272SM: Artificial Intelligence

Programming with Prolog

Instructor: Tatjana Petrov

University of Trieste, Italy

Today

= Six lessons about problem solving and search with Prolog

(https://staff.fnwi.uva.nl/u.endriss/teaching/pss/slides/pss-prolog-
slides.pdf)

= Examples:

= Who is bigger? Who is related? Is Socrates mortal?

= Lists: length, reversal; Checking if a word is a palindrome
= Computing a Fibonacci sequence

= Solving Sudoku, N-Queens

https://staff.fnwi.uva.nl/u.endriss/teaching/pss/slides/pss-prolog-slides.pdf

Prolog examples: Who is bigger? (basic syntax)

[* Facts (Clauses) */
bigger(elephant, horse).
bigger(horse, donkey).
bigger(donkey, dog).
bigger(donkey, monkey).

[* Rule (Clauses) */
Is_bigger(X, Y) :- bigger(X,Y).
Is_bigger(X, Y) :- bigger(X,2), is_bigger(Z,Y).

[* SYNTAX

* Atoms: elephant, xYZ, a_123, '"How are you today?'

* Variables: X, Elephant, G177, MyVariable

* Compound terms: is_bigger(horse, X), f(g(Alpha,), 7), 'My Function' (dog)
* Facts

*/

Prolog examples: Family relations (matching)

[* Matching using a built-in equality predicate born(mary, yorkshire) = born(mary, X).
f(a, g(X, Y)) = (X, Z), Z = g(W, h(X)).

p(X, 2,2) =p(1, Y, X).

p(_, 2, 2) =p(1,Y,). anonymous variable

*/

mortal(X) :- man(X).
man(socrates).

aunt(X, Z) :-
sister(X, Y),
parent(Y, 2).

How Prolog works: Unification

e To understand how prolog’s computation works we
have to understand unification.

e Two predicates q(tl, t2, ..., tk) and p(s1, s2, ..., sn)
can be unified (MATCHED) if and only if
1. g is the same symbol as p.
2. k =n, i.e. they both have the same number of arguments.
3. Foreachi (1,...,n) terms ti and si can be unified.

m The built in predicate ‘=* tests if two terms are
unifiable.

How Prolog works: Unification of two terms

e Unifying two terms ti and si
m If both are constants, then they can be unified only if they are identical.

m If one is an unbound variable X, then we can unify the two terms by
binding X to the other term (i.e., we set X’s value to be the other term).

e E.g., X = f(a) = yes X is bound to the value f(a).

m If one or both are bound variables then we have to try to unify the
values the variables are bound to

e E.g. X =1(@a), Y = X = first X is bound to the value f(a), then when we
try to unify Y with X, X is bound so we must Y with X’s value, so Y
also becomes bound to f(a).

m Ifti = f(x1,x2, ..., xk) and si = g(y1, y2, ..., ym) then ti and si can be
unified if and only if

e fis identical to g.
e k = m (both functions take the same number of arguments).
e Xi and yi can be recursively unified foralli=1...m

Solving queries

e How Prolog works:
m Unification
m Goal-Directed Reasoning
m Rule-Ordering
m DFS and backtracking

eWhen given a query Q = q1, q2, ..., qn Prolog
performs a search in an attempt to solve this
query. The search can be specified as follows

Example

eRoute finding in in a directed acyclic graph:
edge(a,b).
edge(a,c).
edge(b,d).
edge(d,e).

path(X,Y) :- path(X,Z), edge(Z,Y).
path(X,Y) :- edge(X,Y).

eThe above is problematic. Why?
eHere is the correct solution:
path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

Hojjat Ghaderi, Fall 2006, University of Toronto

Unification examples

e Which of the followings are unifiable:

Bindings
X f(a,b) X=f(a,b)
f(X,a) g(X,a)
3 2+1 Use is to evaluate
book(X,1) |book(Z)
1,2,3] X|Y] X=1, Y=[2,3]
a,b,X] Y[[3,4]]
a|X] X Y] X=a Y=a improper list
X(a,b) f(Z,Y)
[X|Y|Z] [a,b,c,d] X=a. Y=b, Z=][c,d]

Prolog examples: List concatenation

/% Lists */
X =|[a, b, c].
/* MyList = [1,2,3,4,5], MyList = [1,_|Rest].*/

[* concatenation concat_lists([1, 2, 3, 4], [dog, cow, tiger], L).*/
concat_lists([], List, List).
concat_lists([Elem|Listl], List2, [Elem|List3]) :- concat_lists(Listl, List2, List3).

length([tiger, donkey, cow, tiger], N). % built-in operator
member(tiger, [dog, tiger, elephant, horse]).

concat_lists(Begin, End, [1, 2, 3]). show(List) :-
Begin =[] member(Element, List),

_ Xis 3+5
End=[1, 2, 3] ; write(Element), :22%]_ |O2|-ai|] N) :-
Begin = [1] write(" °), % nl len(Tail, N1) Vs.
End = [2, 3] ; false. N'is N1 + 1.
Begin =[1, 2] X =345
End =[3];
Begin = [1, 2, 3]
End = show([a,b,c]).

No

Fibonacci, factorial

fibo(0, 0). fibo(1, 1).
fibo(N, F) :- fibo(0, 0). fibo(1, 1).
N>=2 N1isN-1, N2isN -2, fibo(N, F) :-

fibo(N1, F1), fibo(N2, F2), F is F1 + F2. N >= 2,
N1isN -1,

N2 isN - 2,
fibo(N1, F1),
fibo(N2, F2),
FisF1l + F2.
write(F), nl.

fact(0,1). fact(1,1).

fact(N,F) :- .
f)
N>=2 N1 is N-1, What will we get here as output®

I *
fact(N1, F1), Fis F1*N. (solution: 1-2-1-3-1-2-5, show the tree of calls)

QUIZZ

Ruth

female(helen).

Paul Helen Albert
I I I |
I I I
VYernon Petunia Lili James
I I I |
Dudley Harry

female(ruth).
female(petunia).
female(lili).
male(paul).
male(albert).
male(vernon).
male(james).
male(dudley).
male(harry).

Formulate PROLOG rules to capture the relationship of aunt_of(Aunt, Person) :-

Computing the maximum

%% Base case: the list has one element.

%% The maximum must be this element as there are no other elements
%% which could be bigger.

max([Max],Max).

%% Two recursive clauses which compute the maximum of the tail and
%% then compare the result to the head.
%% First case: the head is greater than the maximum of the tail. The
%% head is the maximum of the whole list.
max([Head|Tail],Max) :- max(Tail, TailMax),

Head > TailMax,

Max = Head.

%% Second case: the head is smaller or equal to the maximum of the
%% tail. The maximum of the tail is the maximum of the whole list.
max([Head|Tail],Max) :- max(Tail, TailMax),

Head =< TailMax,

Max = TailMax.

Maze (Computing connections in a graph)

connected(1,2).
connected(3,4).
connected(5,6).
connected(7,8).
connected(9,10).

connected(12,13).
connected(13,14).
connected(15,16).
connected(17,18).
connected(19,20).

connected(4,1).
connected(6,3).
connected(4,7).
connected(6,11).
connected(14,9).

connected(11,15).
connected(16,12).
connected(14,17).
connected(16,19).

Write a predicate path/2 that tells
you from which point in the maze
you can get to which other point
when chaining together
connections given in the above
knowledge base.

Now ask some queries. Can you
get from point 5 to point 10?
Which other point can you get to
when starting in point 1? And
which points can be reached from
point 137

Solving N-Queens with Prolog

Task: Place N queens on an NxN chess board, so that
none of the queens 1is under attack.

=N W s O O N OO

Solving N-Queens with Prolog

Representations

w (3,4)

123456738

=N W s OO N O

W Q3=4

Qi Q2 Qs Qi Qs Qs Q Qs

Solving N-Queens with Prolog

Prolog formulation
Let us use variables Q;.Qo..... n to represent the queens.
; is an integer, denoting the row of the queen in column ;.

Since we are reasoning about integers, we use declarative
integer arithmetic, also known as CLP(FD) or CLP(Z) constraints:

https://www.metalevel.at/prolog/clpz
In particular, disequality of integers:

A #\=B |

Solving N-Queens with Prolog

n queens(N, Qs) <« Qs are N safe queens.

n queens(N, Qs) :-
Llength(Qs, N),
Qs ins 1..N,
safe queens(Qs).

safe queens([]).

safe queens([Q|Qs]) :-
safe queens (Qs, Q),
safe queens(Qs).

safe queens ([],).
safe queens ([Q|Qs], QO) :
Q #\= QO,
safe queens (Qs, QO0).

Is this correct?

W

7- n queen
false. %

s(_, [1,1]).
correct

Solving N-Queens with Prolog

n queens(N, Qs) <« Qs are N safe queens.

n queens(N, Qs) :-
Llength(Qs, N),
Qs ins 1..N,
safe queens(Qs).

safe queens([]).

safe queens([Q|Qs]) :-
safe queens (Qs, Q),
safe queens(Qs).

safe queens ([],).
safe queens ([Q|Qs], QO) :
Q #\= QO,
safe queens (Qs, QO0).

Is this correct?

W

?7- n queens(, [1,1]).
false. % correct

W
W

?7- n queens(, [1,2]).
true. % incorrect |}

Solving N-Queens with Prolog

n queens(N, Qs) « Qs are N safe queens.

n queens(N, Qs) :-
length(Qs, N),
Qs ins 1..N,
safe queens(Qs).

safe queens([]).

safe queens([Q|Qs])
safe queens (Qs, Q, 1),
safe queens(Qs).

safe queens ([], e

safe queens ([Q|Qs], QO, DO) :-
Q #\= QO,
abs(Q0 - Q) #\= DO,

D #= DO + 1,J}
safe queens (Qs, QO).

Consider diagonal attacks

7

N

4

Q0 and Q, DO columns apart, do not
attack each other diagonally if:

abs(Q0 - Q) #\= DO

Solving N-Queens with Prolog

n queens(N, Qs) < Qs are N safe queens.

n queens(N, Qs) :-
length(Qs, N),
s ins 1..N,
safe queens(Qs).

safe queens([]).

safe queens([Q|Qs])
safe queens (Qs, Q, 1),
safe queens(Qs).

safe queens ([], N

safe queens [Q|Qs], Q0, DO) :-
abs(QO - Q) #\= DO,
D #= DO + 1,

safe queens (Qs, QO, D).

https://www.metalevel.at/queens/

Sample queries

n queens(N, Qs).
=0,

=[] ;
=1,

= [1] ;
=2,

= [AI B]I
A 10 1..2;
abs (A-B)#\=1,
B#\=A,
Bin 1..2 |§

A = £S) = D = ™)
wn wn wn '

Solving N-Queens with Prolog

n queens(N, Qs) « Qs are N safe queens.

n queens(N, Qs) :-
length(Qs, N),
Qs ins 1..NM,
safe queens(Qs).

safe queens([]).

safe queens([Q|Qs]) :-
safe queens (Qs, Q, 1),
safe queens(Qs).

safe queens ([]

1], 2 _)-
safe queens ([Q|Q

s], Q0, DO) :-
Q #\= QO,
abs(Q0 - Q) #\= DO,
D #= DO + 1,

safe queens (Qs, QO, D).

https://www.metalevel.at/queens/

Sample queries

?- n queens(N, Qs), false.
% waiting...

?7- n queens(8, Qs), false.
false.

?- n queens (800, Qs), false.
false.

?- n _queens(N, [2,4,1,3]).
N =4.

?- n queens(N, [2,4,C,D]).}}

Solving N-Queens with Prolog

Approach 1: “Generate and test”

?7- N =4,
length(Qs, N),
maplist(between(1,N), Qs),
n queens(N, Qs).J

extremely inefficient, (’)(NN)

Solving N-Queens with Prolog

Approach 2: Early pruning

SESEEEENEEE NNSEEEEE

?- N = 208 EEEEEEENnEEEEEEEEEES
n_queens(N, Qs), T T

maplist(between(1,N), Qs). i B R

SEEEE EEEENNEEEEEEEE

o L R S _ANEEEEEEE

This is a significant improvement g
over “generate and test”. EEEE EEEEEE EEEEEE
JJI"'HZIIII EEEEEEE

Solving N-Queens with Prolog

Approach 3: Intelligent search

?7- N = 4
n queens(N, Qs),
labeling([], Qs).

This is a key attraction of Prolog.

Solving N-Queens with Prolog

Labeling strategies

labeling(Options, Vs)
Options let you control
the search strategy:

e leftmost (default)
e ff “first fail” l

Solving N-Queens with Prolog

Labeling strategies

labeling(Options, Vs)
Options let you control
the search strategy:

e leftmost (default)
e ff “first fail”
e ffc most constrained

These strategies are available as predefined strategies.
You can of course also implement any strategy you want.

For flexibility, separate the core relation from labeling! |

Solving N-Queens with Prolog

Summary

We have used the same program to implement 3 different approaches:

1) “generate and test”
maplist(between(1,N), Qs), n queens(N, Qs)

2) early pruning
n queens(N, Qs), maplist(between(1l,N), Qs)

3) intelligent search via constraint propagation and heuristics
n queens(N, Qs), labeling(Options, Qs)

Prolog makes it easy to write slow — and also fast — solutions. |}

N=4

Solving N-Queens with Prolog

N=20,
2.144 CPUtime
(default labeling)

Solving N-Queens with Prolog: with labelling

N=40, 0.23CPU time N=100, 1.363CPU time

(smart labeling) (smart labeling)

Implementing Eliza (1964 ChatGPT ;-)) with Prolog

Welcome to
EEEEEE L ITII 227717 AAAAA
= = LR II L AA AA
EEEEE ¥ II 277 AAAAAAA
= = L II 7 AA AA
EEEEEE LWLV T11Y 277777 AA AA

Eliza is a mock Rogerian psychotherapist.
The original program was described by Joseph Weizenbaum in 1966.
This implementation by Norbert Landsteiner 2005.

ELIZA: Is something troubling you ?

YOU: Men are all alike.

ELIZA: What is the connection, do you suppose ?

YOU: They're always bugging us about something or other.
ELIZA: Can you think of a specific example ?

YOU: Well, my boyfriend made me come here.

ELIZA: Is it important to you that your boyfriend made you come here ?
YOU: He says I'm depressed much of the time.

ELIZA: I am sorry to hear that you are depressed.

YOU: It's true. I am unhappy.

ELIZA: Can you explain what made you unhappy ?

YOU:

Eliza-like program with Prolog

eliza(+Stimuli, -Response) 1is det.
eliza(Stimuli, Response) :- @param Stimuli is a list of atoms (words).

template(InternalStimuli, InternalResponse), @author Richard A. O'Keefe (The Craft of Prolog)

match(InternalStimuli, Stimuli),

match(InternalResponse, Response),
! -

template([s([i,am]),s(X)], [s([why,are,you]),s(X),w('2")]).
template([w(1),s(X),w(you)], [s([why,do,you]),s(X),w(me),w('?")])-.

match([]1,[1).
match([Item|Items], [Word|Words]) :-
match(Item, Items, Word, Words).
/** <examples>
match(w(Word), Items, Word, Words) :-
match(Items, Words). ?- eliza([i, am, very, hungry], Response).
match(s([Word|Seg]), Items, Word, WordsO) :- ?- eliza([1i, love, you], Response).
append(Seg, Wordsl, WordsO0),
match(Items, Wordsl). *4

Resources

https://www.metalevel.at/prolog/introduction
(https://www.youtube.com/watch?v=|l tbL9RjFdo for N-Queens)

Sethi, Ravi. Programming languages concepts and constructs. Addison Wesley
Longman Publishing Co., Inc., 1996. (Chapter 11)

https://cs.union.edu/~striegnk/courses/esslli04prolog/

https://swish.swi-prolog.org/example/examples.swinb

Prolog for data science https://emiruz.com/post/2023-04-30-prolog-for-data-science/

Picat-lang.org

import cp.

queens (N, Q) =>
Q = new list(N),
Q :: 1..N,
all different(Q),
all different([$Q[I]-I : I in 1..N]),
all different([$Q[I]+I ¢ I in 1..N]),
solve([f£f],0).

https://www.metalevel.at/prolog/introduction
https://www.youtube.com/watch?v=l_tbL9RjFdo
https://cs.union.edu/~striegnk/courses/esslli04prolog/
https://swish.swi-prolog.org/example/examples.swinb
https://emiruz.com/post/2023-04-30-prolog-for-data-science/

	Slide 1: 272SM: Artificial Intelligence
	Slide 2: Today
	Slide 3: Prolog examples: Who is bigger? (basic syntax)
	Slide 4: Prolog examples: Family relations (matching)
	Slide 5: How Prolog works: Unification
	Slide 6: How Prolog works: Unification of two terms
	Slide 7: Solving queries
	Slide 8: Example
	Slide 9: Unification examples
	Slide 10: Prolog examples: List concatenation
	Slide 11: Fibonacci, factorial
	Slide 12: QUIZZ
	Slide 13: Computing the maximum
	Slide 14: Maze (Computing connections in a graph)
	Slide 15: Solving N-Queens with Prolog
	Slide 16: Solving N-Queens with Prolog
	Slide 17: Solving N-Queens with Prolog
	Slide 18: Solving N-Queens with Prolog
	Slide 19: Solving N-Queens with Prolog
	Slide 20: Solving N-Queens with Prolog
	Slide 21: Solving N-Queens with Prolog
	Slide 22: Solving N-Queens with Prolog
	Slide 23: Solving N-Queens with Prolog
	Slide 24: Solving N-Queens with Prolog
	Slide 25: Solving N-Queens with Prolog
	Slide 26: Solving N-Queens with Prolog
	Slide 27: Solving N-Queens with Prolog
	Slide 28: Solving N-Queens with Prolog
	Slide 29: Solving N-Queens with Prolog
	Slide 30: Solving N-Queens with Prolog: with labelling
	Slide 31: Implementing Eliza (1964 ChatGPT ;-)) with Prolog
	Slide 32: Eliza-like program with Prolog
	Slide 33: Resources

