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The intestinal barrier in multiple sclerosis:
implications for pathophysiology and
therapeutics

Carlos R. Camara-Lemarroy,1,2 Luanne Metz,1,2 Jonathan B. Meddings,3 Keith A. Sharkey2,4

and V. Wee Yong1,2

Biological barriers are essential for the maintenance of homeostasis in health and disease. Breakdown of the intestinal barrier is an

essential aspect of the pathophysiology of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. A wealth of

recent studies has shown that the intestinal microbiome, part of the brain-gut axis, could play a role in the pathophysiology of

multiple sclerosis. However, an essential component of this axis, the intestinal barrier, has received much less attention. In this

review, we describe the intestinal barrier as the physical and functional zone of interaction between the luminal microbiome and

the host. Besides its essential role in the regulation of homeostatic processes, the intestinal barrier contains the gut mucosal immune

system, a guardian of the integrity of the intestinal tract and the whole organism. Gastrointestinal disorders with intestinal barrier

breakdown show evidence of CNS demyelination, and content of the intestinal microbiome entering into the circulation can impact

the functions of CNS microglia. We highlight currently available studies suggesting that there is intestinal barrier dysfunction in

multiple sclerosis. Finally, we address the mechanisms by which commonly used disease-modifying drugs in multiple sclerosis could

alter the intestinal barrier and the microbiome, and we discuss the potential of barrier-stabilizing strategies, including probiotics

and stabilization of tight junctions, as novel therapeutic avenues in multiple sclerosis.
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Introduction
Biological barriers separate the internal milieu from the

external environment and are essential components of

maintaining homeostasis. A compromised intestinal barrier

function is a prominent feature of many diseases, such as

inflammatory bowel disease (Choi et al., 2017; Martini

et al., 2017; Mu et al., 2017), graft versus host disease

(Nalle and Turner, 2015) and coeliac disease (Schumann

et al., 2017), but other biological barriers also fail in a
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myriad of pathological conditions (e.g. renal tubules in

glomerulonephritis and lung alveoli in acute respiratory dis-

tress syndrome). The CNS is highly sensitive to homeostatic

changes, and as such requires its own specialized barrier,

the blood–brain barrier, for appropriate functioning.

Breakdown of the blood–brain barrier is an essential hall-

mark of multiple sclerosis pathophysiology. Immune

mediated dysregulation of the blood–brain barrier allows

for migration of activated inflammatory cells into the

brain, which in turn induces demyelination, axonal loss

and other tissue damage (Ortiz et al., 2014; Kamphuis

et al., 2015). Interestingly, many of the tight junction mol-

ecules in endothelial cells of the brain–blood barrier are

identical to those in intestinal tissues, such as occludin,

claudins and zona occludens-1 (Reinhold and Rittner,

2017). In this review, we examine the multiple lines of

evidence, albeit mostly indirect, linking the intestinal bar-

rier function and multiple sclerosis pathophysiology. We

also discuss the possible effect of multiple sclerosis dis-

ease-modifying therapies and their association with the

gut microbiome.

The intestinal barrier
The intestinal barrier maintains homeostasis by preventing

the unwanted movement of antigenic molecules and mi-

crobes from the lumen of the gastrointestinal tract, while

allowing the products of digestion and water to enter the

body. The intestinal barrier consists of a physical barrier

provided by the inter-epithelial tight junctions, a secretory

barrier that includes antimicrobial peptides, mucus and

fluid and an immunological barrier, including cells and

molecules of the innate and adaptive immune system. The

secretory component of the epithelial barrier is regulated by

neural mechanisms that integrate this component of barrier

function with digestive processes in the gut. Intestinal bar-

rier function refers to ability of the intestinal mucosa and

extracellular barrier components (e.g. mucus, antimicrobial

peptides) to modulate epithelial permeability and act as a

physical and functional limiting step for organism-luminal

interactions.

The intestinal lumen and its contents are separated from

the rest of the gastrointestinal tissue (and the body) by a

single layer of epithelial cells along the length of the gastro-

intestinal tract. These cells are being constantly renewed

and thus require constant proliferation (Delgado et al.,

2016). Intestinal stem cells, present in the crypts of the

intestinal mucosa, differentiate into both enterocytes, and

specialized secretory (Paneth cells and goblet cells) and sen-

sory cells (enteroendocrine cells and tuft cells), a process

regulated by complex transcriptional and epigenetic mech-

anisms (Smith et al., 2017). The intestinal barrier is perme-

able to water and other small molecules, a property

modulated by tight junctions, located around the apical

surface of adjacent epithelial cells. Tight junctions consist

of a heterogeneous group of transmembrane proteins such

as occludins, claudins, junctional adhesion molecules and

zona occludens-1, each with specific roles (Gasbarrini and

Montalto, 1999; Sturgeon and Fasano, 2016; Volynets

et al., 2016; Capaldo et al., 2017; France and Turner,

2017).

The intestinal barrier (Fig. 1) is continuously exposed to

a number of immunological and microbiological factors.

When the permeability of the intestinal barrier is breached,

undesired large molecules, and commensal bacteria, may

enter the lamina propria with pathological consequences

(Odenwald and Turner, 2017). One of the main causes of

increased permeability of the intestinal barrier is inflamma-

tion, an event thought to be essential in the pathophysi-

ology of inflammatory bowel disease (IBD) (de Souza

et al., 2017; Martini et al., 2017), coeliac disease and

sepsis (Yoseph et al., 2016; Schumann et al., 2017).

Inflammatory cytokines including interferons, interleukin

(IL)-17 and tumour necrosis factor alpha (TNF�), as well

as calcium-dependent oxidative stress, have been shown to

alter the expression of tight junction proteins and lead to

increased intestinal permeability (Reynolds et al., 2012;

Yang et al., 2014; Al-Sadi et al., 2016; Gangwar et al.,

2017).

Together with intestinal epithelial cells as the first layer of

the intestinal barrier are Paneth cells (Fig. 1), which are

specialized secretory cells derived from intestinal stem

cells. Paneth cells produce antimicrobial peptides, the

defensins, which are secreted into the mucus layer

(Dupont et al., 2014; Yu et al., 2016; Capaldo et al.,

2017). Mucus, secreted from goblet cells, is composed of

heavily glycosylated oligomeric mucin proteins, water, ions

and secretory IgA. This layer modulates bacterial growth in

the intestinal lumen adjacent to the intestinal barrier, pre-

vents bacterial adherence and acts as part of the innate

immune response of the organism against microbial patho-

gens (Dupont et al., 2014).

After the mucus and the epithelial lining of the gastro-

intestinal tract, the next layer of the intestinal barrier is

mostly immunological. Innate lymphoid cells, located in

the epithelial layer, can be activated to produce a variety

of inflammatory mediators, which play a defensive or a

pathogenic role in mammal gut homeostasis (Bostick and

Zhou, 2016). Found in close proximity to the single layer

of enterocytes, intraepithelial lymphocytes are a heteroge-

neous population of cells that provide immune protection

against pathogens and also regulate immune responses that,

if unchecked, could jeopardize the integrity of the barrier

(Cheroutre et al., 2011; Olivares-Villagómez and Van Kaer,

2018). The lamina propria (Fig. 1) is populated by B, T

and dendritic cells that can initiate and modulate a host of

immunological responses (Persson et al., 2013; Gronke

et al., 2017). Peyer’s patches are secondary lymphoid tis-

sues present in the intestinal mucosa. They are continuously

exposed to a variety of antigens, presented to Peyer’s

patches by microfold epithelial cells and resident dendritic

cells (Rochereau et al., 2011; Hashiguchi et al., 2015).
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CNS demyelination and
intestinal barrier breakdown
in gastrointestinal disorders:
an important link?
An association between multiple sclerosis and IBD has been

suggested because of common epidemiological, immunological

and genetic patterns (Barcellos et al., 2006). IBD patients have

an increased risk for cerebrovascular disease, peripheral neur-

opathy and demyelinating disease (Casella et al., 2014; Ferro

et al., 2014; Morı́s, 2014), and anti-TNF therapies that are

widely used in IBD have also been associated with CNS de-

myelination (Katsanos and Katsanos, 2014). Indeed, a recent

meta-analysis of 10 case-control studies including over 1 mil-

lion patients found a risk ratio of 1.54 for multiple sclerosis/

IBD comorbidity, with no difference between Crohn’s disease

Figure 1 The intestinal barrier and possible mechanisms of barrier dysfunction in multiple sclerosis. The normal intestinal barrier is

composed of multiple layers (top). From the luminal side outwards, there is a mucus layer in close contact with the commensal microbiota, the single

cell epithelial layer (woven together by tight junction proteins depicted here as green closed circles), the lamina propria and submucosa containing the

immunological barrier, and finally the muscle and connective tissue layer. Changes in microbiota, mucus composition, epithelial cell death, tight

junction function and immunological dysregulation could all lead to breakdown of the intestinal barrier and increased permeability (bottom).
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and ulcerative colitis (Kosmidou et al., 2017). Certain authors

propose that IBD can be conceived as a disorder of the intes-

tinal epithelial barrier, and barrier breakdown is known to be

an essential step in the pathophysiology of both Crohn’s and

ulcerative colitis (for reviews see Jäger et al., 2013; Antoni

et al., 2014; Goll and van Beelen Granlund, 2015). Evidence

showing white matter involvement in IBD could also provide a

link between intestinal barrier breakdown and CNS

demyelination.

In an early study, investigators found a 3-fold increase of

white matter hyperintensities in the MRIs of patients with

IBD (Geissler et al., 1995). A recent estimate suggested that

over half of all IBD patients will have white matter hyper-

intensities in a routine MRI (Ferro et al., 2014). Other

findings in IBD include decreased grey matter volume and

decreased axial diffusivity in major white matter tracts

(Zikou et al., 2014). The aetiology of the white matter

lesions found in patients with IBD is uncertain, and some

authors suggest that ischaemia and vasculitis might be re-

sponsible (Zikou et al., 2014). However, in a report of five

cases of patients with Crohn’s disease with symptomatic

acute white matter lesions suggestive of demyelination, sys-

temic infection, coagulation disorders, or vasculitis were

ruled out (de Lau et al., 2009). Additionally, other studies

have attempted to describe white matter lesions in patients

with Crohn’s disease with more detail. White matter lesions

suggestive of demyelination were found in 72% of 54 pa-

tients compared to 34% in age- and sex-matched controls

(Chen et al., 2012). The role of anti-TNF therapy is also

debated, and some observational studies have not found an

association between therapy and presence of white matter

hyperintensities (Chen et al., 2012). In a retrospective ana-

lysis of 9095 patients with IBD, anti-TNF therapy was not

found to increase the risk of confirmed inflammatory

demyelinating CNS lesions (de Felice et al., 2015).

Other gastrointestinal diseases where the intestinal bar-

rier is impaired have also been associated with CNS demye-

lination. In patients with multiple sclerosis, serological and

histological markers of coeliac disease are more frequent

than in healthy controls (Rodrigo et al., 2011), although

other studies have found inconsistent results (Salvatore

et al., 2004). Cases of comorbid coeliac disease and mul-

tiple sclerosis are abundant in the literature (Batur-

Caglayan et al., 2013; Casella et al., 2016), as are cases

of coeliac disease with white matter lesions mimicking mul-

tiple sclerosis or other CNS demyelinating diseases

(Mirabella et al., 2006; Finsterer and Leutmezer, 2014;

Krom et al., 2017). MRI studies in patients with coeliac

disease have also shown higher proportion of white matter

lesions and grey matter atrophy (Bilgic et al., 2013).

Although a causal link between intestinal barrier break-

down and CNS demyelination cannot be concluded with

certainty in these cases, there appears to be an association

not solely explained by their shared epidemiological and

immunological characteristics. The association between

these entities is certainly complex and in need of further

study.

Intestinal barrier homeosta-
sis, the microbiome and
neuroinflammation: possible
mechanisms linking these
entities
The interactions between the microbiome and the intestinal

barrier, particularly the contribution of the microbiome in

maintaining barrier homeostasis, could be central in ac-

counting for its regulation of neuroinflammation (Fig. 2).

Several studies have established that there are alterations in

the gut microbiome of patients with multiple sclerosis,

which has further fuelled the interest in the brain-gut-

microbiome connection in multiple sclerosis research.

Early studies showed that, when compared to controls,

patients with relapsing-remitting multiple sclerosis have an

abundance of Anaerostipes, Faecalibacterium,

Pseudomonas, Mycoplasma, Haemophilus, Blautia, and

Dorea and a relative decrease of Bacteroides, Prevotella,

Parabacteroides and Adlercreutzia (Cantarel et al., 2015;

Miyake et al., 2015; Chen et al., 2016). In paediatric mul-

tiple sclerosis, patients have higher levels of members of

Desulfovibrionaceae and depletion in Lachnospiraceae

and Ruminococcaceae (Tremlett et al., 2016a). However,

a clear and consistent ‘multiple sclerosis microbiome

phenotype’ has not been described, and a myriad of differ-

ent species have been implicated. For example, studies have

found a significant depletion in Clostridial species (Rumah

et al., 2013; Miyake et al., 2015), Butyricimonas (Jangi

et al., 2016), Roseburia (Swidsinski et al., 2017) and in-

creases in Streptococcus (Cosorich et al., 2017),

Methanobrevibacter, Akkermansia and Coprococcus

(Cantarel et al., 2015; Jangi et al., 2016). Multicentre stu-

dies aiming at defining a ‘core microbiome’ are underway

(Pröbstel and Baranzini, 2018). Furthermore, some of these

changes in the microbiome have been associated with im-

munological derangements, such as differences in the ex-

pression of genes involved in interferon and nuclear

factor kappa-B (NF-�B) signalling (Jangi et al., 2016),

and numbers of pro-inflammatory T helper 17 (Th17)

cells in the intestine (Cosorich et al., 2017). At least one

study found that differences in the microbiota could predict

relapse risk in paediatric multiple sclerosis patients

(Tremlett et al., 2016b).

Insights into how the microbiome could alter neuroin-

flammatory responses (reviewed in Colpitts and Kasper,

2017; Wekerle, 2017) have been illuminated by studies in

germ-free mice where the microbiome regulates the shift

back-and-forth of immune cells from pro- to anti-inflam-

matory phenotypes (Berer et al., 2011). Mice maintained

under germ-free conditions have an attenuated form of ex-

perimental autoimmune encephalomyelitis (EAE), an in-

flammatory model of multiple sclerosis, and show lower

levels of IL-17 in both the gut and the CNS, while also
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showing an increase in regulatory T cells (Tregs) peripher-

ally (Lee et al., 2011). Colonization with segmented fila-

mentous bacteria in germ-free mice leads to increased

production of IL-17 and development of severe EAE. In

contrast, other gut commensals such as P. histicola are

able to suppress EAE severity, by decreasing pro-inflamma-

tory Th1 and Th17 cells, and increasing Tregs and suppres-

sive macrophages (Mangalam et al., 2017). B. fragilis,

another common commensal strain, can also suppress

EAE by expanding Tregs expressing the ectonucleotidase

CD39, allowing for increased migration of this regulatory

cell type into the CNS (Wang et al., 2014). Microbiota

abundant in patients with multiple sclerosis induce the dif-

ferentiation in vitro of human peripheral blood mononu-

clear cells into Th1 cells while reducing Treg numbers;

conversely, microbiota that are decreased in patients with

multiple sclerosis stimulate anti-inflammatory IL-10-ex-

pressing T cells and FoxP3 + Tregs (Cekanaviciute et al.,

2017). Microbiota from patients with multiple sclerosis

transplanted to mice prone to develop spontaneous EAE

increases their susceptibility to EAE (Berer et al., 2017).

Interestingly, multiple sclerosis patient-derived microbiota

transplantation did not lead to changes in tight junction

protein expression in the mouse recipient gut, but splenic

lymphocytes had impaired IL-10 production (Berer et al.,

2017).

An altered microbiome also leads to changes in some

bacteria-associated products known to influence neuroim-

mune responses. Short chain fatty acids (SCFAs) such as

butyrate, propionate and acetate are produced by bacterial

fermentation of dietary carbohydrate and fibre. They play

important roles in maintaining intestinal homeostasis, such

as mediating sodium transport, serving as the principal

energy source of intestinal epithelial cells and modulating

gene transcription via inhibition of histone deacetylase ac-

tivity (Kiela and Ghishan, 2016). Although not focusing on

the concentration of SCFAs, CSF metabolomics studies

from patients with multiple sclerosis have shown significant

differences when compared to controls. SCFAs such as

acetate are reduced (Simone et al., 1996; Kim et al.,

2017), while others such as formate (Kim et al., 2017)

have been found to be elevated in patients CSF. In studies

evaluating metabolites in urine, propionate metabolism has

also been found to be altered in patients with multiple

sclerosis (Gebregiworgis et al., 2016).

In experimental models, eradication of the gut micro-

biota, or even just limiting the intestinal microbiome diver-

sity, leads to impaired microglia structure and immune

function, a process regulated by SCFAs (Erny et al.,

2015, 2017). Astrocytes may also be influenced by SCFAs

and the microbiome. Dietary tryptophan is metabolized by

the gut microbiota into aryl hydrocarbon receptor agonists

Figure 2 An altered intestinal barrier leads to immune changes in the gut and the CNS. (1) Multiple sclerosis-associated microbiota

and immune derangements lead to an altered barrier and increased permeability. (2) Microbiota diversity is reduced, as is production of SCFA’s,

and some bacteria translocate to the lamina propria. (3) LPS produced by bacteria cause low-grade inflammation and endotoxaemia, and loss of

SCFA signalling alters lymphocyte phenotypes. (4) LPS, microbial-associated molecular patterns (MAMPs) and reduced SCFAs alter the blood–

brain barrier. (5) LPS and activated lymphocytes reach the CNS, where in absence of normal SCFA concentrations, microglia and astrocyte

neuroimmune responses are affected. A = astrocytes; BBB = blood–brain barrier; M = microglia; TLR = Toll-like receptors.
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such as indoxyl-3-sulfate and indole-3-propionic acid,

which can modulate astrocyte inflammatory function

trough limiting NF-�B activation in a suppressor of cyto-

kine signalling 2-dependent manner (Rothhammer et al.,
2016). SCFAs also reduce T cell proliferation and cytokine

production in the gut (D’Souza et al., 2017; Wan Saudi and

Sjöblom, 2017). In EAE models, the administration of

SCFAs led to amelioration of disease severity in association

with a reduction of Th1 cells and an increase in Tregs

(Mizuno et al., 2017). Interestingly, an altered microbiota

may also alter innate immune responses in the gut favour-

able for systemic autoimmunity. For example, some types

of intraepithelial lymphocytes may act as Tregs that sup-

press the pathogenic response to the immunizing antigen in

EAE (Tang et al., 2007). CD4( + ) intraepithelial lympho-

cytes obtained from transgenic mice prone to develop spon-

taneous EAE can infiltrate the CNS and ameliorate EAE

severity in wild-type mice on transfer, showing regulatory

properties (Kadowaki et al., 2016). These same cells pro-

liferate in response to gut-derived antigens, aryl hydrocar-

bon receptor ligands and microbiota.

SCFAs could also modulate blood–brain barrier perme-

ability. It is well known that SCFAs enhance intestinal epi-

thelial cell barrier function by increasing the expression of

tight junction proteins (D’Souza et al., 2017; Wan Saudi and

Sjöblom, 2017). Butyrate has also been shown to increase

the expression of occludin and zona occludens-1, thus

restoring blood–brain barrier permeability in models of trau-

matic brain injury (Li et al., 2016). In germ-free mice ex-

hibiting an altered blood–brain barrier, butyrate

administration led to increased occludin expression and pre-

served blood–brain barrier permeability (Braniste et al.,

2014). Overall, changes in SCFA-producing bacteria in the

gut, and the influx of SCFAs into the blood stream, could

thus have a distal effect in microglia and astrocyte functions,

as well as in modifying blood–brain barrier permeability and

the entrance of immune cells into the CNS (Fig. 2).

Besides the above-discussed mechanisms suggesting by-

stander activation, another possible immunopathogenic

link between multiple sclerosis and the gut microbiota is

that of molecular mimicry. CNS-specific, self-reactive

lymphocytes might be cross-activated by both gut micro-

biota antigens and myelin (Berer and Krishnamoorthy,

2014). Although there is no conclusive evidence for these

mechanisms, commonly found pathogenic and non-patho-

genic gut bacteria such as Bacteroides spp. and

Enterococcus faecalis possess potential myelin basic protein

encephalitogenic mimics (Westall, 2006).

The intestinal barrier in
multiple sclerosis: conse-
quences of a leaky gut
Recent attention in the brain-gut connection in multiple

sclerosis research has been focused on the role of the

commensal gut microbiome while largely ignoring the inter-

face of the microbiome with the organism, i.e. the intestinal

barrier. Therefore, actual evidence for an alteration of the

intestinal barrier in multiple sclerosis is limited. In a study

of 12 jejunal biopsies from multiple sclerosis patients,

Lange and Shiner (1976) found subtle histological changes,

such as two cases of villous atrophy, as well as some cases

of intestinal inflammatory cell infiltration. A later study

found similar infiltrates, and also evidence of intestinal mal-

absorption in close to 20 of 52 patients with multiple scler-

osis (Gupta et al., 1977).

In 1996, Yacyshyn et al. (1996) showed that 5 of 20

patients with multiple sclerosis had an altered lactulose/

mannitol permeability test, suggesting increased intestinal

permeability, a finding also associated with peripheral ex-

pression of CD45RO on CD20 + B cells. In the most recent

study to date, the lactulose/mannitol permeability test was

again used to evaluate intestinal permeability in 22 patients

with multiple sclerosis and compared with age- and sex-

matched controls (Buscarinu et al., 2017). Investigators

found abnormal permeability in 73% of cases versus

28% in controls, but no association between permeability

and brain MRI lesion load.

Similar findings have been recently described in the EAE

model, the prototypic inflammatory animal model of mul-

tiple sclerosis. Investigators have found altered intestinal

permeability, reduced submucosa thickness and altered

tight junction expression in intestinal epithelial cells

(Nouri et al., 2014). These alterations could also be

induced in mice by adoptive transfer of pathogenic T

cells. Furthermore, a recent study showed that the degree

of intestinal permeability disturbance is closely associated

with EAE severity (Secher et al., 2017). Treatment with

Escherichia coli strain Nissle 1917, a probiotic known to

improve intestinal barrier function, preserved tight junction

expression and decreased intestinal permeability, leading to

reduced EAE severity and decreased secretion of pro-in-

flammatory cytokines and an increased production of the

anti-inflammatory cytokine IL-10 (Secher et al., 2017). This

reduction of intestinal permeability led to a reduction of the

migration of inflammatory T cells to the CNS, suggesting

an impact on blood–brain barrier permeability as well

(Secher et al., 2017).

The above studies suggest that there is indeed an alter-

ation in the intestinal barrier in patients with multiple scler-

osis and that these changes are at least partly due to an

altered intestinal immune response (Buscarinu et al., 2017).

The clinical relevance of these findings is unclear, but sev-

eral possibilities arise. Intestinal barrier dysfunction has

been associated with susceptibility to systemic infections

(König et al., 2016), and both CNS and systemic infections

are a common complication in patients with multiple scler-

osis (Venkatesan, 2015). Another possibility is that the in-

testinal barrier’s interplay with commensal microbiota

could modulate the immune response pathologically.

Finally, alterations in intestinal permeability may modulate

or perpetuate neuroimmune dysregulation by increased
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transmucosal passage of injurious or immunogenic

antigens.

The essential role of the commensal microbiome in the

regulation of intestinal immunity is beginning to be recog-

nized, and several recent reviews have been published on

this subject (Haak and Wiersinga, 2017; Shi et al., 2017).

Commensal bacteria are able to strengthen the gut barrier

and regulate intestinal permeability (Lin and Zhang, 2017).

A healthy microbiota also preserves intestinal epithelial cell

integrity through the production of SCFAs that increase

tight junction expression and through toll-like receptor ac-

tivation (Wells et al., 2017). Intestinal commensal bacteria

are recognized by toll-like receptors, a process leading to

protection of intestinal epithelium against injury and bar-

rier disruption (Rakoff-Nahoum et al., 2004). Toll-like re-

ceptor signalling also promotes epithelial cell proliferation,

IgA secretion and expression of antimicrobial peptides in

Paneth cells (Abreu, 2010; Wells et al., 2011).

Alterations in the gut homeostatic mechanisms in mul-

tiple sclerosis could have as one of its consequences

increased bacterial translocation through an impaired intes-

tinal barrier. One recent study found elevated levels of

endotoxin [lipopolysaccharide (LPS)] in plasma of patients

with multiple sclerosis, and endotoxin concentrations were

related to in vivo IL-6 production and increased in vitro

T-helper 17 (Th17)-like responses (Teixeira et al., 2013).

Circulating endotoxin was also correlated with the

Expanded Disability Status Scale, a measure of clinical dis-

ability in multiple sclerosis. In another study, LPS and LPS-

binding protein were found to be elevated in the serum of

EAE-induced mice; investigators also found increased LPS-

binding protein levels in the serum of multiple sclerosis

patients compared to healthy controls (Escribano et al.,

2017). These studies are evidence of a low-grade endotox-

aemia that could be present in patients with multiple scler-

osis, possibly due to bacterial translocation in the setting of

an altered intestinal barrier.

Besides LPS, enteric bacteria also produce microbial-asso-

ciated molecular patterns (MAMPs) such as bacterial lipo-

proteins and double-stranded RNA that can enter the

systemic circulation and act through toll-like receptors to

modulate the immune system (Patten and Collett, 2013).

Toll-like receptors are known to be expressed in microglia

and to modulate initiation and severity of EAE in experi-

mental models (Miranda-Hernandez and Baxter, 2013).

LPS is a well-known stimulant of microglial responses

and is able to disrupt the blood–brain barrier by increasing

microglial production of matrix metalloproteinases (Frister

et al., 2014). LPS and other MAMPs could constitute an-

other pathway by which an altered intestinal barrier could

affect neuroimmune responses in multiple sclerosis.

Finally, the use of oral disease-modifying therapies and/or

symptomatic drugs in multiple sclerosis also constitute a

concern, as the intestinal barrier is essential in drug absorp-

tion (Sánchez-Navarro et al., 2016). On the other hand,

there are no currently marketed therapies to improve intes-

tinal barrier function; nutritional, microbial-derived and

probiotic agents are being investigated. In the next section,

we will discuss the possible effects of currently used dis-

ease-modifying therapies on the intestinal barrier as well as

other pathophysiological considerations.

Disease-modifying therapies
and the intestinal barrier
An interesting aspect of the above mentioned findings is

that the microbiome can also be altered by whatever immu-

nomodulatory therapy the multiple sclerosis patient is

receiving (Cantarel et al., 2015; Tremlett et al., 2016b).

The question of whether gut dysbiosis precedes the devel-

opment of multiple sclerosis or follows the immune alter-

ations (innate, acquired or drug-induced) is also a matter of

debate (Ochoa-Repáraz et al., 2017). Disease-modifying

therapies are medications that have improved the clinical

course of relapsing-remitting multiple sclerosis. While their

principal mechanisms are thought to be immune-modulat-

ing, their possible effects over the intestinal barrier that

may contribute to therapeutic efficacy have not been expli-

citly evaluated. Below we summarize evidence suggesting

that disease-modifying therapies could modulate the intes-

tinal barrier, the gut microbiome and the interaction be-

tween the two (Fig. 3). However, the evidence is indirect,

and whether this actually plays a meaningful role in clinical

response remains to be established.

Interferons

There is evidence suggesting that endogenous interferons

could affect the intestinal barrier. Type I interferons, includ-

ing IFN� and IFNb, are an integral part of the innate host

immune response to gut microbiota, and they modulate bi-

lateral interactions between epithelial cells and commensal

flora (Giles and Stagg, 2017). For example, IFNb has

shown stabilizing properties in biological barriers (such as

the intestinal, blood–brain and blood–lung barriers), partly

through the upregulation of tight junction proteins in endo-

thelial cell layers (Kraus et al., 2004; LeMessurier et al.,

2013; Long et al., 2014). The commensal microbiota also

stimulates dendritic cell IFNb production, which increases

the proliferation of Tregs in the intestine, a process itself

inhibited by intestinal epithelial cell apoptosis (Nakahashi-

Oda et al., 2016). Type I interferons also inhibit the con-

tinuous proliferation of the intestinal epithelium by activat-

ing the p53 pathway and inducing epithelial cell apoptosis

(Katlinskaya et al., 2016), and mice lacking type I interferon

receptor on Paneth cells show an altered microbiota

(Tschurtschenthaler et al., 2014).

Glatiramer acetate

Various studies have shown that glatiramer acetate reduces

colonic injury in animal models of colitis, through reduc-

tion of TNF� signalling, elevation of regulatory T cells and
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increase in anti-inflammatory mediators such as IL-10 and

TGFb (Aharoni et al., 2005, 2007). In one such study,

glatiramer acetate attenuated colitis severity and prevented

the destabilization of the intestinal epithelial barrier

(Yablecovitch et al., 2011). There is also evidence suggest-

ing that patients with multiple sclerosis treated with glatir-

amer acetate have different microbiota composition. In a

small study, glatiramer-treated patients had stool taxo-

nomic units (evaluated by hybridization of 16S rRNA to

a DNA microarray) of Bacteroidaceae, Faecalibacterium,

Ruminococcus, Lactobacillaceae, Clostridium, and other

Clostridiales that were significantly different than those of

untreated patients (Cantarel et al., 2015).

Natalizumab

Dysregulated recruitment of leucocytes into the intestine is

one of the components of the immune response responsible

for barrier breakdown in IBD (Danese et al., 2005; Fiorino

et al., 2010). Integrins are expressed on intestinal lympho-

cytes and are essential in their homing to intestinal lymph-

oid tissues and trafficking through the intestinal mucosa

(Hamann et al., 1994; Tanaka et al., 1995; Miura et al.,

1996; Farstad et al., 1997; Bradley et al., 1998; Fujimori

et al., 2002). Natalizumab, which blocks the activity of

integrins (both �4b1 and �4b7), has shown effectiveness

in reducing the severity of IBD (Fiorino et al., 2010;

Bamias et al., 2013). However, its association with JC

virus-related CNS complications has led to the development

of specific �4b7-antibodies such as vedolizumab, now rou-

tinely used in the treatment of IBD (Zundler et al., 2017).

Nonetheless, the effects of natalizumab on integrins and

lymphocyte trafficking in the gut suggests it could modulate

the inflammatory response in this site in multiple sclerosis.

A potential role for intestinal lymphocytes and integrins in

multiple sclerosis pathophysiology has been suggested by

results from mouse EAE models. Th17 cells, prominent

drivers of EAE, are controlled and redirected in the small

intestine. Th17 cells, which are normally pro-inflammatory,

acquire a regulatory phenotype in the intestine and are ul-

timately eliminated through the intestinal lumen (Esplugues

et al., 2011). In EAE, there is infiltration of proinflamma-

tory Th1/Th17 cells and reduction of Tregs in the gut, in

association with functional and morphological changes

(Nouri et al., 2014). Furthermore, mice lacking integrin �

show a loss of Th17 cells in the intestine and resistance

Figure 3 Disease-modifying therapies can modulate the intestinal barrier. Different disease-modifying therapies in clinical use may

beneficially modulate intestinal barrier function through a variety of mechanisms. (1) Oral disease-modifying therapies have antimicrobial prop-

erties, while minocycline is a tetracycline antibiotic. Dimethyl fumarate acts as a Michael acceptor and can deplete bacterial nucleophilic thiols. (2)

Glatiramer acetate has been shown to increase syndecan, the most abundant heparan sulphate proteoglycan in the gastrointestinal tract. (3)

Fingolimod, dimethyl fumarate and minocycline increase tight junction expression. Dimethyl fumarate increases zona occludens-1 (ZO-1) in a

heme-oxygenase-1 (HO-1) dependent pathway, while S1P signalling increases E-cadherin (E-CN). (4) Most disease-modifying therapies modulate

lymphocyte (LYM) populations and functions in non-neurological tissues, such as in the lamina propria. Whether any of these effects have a

mechanistic relevance for their therapeutic action is unknown.
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against EAE (Acharya et al., 2010; Melton et al., 2010). In

spontaneously EAE resistant B10.S mice, blocking �4b7

integrin leads to peripheral availability of Th17 cells and

increased severity of EAE (Berer et al., 2014). In patients

with multiple sclerosis, natalizumab treatment reduces the

populations of integrin �-4-positive Th1, Th17 and Tregs

differentially, while affecting the immune function of re-

sidual integrin �-4-positive T cells (Kimura et al., 2016).

The gut might act as a checking point, a reservoir and an

activation site for Th17 and other T cells, a process regu-

lated in part by intestinal integrins. Natalizumab and its

non-selective integrin blockade could lead to changes in

the way lymphocytes interact with the intestinal tissue.

Considering the abovementioned findings, it is possible

that natalizumab’s therapeutic properties in multiple scler-

osis could depend, at least in part, on these intestinal ef-

fects, besides those seen in blood–brain barrier, integrins

and lymphocyte trafficking.

Fingolimod

Another drug that acts through the regulation of leucocyte

trafficking is fingolimod, a functional antagonist of the

sphingosine 1-phosphate receptor (S1P). S1P1 receptors

are highly expressed on lymphocyte membranes and are

critical for T and B cell egress from secondary lymphoid

organs. S1P can affect the intestinal barrier by modulating

tight junction proteins (Greenspon et al., 2011; Pászti-Gere

et al., 2016), particularly under inflammatory conditions

(Dong et al., 2015). For instance, fingolimod reduces endo-

thelial barrier dysfunction in blood vessels and lung epithe-

lium in experimental models of sepsis and haemorrhagic

shock (Lundblad et al., 2013; Bonitz et al., 2014).

Fingolimod also sequesters and alters the activation of

lymphocytes in intestinal tissues (Chiba et al., 1998;

Yanagawa et al., 1998; Henning et al., 2001; Halin

et al., 2005; Sugito et al., 2005; Daniel et al., 2007), an

effect thought to be mechanistically relevant in multiple

sclerosis therapeutics. In the mouse EAE model, develop-

ment of EAE was associated with increased accumulation

of T cells in Peyer’s patches, a process increased by fingo-

limod (Spirin et al., 2014). Fingolimod can also directly

affect the microbiota. Both sphingosine and fingolimod in-

hibit C. perfringens growth and endotoxin production

in vitro, suggesting an intrinsic antibacterial property

(Rumah et al., 2017).

Dimethyl fumarate

Dimethyl fumarate (DMF) is derived from the simple or-

ganic acid fumaric acid, and it acts as an immunomodula-

tor by promoting T cell apoptosis, shifting to a Th2

response and acting as an antioxidant. There is limited

but interesting evidence suggesting DMF could beneficially

affect both the intestinal barrier and the gut microbiota.

DMF alleviates experimentally induced colitis and reduces

the Th1 response in mouse models and protects human

intestinal epithelial cells against oxidative barrier dysfunc-

tion by preserving zona occludens-1 and occludin expres-

sion in vitro (Casili et al., 2016). DMF also preserves

intestinal mucosa morphology after mycotoxin exposure

and decreases intestinal permeability by strengthening

tight junctions (Ma et al., 2017). In this model, DMF

also led to increased microbiome diversity, with more

abundance of bacteria producing SCFAs, such as

Gemella, Roseburia, Bacillus and Bacteroides. DMF can

also directly reduce C. perfringens growth and exhibits

anti-mildew and antibacterial properties (Ma et al., 2017;

Rumah et al., 2017).

Alemtuzumab

Alemtuzumab is an anti-CD52 antibody that causes deple-

tion of mainly lymphocytes and is highly effective in the

clinical management of multiple sclerosis (Hartung et al.,

2015). Despite its specific mechanism of action, there is

evidence suggesting it has detrimental effects over the in-

tegrity of the intestinal barrier and might alter the gut

microbiome.

In mice, anti-CD52 antibodies induce increased intestinal

barrier permeability (Qu et al., 2009) and lead to reductions

in epithelial cell populations and to altered tight junction

ultrastructure (Shen et al., 2013, 2015). In macaques, alem-

tuzumab-induced intestinal barrier disruption is associated

with epithelial cell apoptosis as well as with increased circu-

lating levels of D-lactate and endotoxin, indirect markers of

intestinal barrier breakdown and bacterial translocation

(Li et al., 2011; Qu et al., 2015). Lymphocyte depletion

with alemtuzumab treatment in macaque models also re-

sulted in dramatic changes in the gut microbiota (Li et al.,

2010). Lactobacillales, Enterobacteriales, Clostridiales, and

the genus Prevotella and Faecalibacterium were primarily

responsible for the variations of the gut microbiota after

lymphocyte depletion (Li et al., 2013). The diversity of

fungal microbiota was similarly affected (Li et al., 2014).

Despite this preclinical evidence, alemtuzumab-induced intes-

tinal barrier disruption is infrequent in clinical practice.

However, a case of spontaneous pancolitis was described

in a patient with multiple sclerosis treated with alemtuzumab

recently (Vijiaratnam et al., 2016), and historically, the use

of alemtuzumab in haematological malignancies has been

associated with the development of diarrhoea and opportun-

istic intestinal infections (Goteri et al., 2006; Ronchetti et al.,

2014).

Teriflunomide

Teriflunomide selectively and reversibly inhibits dihydroor-

otate dehydrogenase, leading to a reduction in the number

of activated lymphocytes that enter the CNS (Miller, 2015).

Teriflunomide could alter the microbiome and the host re-

sponse to enteral pathogens. Treatment of porcine intestinal

epithelial cells with teriflunomide led to reduced capacity to

fight bacterial infection through suppression of STAT-6
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signalling (Yi et al., 2016). Teriflunomide could also dir-

ectly inhibit C. perfringens growth in vitro (Rumah et al.,

2017). Animals treated with teriflunomide in a mouse

model of EAE had fewer antigen-presenting cells in

Peyer’s patches as well as an increase in gut-specific

CD39( + ) Treg cells that could protect against EAE when

used in an adoptive transfer regimen (Ochoa-Repáraz et al.,

2016).

Minocycline

Minocycline is a second-generation tetracycline that was

first introduced over half a century ago. Besides its antibi-

otic effects, it also has anti-inflammatory, immune-modulat-

ing and anti-apoptotic properties, all of which have been

proposed as possible pathways towards neuroprotection

(Yong et al., 2004; Giuliani et al., 2005). A recent rando-

mized, double-blind, placebo controlled trial showed that

oral minocycline could delay the appearance of a new

demyelinating events in patients with clinically isolated syn-

drome, as well as reduce the appearance of T2 lesions in the

brain (Metz et al., 2017).

Minocycline’s immune-modulating and anti-inflammatory

properties have also been observed in intestinal tissues. In a

chemically-induced colitis model in mice, minocycline

reduced intestinal inflammation, mucosal injury, restored

microbiota and preserved tight junction protein expression

(Huang et al., 2009; Garrido-Mesa et al., 2011a, b). As an

antibiotic, minocycline also alters the gut microbiome.

A recent study evaluated the effects of various commonly

used antibiotics, including minocycline, on the salivary and

gut microbiome in 66 healthy adults. Antibiotic exposure

led to reductions in health-associated butyrate-producing

species as well as proliferation of potentially resistant

strains in the gut microbiome, although the changes were

more robust after amoxicillin and ciprofloxacin administra-

tion (Zaura et al., 2015). Other studies have shown that

some gut commensals such as Bifidobacteria and E. coli are

susceptible to minocycline (Moubareck et al., 2005;

Kirchner et al., 2014). Minocycline thus presents an intri-

guing option in dual modulation of the intestinal barrier

function. It could have protective anti-inflammatory prop-

erties while also altering the composition of the gut

microbiome.

Treating the diseased
intestinal barrier
Current treatments for a diseased intestinal barrier are lim-

ited, but there are various interesting avenues of research.

One of the main therapeutic targets are tight junctions.

Larazotide acetate, also known as AT-1001, is a synthetic

octapeptide related to the zonula occludens toxin produced

by Vibrio cholera, developed as a treatment for coeliac

disease. It acts locally to decrease tight junction

permeability by blocking zonulin receptors and thus pre-

venting actin rearrangement in response to stimuli, and

in vitro it can stabilize tight junctions and decrease intes-

tinal permeability (Paterson et al., 2007; Gopalakrishnan

et al., 2012; Khaleghi et al., 2016). However, clinical

trials in coeliac disease have yielded conflicting results, des-

pite showing a beneficial effect over intestinal permeability

(Kelly et al., 2013; Leffler et al., 2012, 2015).

Another approach in improving intestinal barrier func-

tion is enrichment of the mucus layer, a strategy being

explored in IBD (Stange, 2017). Lecithin, or phosphatidyl-

choline, accounts for the majority of the phospholipids in

the intestinal mucus layer, and is available as a delayed

release oral formulation. In randomized phase II controlled

studies, delayed-release lecithin was proven to be clinically

and endoscopically effective in ulcerative colitis, and phase

III studies are underway (Stremmel and Gauss, 2013;

Stange, 2017). Recent interest has also been placed on

stem cell-based therapies to regenerate the intestinal epithe-

lium, through luminal transplantation (Holmberg et al.,
2018), but these approaches are still in an experimental

phase.

There has also been recent interest in the effects of vita-

min D over intestinal barrier function and immune homeo-

stasis (Dimitrov and White, 2017). In a model of

experimental colitis, mice overexpressing vitamin D recep-

tor in the intestinal epithelium show preserved intestinal

permeability, reduced caspase expression and less induction

of apoptosis (Liu et al., 2013). Vitamin D also attenuates

TNF�-induced apoptosis in human colonic cells through

reduction of NF-�B activation and mucosal IKK kinase ac-

tivity, thereby preserving barrier function (see Li et al.,

2015 for a review). Vitamin D signalling also preserves

the mucosal barrier integrity by abrogating myosin light

chain kinase dependent tight junction dysregulation

during colonic inflammation through suppression of NF-

�B in vitro (Du et al., 2015). Cultured colonic samples

from patients with ulcerative colitis have altered expression

of the tight junction claudin as well as increased pro-in-

flammatory cytokine expression; these changes were re-

versed by incubation with vitamin D (Stio et al., 2016).

A recent small, randomized and placebo controlled study

reported improvements in intestinal permeability [assessed

by excretion of oral sugars (lactulose and mannitol were

used as markers of small intestine permeability, sucrose as a

marker of gastro-duodenal permeability, and sucralose as

marker of combined small- and large-bowel permeability)]

as well as serum immune markers in patients with IBD

after vitamin D treatment (Raftery et al., 2015). Vitamin

D appears to be important in the regulation of the intes-

tinal barrier function, a mechanism not yet thoroughly

evaluated in multiple sclerosis research.

Probiotics have emerged as an interesting option in reg-

ulating intestinal barrier function, fuelled by research in

both in vitro and in vivo models that show that some

microbiota can stabilize the intestinal barrier (Bron et al.,

2017). However, small clinical studies in necrotizing
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enterocolitis, irritable bowel syndrome and IBD have

shown only modest effects. There are no large randomized,

placebo controlled studies and there is no obvious stand-

ardization of the quantities and composition of a given

therapeutic probiotic ‘agent’, making trials difficult (Bron

et al., 2017). There has been growing interest in the use of

faecal microbiota transplantation (the ultimate microbiome

modification) for the treatment of patients with chronic

gastrointestinal infections and IBD (Smits et al., 2013),

with excellent results observed in C. difficile colitis. It is

also a safe procedure. Its effectiveness in autoimmune dis-

eases and multiple sclerosis is unknown at this time.

There are other sources of interest in probiotics in mul-

tiple sclerosis. Probiotic administration is known to modu-

late the immune response in the mouse EAE model.

Different formulations have been shown to reduce EAE

duration (Ezendam et al., 2008), inhibit the pro-inflamma-

tory Th1/Th17 polarization (Kwon et al., 2013), induce IL-

10 producing Treg cells (Ochoa-Repáraz et al., 2010a, b;

Takata et al., 2011) and enhance CD103 expression in

dendritic cells (Ochoa-Repáraz et al., 2010b), all while pre-

venting, delaying or attenuating EAE. E. coli strain Nissle

1917 has been shown to reduce EAE-induced intestinal

barrier dysfunction, while also reducing disease severity

and beneficially modifying T cell functions (Secher et al.,

2017).

Despite these encouraging studies, few clinical trials have

been performed using probiotics in multiple sclerosis. In

one early trial, investigators used the non-pathogenic hel-

minth Trichuris suis (Fleming et al., 2011). Five newly

diagnosed patients with relapsing-remitting multiple scler-

osis were given T. suis orally for 3 months, and favourable

trends were seen in MRI outcomes (reduction in enhancing

lesions from baseline) and immunological assessments

(increased IL-10). A recent double-blind, placebo-controlled

trial randomized 60 multiple sclerosis patients to receive a

probiotic capsule or placebo for 12 weeks (Kouchaki et al.,

2017). Probiotic treatment mildly improved Expanded

Disability Status Scale (an absolute 0.4-point difference)

and depression and anxiety symptoms, reduced high-sensi-

tivity C-reactive protein and improved other metabolic

measures such as insulin sensitivity and high-density lipo-

protein-cholesterol levels. Probiotics also downregulated the

gene expression of some pro-inflammatory cytokines in pa-

tients’ peripheral blood-derived mononuclear cells (Tamtaji

et al., 2017). In these studies, the treatment was safe and

tolerable, but follow-up was too short to show any mean-

ingful benefit in radiological or clinical outcome measures.

Nonetheless, the encouraging results seen in the EAE model

will surely promote further clinical trial development.

SCFAs are bacterial fermentation products from indigest-

ible diet components. The most common SCFAs are acet-

ate, propionate and butyrate. SCFAs could have a

beneficial effect over the intestinal barrier. Butyrate was

shown to be able to accelerate tight junction protein assem-

bly and preserve permeability in a single enterocyte layer

in vitro model, a process mediated by AMP-activated pro-

tein kinase activity (Peng et al., 2009). SCFAs could also

increase prostaglandin-dependent mucin expression in in-

testinal epithelial cells, enhancing their mucoprotective

properties (Willemsen et al., 2003). In an EAE model, diet-

ary SCFA ameliorated the course of EAE through expanded

Treg cell populations in the lamina propria, through sup-

pression of the JNK1 and p38 pathway (Haghikia et al.,

2015). CD44 knockout mice that show attenuated EAE

also have increased microbiota diversity and SCFA produc-

tion in the gut (Chitrala et al., 2017).

Dietary interventions that increase the availability of

SCFAs and reduce other types of fatty acids could be an

interesting therapy in improving the intestinal barrier func-

tion in multiple sclerosis, with the additional possibility of

beneficial immunological effects. However, evidence show-

ing a benefit for any kind of dietary interventions in mul-

tiple sclerosis is scarce, despite widespread acceptance that

a ‘healthy’ diet is probably best (Altowaijri et al., 2017;

Esposito et al., 2017). Some probiotic species are also

rich sources of SCFAs, suggesting the possibility of a com-

bination approach.

Concluding remarks
The recent interest in the role of the gut microbiota in

multiple sclerosis has not been accompanied by a similar

interest in the intestinal barrier. The intestinal barrier is the

physical and functional zone of interaction between the

luminal microbiome and the organism, and it is also re-

sponsible for modulating multiple biochemical processes

and immune modulation of the mucosa. It appears that

besides dysbiotic changes in the gut microbiome, the intes-

tinal barrier function is also altered both in EAE models

and in patients with multiple sclerosis, but the precise con-

sequences of this alteration are unclear. Evidence of CNS

demyelination in gastrointestinal disorders where there is

barrier breakdown and basic studies showing how the in-

testinal barrier homeostasis can directly influence microglia

and neuroinflammation provide some insights.

Furthermore, most disease-modifying therapies appear to

also impact on the intestinal barrier and the gut

Table 1 Possible therapeutic interventions to improve

barrier function

Intervention Target

AT-1001 (larazotide) Tight junction proteins

Lecithin Mucus layer composition

Probiotics/faecal

transplantation

Pleiotropic

Vitamin D Epithelial and immunological homeostasis

Dietary/nutritional Pleiotropic. ‘High’ short chain fatty-acid diet?
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microbiome. To advance the understanding of this complex

interaction, future studies will have to take into consider-

ation the microbiome, the intestinal barrier and the down-

stream neuroimmunological changes to accommodate for

them in a single integrative model. Both the precise mech-

anisms involved in the breakdown of the intestinal barrier,

and the value, if any, of therapeutic modulation of the in-

testinal barrier in multiple sclerosis, also require further

study.
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