

Rivelatori e Apparati

Slides_8 – MAPS, LGAD, SiPM, Calorimetri

Differenze tra silicio di chip e di sensore

- Il silicio del sensore deve essere ad alta resistività per favorire lo svuotamento e la raccolta veloce delle cariche (kOhm x cm)
- Il silicio del chip di readout deve essere a bassa resistività (Ohm x cm), perché' tutta la tecnologia CMOS commerciale è stata sviluppata in silicio a bassa resistività per ridurre i costi
- Sono stati però esplorati due approcci per unire le funzionalità:
 - 1. Privilegiare il sensore (come DEPFET project) applicando semplici funzioni logiche (amplificatore e indirizzamento) su alta resistività.
 - Segnale ottimale pochissima elaborazione
 - 2. L'elettronica guida lo sviluppo del sensore: sottile strato epitassiale a bassa resistivita'
 - Ottimale per una logica CMOS commerciale ma non si puo' svuotare piu' di tanto raccolta in piu' di 100 ns

Monolithic Active Pixel Sensors (MAPS)

giacomo.contin@units.it

Hybrid Pixel Detectors

Monolithic Pixels

La tecnologia MAPS

Volume sensibile e logica CMOS di prima elaborazione del segnale nello stesso cristallo di silicio

ionizing particle

- Monolithic Active Pixel Sensor
 - Tecnologia industriale standard CMOS (ma inizialmente solo nmos)
 - **Room temperature** operation
 - Sensore e processazione del segnale integrati nello stesso silicio
 - Il segnale e' creato nell'epitassiale (tipicamente ~10-15 μ m) a basso drogaggio \rightarrow segnale di un MIP limitato a <1000 elettroni
- La raccolta di carica avviene soprattutto per diffusione termica (lenta, ~100 ns), anche grazie ai confini "riflettenti reflective boundaries at p-well and substrate.
- Epitassiali ad alta resistivita' per ottenere zone svuotate piu' spesse \rightarrow raccolta della carica piu' efficiente, piu' tollerante alle radiazioni
- 100% fill-factor

MAPS *Ultimate-2* Sensor (2013)

3rd generation sensor developed for the PXL detector by the PICSEL group of IPHC, Strasbourg, optimized for the STAR environment

- Monolithic Active Pixel Sensors
- Reticle size (~ 4 cm²)
 - Pixel pitch 20.7 μm
 - 928 x 960 array
- Power dissipation ~170 mW/cm² @ 3.3V (air cooling)
- Short integration time 185.6 μs
- Sensors thinned to 50 μm

- In pixel Correlated Double Sampling
- Discriminators at the end of each column
- Column-parallel readout
- 2 LVDS data outputs @ 160 MHz
- Integrated zero suppression (up to 9 hits/row)
- Ping-pong memory for frame readout (~1500 words)
- 4 tunable sub-arrays to help with process variation
- JTAG configuration of many internal parameters

Calorimetri

STAR HFT PXL sensor: Ultimate-2

- Ultimate-2: third generation sensor developed for PXL by the PICSEL group of IPHC, Strasbourg
- Monolithic Active Pixel Sensor technology, MIMOSA series

STLOOOR-IN SALUT OR STLOOOR

Introduzione deep p-well \rightarrow CMOS

- Un secondo impianto profondo (deep p-well) permette di implementare transistor pmos schermandolo, evitando che il suo n-well entri in competizione con i diodi di raccolta.
- E' difficile svuotare l'epitassiale perche' deve essere a **bassa resistivita'** per permettere di utilizzare tecniche industriali di design e produzione della logica CMOS.
- La raccolta di carica e' lenta perche' parzialmente per diffusione

MAPS – ALPIDE sensor (2017)

09/12/2024

MAPS working principle (3) example: ALPIDE pixel

Front-end:

(9 transistors, full-custom)

- continuously active
- shaping time: < 10 μs
- power consumption: 40 nW
- Multiple-event memory: 3 stages (62 transistors, full-custom)
- Configuration: pulsing & masking registers (31 transistors, full-custom)
- Testing: analogue and digital test pulse circuitry (17 transistors, full-custom)

O(200) transistors / pixel

ALPIDE performance

Detection Efficiency and Fake-Hit Rate

- Big operational margin with only 10 masked pixels (0.002%)
- Chip-to-chip fluctuations negligible
- Non-irradiated and NIEL/TID chips show similar performance
- Sufficient operational margin after 10x lifetime NIEL dose

From ITS Upgrade Talk @ QuarkMatter I 7, February 'I 7

Calorimetri

dell'epitassiale

Foundry standard process

Charge collection time < 1 ns Operational up to 10¹⁵ 1 MeV n_{eq}/cm²

Modified process CERN/Tower

process modification for better timing and radiation hardness

Operational up to 10¹⁴ 1 MeV n_{eg}/cm²

Evoluzione verso lo svuotamento dell'epitassiale

giacomo.contin@units.it - RAFNeS MAPS, LGAD, SiPM, Calorimetri

Assottigliamento e cucitura

- Assottigliamento (thinning)
 - Wafer partono da spessori piu' spessi (700-250um) per arrivare allo spessore desiderato (300-150um)
 - Substrato sul lato inattivo viene grattato via per sfregamento con dischi con superficie a grana via via piu' sottile, da 20-80um a 1-8um
 - Il lato attivo e' protetto da adesivo che viene poi lavato via
 - Resistenza alle rotture, deformazione, incurvamento da tenere sotto controllo •

- Cucitura (stitching)
 - Esposizione allineata della stessa • maschera ripetuta sul reticolo (~25mm*25mm) per coprire grandi superfici

UV

wafer

mask

photoresist

Stitching – Cucitura di strutture ripetute

Processo

- Suddividere la maschera
- Esporre ripetutamente il wafer alla sezione desiderata per raggiungere le dimensioni desiderate

Implicazioni

- Limiti aggiuntivi
- Poca flessibilita'
- Come indirizzare il giusto elemento ripetuto
- Resa di produzione per grandi aree

Stitching – Cucitura di strutture ripetute

Processo

- Suddividere la maschera
- Esporre ripetutamente il wafer alla sezione desiderata per raggiungere le dimensioni desiderate

Implicazioni

- Limiti aggiuntivi
- Poca flessibilita'
- Come indirizzare il giusto elemento ripetuto
- Resa di produzione per grandi aree

5	4	4	4	4	6
2	1	1	1	1	3
2	1	1	1	1	3
8	7	7	7	7	9

Fill factor

Resistivita' substrato

Monolithic Pixels

Depleted Monolithic Pixels

Acquisition of timing information

- - LHCb Upgrade II (Run 5~2030)
- Time tagging at each point
 Timing in the event reconstruction HL-LHC: ATLAS and CMS

Timing

giacomo.contin@units.it - RAFNeS MAPS, LGAD, SiPM,

Calorimetri

Rivelatori al silicio per misure di tempo

Si basano sulla moltiplicazione a valanga delle cariche in movimento nel semiconduttore

- Low Gain Avalanche Detectors (LGAD):
 - Rivelatori a valanga a basso guadagno tramite un sottile strato p+ ad alta concentrazione vicino all'anodo di raccolta
 - Gain: ~10
- Avalanche Photon Detectors (APD) & Single photon avalanche photodiode (SPAD)
 - Fotodiodo usato in regime valanga, come un interruttore seguito da una resistenza di quenching che spegne la valanga
 - Gain: ~1000
- Silicon Photo-Multiplier (SiPM)
 - Matrici di SPAD in parallelo, non usato per imagine perche somma i segnali dalle diverse celle
 - Gain: ~10000

Caratteristiche degli LGAD

- Guadagno basso:
 - Permette un rumore piu' basso, crea campi meno intensi e quindi la possibilita' di segmentare di piu' la superficie, limita la dissipazione di potenza anche dopo irraggiamento
 - Se usato per particelle cariche, il segnale abbastanza alto permette di avere un buon S/N anche con un guadagno ~10-20
- Spessore sottile:
 - La durata del segnale generato dipende unicamente dal tempo massimo di deriva di un elettrone da una parte all'altra del silicio. L'ampiezza dipende dal fattore di guadagno. Quindi con guadagno fisso, la pendenza del fronte di salita aumenta per spessori piu' sottili.
 - D'altro canto spessori sottili introducono capacita' di carico maggiore, che poi necessitano di alti gain per misurare con precisione il segnale nell'elettronica. Entrambi i fattori creano un rumore piu' alto
- Ottimali: Gain: ~20 Spessore: ~50 um

Gain mechanism in LGADs

- Planar silicon sensors (n+/p/p-)
 - n+ implant, p substrate
 - p-type multiplication layer

- High electric field region in the multiplication layer
 - Charges undergo impact ionisation
 - Gain depends on:
 - multiplication layer doping
 - bias voltage
 - temperature

S. Otero Ugobono et al., IEEE TNS (2018) vol. 6, no. 8, pp. 1667-1675

LGAD: simulazioni

Campo elettrico in confronto a giunzione standard

Caratterizzazione LGAD: misure TCT

- Principio di funzionamento (Edge-)Transient Current Technique
- Misura TCT su LGAD con diversi Guadagni e a diverse Vbias

Localizzazione della generazione di carica per descrivere il profilo di drogaggio e gli effetti sulla valanga

Time resolution

Time resolution is affected by:

- each step in the read-out process
- any effect that changes the shape of the signal

Time resolution

amplitude $\sigma_{\rm Time \ walk} \propto \left[\frac{N \sigma_n}{{\rm dV/dt}} \right]_{RMS}$ Vth Δt = 'time walk'

- Variation in time of arrival due to different signal amplitudes
- Can be compensated by electronics

 $\sigma^2_{
m TDC}$ $\sigma_t^2 = \sigma_{\text{Time walk}}^2 + \sigma_{\text{Landau noise}}^2 + \sigma_{\text{Jitter}}^2 + \sigma_{\text{Distortion}}^2$ TDC: time-to-digital converter Caused by inhomogeneous: $\sigma_{\rm TDC} = \Delta T / \sqrt{12}$ drift velocity comparator weighting field time bin width

- Solutions:
 - saturated drift velocity
 - optimised geometry

- V_{th}: threshold voltage to determine the time of arrival
- $N\sigma_n$: the threshold is usually expressed in multiples of the system noise

Time resolution

• Vth: threshold voltage to determine the time of arrival

4-D Ultra-Fast Si Detectors in pCT P

In support of Hadron Therapy, the relative stopping power (RSP) is being reconstructed in 3D.

The UCSC-LLU pCT scanner uses Si strip sensors to locate the proton and heavy scintillator stages to measure its energy loss (WEPL).

Protons of 200 MeV have a range of \sim 30 cm in plastic scintillator. The resulting straggling limits the WEPL resolution.

Replace calorimeter/range counter by UFSD:

Combine tracking with WEPL measurement where the ToF of the proton measures the residual energy., with comparable or better resolution than the scintillator.

Light-weight, all silicon construction ideal for installation Into the gantry

- Applicazione rivelatori al silicio in calorimetria:
 - Calorimetri a campionamento

Sampling calorimeters

- Use different media
 - High density absorber
 - Interleaved with active readout devices
 - Most commonly used: sandwich structures ->
 - But also: embedded fibres,
- Sampling fraction
 - $f_{sampl} = E_{visible} / E_{total deposited}$
- Advantages:
 - Cost, transverse and longitudinal segmentation
- Disadvantages:
 - Only part of shower seen, less precise

FoCal-H and FoCal-E

FoCal-H: Conventional sampling hadronic calorimeter (Cu + scintillating fibres)

- Providing $\boldsymbol{\gamma}$ isolation through direct detection of high energy hadrons

FoCal-E: high-granularity Si-W electromagnetic calorimeter for γ and π_0

- Main challenge for Focal-E: γ/π₀ separation at high energy
 two photon separation from π⁰ decay: ~2 mm
 - needs small Molière radius and high granularity readout
 - → Si-W calorimeter with effective granularity of ~1 mm²

FoCal-E detector technologies

Studied in simulations: 20 layers W (3.5 mm $\sim 1X_0$) + silicon

- 18 Pad layers
 - Low granularity (LG), provide shower profile and total energy
- 2 Pixel layers (ALPIDE)
 - High granularity (HG), provide position resolution to resolve overlapping showers

FoCal-E layout and prototypes

Module: 18 pad layers + 2 pixel layers

• Readout, power, cooling connected on one side

EPICAL all-pixel small E-cal

Pixel string prototype: 9x SpTAB bonded ALPIDE Final pixel layer will have 3x 15-ALPIDEs strings

Servers of the servers

Approfondimenti/backup

Primi monolitici

- Silicio molto resistivo e puro
- Svuotamento completo
- Solo un n-well superficiale
 - Forma transistor pmos
 - Fa da schermo tra logica e substrato
- Logica basilare nella matrice
- Logica completa nella periferia
- Basso fill factor
- Giunzione si forma dal lato opposto
- Zona di raccolta e' a basso campo in svuotamento completo
- Caratteristiche:
- 10 col. X 30 righe
- A = 34 um x 125 um
- S/N ~ 55
- $\sigma_x \sim 2.2 \text{ um}$

CMOS Pixel Sensor using TowerJazz 0.18µm CMOS Imaging Process

ALPIDE sensor (developed within ALICE)

- ~28 μm pitch
- Integration time: < 20 μ s
- Trigger rate: 100 kHz
- Read out up to 1.2 Gbit/s
- Power: 40 mW/cm²
- Priority encoder sparsified readout
- Rad. Tolerant: 700krad -10¹⁴ IMeV n_{eq}/cm²
- High-resistivity (> $1k\Omega$ cm) p-type epitaxial layer (20μ m 40μ m thick) on p-type substrate
- Small n-well diode (2-3 μ m diameter), ~100 times smaller than pixel => low capacitance
- Application of (moderate) reverse bias voltage to substrate can be used to increase depletion zone around NWELL collection diode
- Quadruple well process: deep PWELL shields NWELL of PMOS transistors, allowing for full CMOS circuitry within active area

Calorimetri

PD and SPAD

Structure of a SPAD

Structure of a *thick* SPAD

Structure of a *thin* SPAD. This structure is used in SPAD arrays.

Figures from Zappa et al. 2007

Operation of a SPAD

Without quenching, SPAD operates as a light switch.

Operation of a SPAD (passive quenching)

Operation of SPAD (passive quenching)

Si-PM Silicon photomultiplier: structure

Single microcell

Each microcell is a SPAD in series with a quench resistor. All microcells are connected in parallel. SiPM is **not** an imaging device because all microcells share a common current summing node.

Silicon photomultiplier: operation

Example of single-photoelectron waveform (1 p.e.)

Gain = area under the curve in electrons

Silicon photomultiplier: modes of operation

SiPM can be operated in a **photon** counting mode.

If the pulses overlap, the SiPM can be operated in an **analog** mode. The measured output is voltage or current.

Forward Calorimeter

- Physics Goal: unravel nucleus structure at small-x
 - Unique capabilities to measure direct photons in pp and p-Pb
 - Study the gluon distributions at small-x scale and low Q

 $3.4 < \eta < 5.8$ (baseline design @ 7 m from IP)

giacomo.contin@units.it - RAFNeS MAPS, LGAD, SiPM,

Calorimetri