringe

E_XTP SDD LOT OF MODIFICATIONS TO IMPROVE LOW ENERGY X-RAY DETECTION

eXTP SDD typical parameters (HV=1300V) The drift time is about 5 µs.when the photon is absorbed close to the top of the 35 mm long drift channel (corresponding to the central line of the Silicon tile). The charge cloud reaches a maximum size of about 1 mm,