
An essential function of the intestinal mucosa is to act 
as a barrier between luminal contents and the under-
lying immune system. The term ‘intestinal barrier’ 
is increasingly used to refer to the mucus layer or the 
underlying mucosal immune system, and although each 
of these mucosal components provides a type of barrier, 
the physical epithelial barrier confers the property of 
selective permeability to the intestinal mucosa. The 
term ‘intestinal barrier function’ will therefore be used 
here to refer to the ability of the intestinal epithelium to 
restrict free exchange of water, ions and macromolecules 
between the intestinal lumen and the underlying tissues. 
Intestinal permeability is the inverse of intestinal barrier 
function, and because the intestinal mucosa must simul-
taneously promote nutrient and water transport while 
serving as a protective barrier, neither property is abso-
lute. Instead, intestinal barrier function depends on a 
variety of mucosal structural components that are tightly 
regulated in homeostasis and during disease1–3.

The luminal surface of the intestinal mucosa is lined 
by a hydrated gel, composed of mucins secreted by goblet 
cells4–6. This layer prevents large particles and intact bac-
teria from coming into direct contact with the underlying 
epithelium. The importance of the mucus layer is empha-
sized by the observations that mucin structure is mark-
edly altered in active enterocolitis and that knockout mice 

lacking the Muc2 gene, which encodes the major com-
ponent of intestinal mucin, develop spontaneous colitis7. 
However, the mucus layer does not establish a substantial 
barrier to transmucosal water or solute flux; that job falls 
to the epithelial monolayer, which is the primary deter-
minant of mucosal barrier function8. The apical surface 
of the epithelium forms a single, continuous border as 
a result of the precise alignment of abutting cells. In an 
intact epithelium, this surface restricts passage of most 
hydrophilic solutes. However, to limit transmucosal flux, 
the paracellular space must also be sealed. The task of 
regulating paracellular transport is achieved by a series 
of intercellular junctions.

The apical junctional complex
From an apical to basal direction, the intercellular junc-
tions are the tight junction (ZO; zonula occludens), 
adherens junction (zonula adherens) and desmosome 
(FIG. 1). Together these three types of intercellular junc-
tions comprise the apical junctional complex9. The apical 
junctional complex is associated with a dense network of 
actin and myosin that encircles the apical aspect of each 
cell and supports the cortical actin web10,11. The latter 
supports the dense microvillus brush border, whereas 
the perijunctional actomyosin ring regulates epithelial 
barrier function (see next section).
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Abstract | A fundamental function of the intestinal epithelium is to act as a barrier that limits 
interactions between luminal contents such as the intestinal microbiota, the underlying immune 
system and the remainder of the body, while supporting vectorial transport of nutrients, water 
and waste products. Epithelial barrier function requires a contiguous layer of cells as well as the 
junctions that seal the paracellular space between epithelial cells. Compromised intestinal 
barrier function has been associated with a number of disease states, both intestinal and 
systemic. Unfortunately, most current clinical data are correlative, making it difficult to separate 
cause from effect in interpreting the importance of barrier loss. Some data from experimental 
animal models suggest that compromised epithelial integrity might have a pathogenic role in 
specific gastrointestinal diseases, but no FDA-approved agents that target the epithelial barrier 
are presently available. To develop such therapies, a deeper understanding of both disease 
pathogenesis and mechanisms of barrier regulation must be reached. Here, we review and 
discuss mechanisms of intestinal barrier loss and the role of intestinal epithelial barrier function 
in pathogenesis of both intestinal and systemic diseases. We conclude with a discussion of 
potential strategies to restore the epithelial barrier.
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Adherens junctions and desmosomes provide the 
adhesive forces necessary for maintenance of cell–cell 
interactions. The most well-known component of the 
adherens junctions are the cadherins — single spanning 
transmembrane proteins that interact homotypically 
with the extracellular portion of cadherins on adjacent 
cells12. On the cytoplasmic face, cadherins interact directly 
with p120 catenin and β‑catenin, which in turn inter-
act with α-catenin13. Among other functions, α‑catenin 
regulates perijunctional actin assembly, which provides 
further strength to these structures14,15. In addition, the 
adherens junction is necessary for efficient tight junction 
assembly, a function that in vitro studies have attributed 
to both epithelial cadherin (E‑cadherin) and α-catenin16,17.

The tight junction is the primary determinant of para
cellular permeability. When viewed using transmission 
electron microscopy, the tight junction seems to elimin
ate the intercellular space at so‑called ‘kissing points,’ 
and freeze-fracture electron microscopy clearly shows 
that tight junctions consist of a series of anastomosing 
strands9,18. Results from a study using direct rapid freez-
ing methods suggested that tight junction strands might 
exist as pairs of inverted micelles formed by the fusion 
of the outer leaflets from plasma membranes of abutting 
cells19,20; however, this model has largely been abandoned 
with the discovery of tight-junction-associated structural 
and regulatory proteins19,20. Immunoelectron microscopy 
has demonstrated transmembrane proteins within tight 
junction strands21. Multiple subsequent studies have 
shown that tight junction proteins reside in cholesterol-
rich, detergent-insoluble lipid domains22–24. These 
findings have led to speculation that dynamic fusion 
and fission of lipid-based tight junction strands might 
account for selective permeability (a detailed review con-
sidering the lipidic nature of tight junctions can be found 
elsewhere20). Specialized lipids and proteins are probably 
necessary components of the tight junction barrier; how-
ever, to date, far more work has been done to identify the 
structure and regulation of tight junction proteins.

Tight junction proteins can be broadly separated into 
transmembrane proteins, cytosolic plaque (scaffolding) 
proteins and regulatory proteins. Of the transmembrane 
tight junction proteins, the tetraspanning claudins are 
the most important, as the extracellular domains of clau-
dins on adjacent cells form pores to regulate tight junc-
tion ion selectivity25. A seminal study determined that 
expression of a single claudin family member, claudin‑2, 
is largely responsible for differences in transepithelial 
resistance between two clones of Madin Darby canine 
kidney cells26. Subsequent analyses have shown that 
claudin-2‑driven decreases in epithelial barrier func-
tion are due to increases in paracellular ion conductance 
without accompanying alterations in flux of larger mol
ecules27–29. Data showing that individual claudin-2‑based 
channels are dynamically gated suggests that altering the 
opening and closing of claudin‑2 pores is a targetable 
process for barrier modulation28. An alternative poten-
tial method of inhibiting claudin‑2 function comes from 
the observation that prevention of casein-kinase-2‑
mediated occludin phosphorylation promotes assembly 
of a tight junction complex that blocks claudin‑2 pore 
function, thereby reversing IL‑13‑induced barrier loss 
in vitro30. However, such therapies must be approached 
with caution, as trans-tight junction Na+ recycling, from 
the lamina propria into the lumen, is necessary to sup-
port critical transcellular vectorial transport processes 
such as nutrient absorption31–33.

The ZO family of proteins (ZO1, ZO2 and ZO3, 
encoded by the genes TPJ1, TPJ2 and TPJ3, respec-
tively) are multidomain scaffolding proteins that interact 
directly with transmembrane tight junction proteins such 
as claudins and the tight junction-associated MARVEL 
protein (TAMP) family, which includes occludin21,34–36. 
ZO proteins also interact with the actin cytoskeleton and 
a variety of actin regulatory elements37. The ZO proteins 
have many similar structural domains, which has led 
to the hypothesis that they serve similar functions37,38. 
However, these proteins must also have unique func-
tions as knockout of either Tjp1 or Tjp2 genes results in 
embryonic lethality in mice39,40. Studies in humans have 
discovered two distinct pathogenic TJP2 mutations40,41. 
The first mutation impairs ZO2 binding to claudins and 
results in an incompletely penetrant familial hyperchol
anaemia, which presents with elevated serum bile acid 
levels, pruritus and fat malabsorption41. The second dis-
covered mutation in TJP2 encodes a truncated protein 
and is associated with severe cholestatic liver disease that 
presents early in life and frequently requires liver trans-
plantation42. In this case, claudin‑1, but not claudin‑2, 
fails to localize to tight junctions within canalicular and 
cholangiocyte membranes. Interestingly, a study of mice 
lacking claudin‑2, which forms a paracellular Na+ and 
water channel, found that these mice generated more 
concentrated bile and were susceptible to gallstone dis-
ease, suggesting that claudin-2‑mediated paracellular 
water and/or Na+ flux contributes to bile hydration43. 
The ability of this truncated ZO2 to support human life, 
while Tjp2 gene knockout is lethal in mice, suggests that 
the shortened protein is partially functional, possibly via 
oligomerization with ZO1. Alternatively, the data might 

Key points

•	The intestinal epithelium is a dynamic cellular layer that serves as a barrier between 
luminal contents and the underlying immune system while simultaneously supporting 
water, nutrient and ion transport

•	Tight junctions are the primary determinants of barrier function in intact epithelia 
and are composed of a complex network of transmembrane and cytosolic proteins 
accompanied by cytoskeletal and regulatory proteins

•	Two distinct pathways — termed pore and leak — regulate paracellular flux in intact 
epithelia whereas the unrestricted flux pathway is the dominant route across ulcerated 
or denuded epithelia

•	Reduced intestinal epithelial barrier function is associated with a variety of 
gastrointestinal and systemic diseases, including IBD and graft versus host disease, 
respectively, but is insufficient to cause disease in the absence of other insults

•	Experimental evidence suggests that barrier defects contribute to IBD, as mouse 
models demonstrate that increased paracellular permeability accelerates 
experimental colitis and that preservation of tight junction barrier function delays 
disease progression

•	Although no currently available therapeutics specifically modulate epithelial barrier 
function, promising approaches to target the pore, leak, and unrestricted pathways 
are being investigated
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indicate species differences in the redundancy between 
ZO1 and ZO2. In either case, these data highlight the 
importance of tight junction proteins in homeostasis 
and prevention of gastrointestinal diseases. Although 
barrier function has not been measured in patients with 
either TJP2 mutation, the differences in localization of 
claudin proteins to tight junctions implies that, as in 
the claudin‑2-knockout mouse, altered epithelial barrier 
function might result in hepatobiliary disease41,42. This 
finding is consistent with many other studies that have 
linked intestinal barrier dysfunction to hepatitis44,45.

Paracellular permeability pathways
The tight junction barrier exhibits both size and charge 
selectivity with two distinct routes across an intact epi-
thelial monolayer, termed the ‘pore’ and ‘leak’ pathways3,8 
(FIG. 2). The pore pathway refers to a high-capacity,  
size-selective and charge-selective route, whereas the 
leak pathway is a low-capacity pathway that has more 
limited selectivity3,8. Pore pathway permeability seems 
to be determined primarily by the subset of claudins 
expressed, whereas leak pathway permeability can be 
regulated by ZO1, occludin and myosin light chain 
kinase (MLCK)8,30,46. At sites of epithelial damage, 
such as erosions and ulcers, tight junctions are lost and 

therefore cannot contribute to local barrier function. 
Instead, luminal contents cross the intestinal barrier by 
a third pathway, termed the ‘unrestricted’ pathway. As its 
name suggests, the unrestricted pathway is high-capacity 
and nonselective with respect to solute size and charge. 
Large proteins and even whole bacteria can cross the 
unrestricted pathway, which partially explains the severe 
disease initiated by epithelial damage. In the setting of 
extensive epithelial injury, such as that occurring in 
humans with necrotizing enterocolitis or rodents treated 
with dextran sulfate sodium (DSS), the unrestricted 
pathway is often unsealed and is the predominant route 
of transmucosal flux47–49. However, during homeostasis 
and less active inflammatory disease, the epithelium is 
generally intact and barrier function primarily reflects 
flux across the paracellular pore and leak pathways29,48,50.

Regulation of the epithelial barrier
Homeostatic regulation. During homeostasis, the intes-
tinal epithelium is a highly dynamic structure and is 
estimated to completely self-renew every 4–7 days2,51–53. 
Stem cells reside in the intestinal crypts where they pro-
liferate, and daughter cells differentiate as they migrate 
up the crypt–villus axis to be ultimately shed into the 
intestinal lumen. This constant turnover presents an 
opportunity for potential breaches in the epithelial 
barrier with concomitant increases in flux across the 
unrestricted pathway. However, both shedding events 
and oligocellular wounds are accompanied by the for-
mation and subsequent contraction of a multicellular 
actomyosin purse string, which drives tight junction 
expansion to the basal surface of the extruded cell to 
rapidly re‑establish the contiguous epithelium and tight 
junction barrier54–56.

The most studied example of physiological regula-
tion of the tight junction barrier is that which occurs 
upon activation of sodium–glucose cotransport57–61. 
This cotransport leads to activation of epithelial MLCK 
as well as development of a transepithelial osmotic 
gradient. MLCK activity increases paracellular perme-
ability via the size-selective pore pathway, and in the 
setting of an osmotic gradient, this increased perme
ability enables paracellular absorption of small nutrients 
(such as glucose) via solvent drag57,59,61–64.

Pathophysiological regulation of leak and pore path-
ways. The pore and leak pathways are also regulated in 
response to pathophysiological stimuli. Perhaps the most 
well-studied example is flux across the pore pathway due 
to IL‑13‑induced increases in claudin‑2 expression29,65. 
Notably, IL‑13 is not the only immunological regulator 
of claudin‑2 expression and pore pathway permeability, 
as IL‑6, IL‑4, IL‑9 and TNF have also been reported to 
induce claudin‑2 expression65–71. Although one study 
suggested that IL‑13 causes barrier loss by inducing 
claudin‑2 expression as well as increasing apoptosis and 
inhibiting wound healing65, both in vitro and in vivo 
studies using lower doses of IL‑13 have shown claudin‑2 
upregulation and claudin-2‑dependent pore-pathway 
activation in response to IL‑13 exposure without associ
ated increases in leak or unrestricted pathway flux29. 
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Figure 1 | The apical junctional complex is necessary for epithelial barrier formation. 
The intestinal epithelial monolayer separates luminal contents from the underlying lamina 
propria. a | Human jejunal epithelium stained with haematoxylin and eosin, showing cells 
forming a community brush border. Scale bar = 10 μm. b | Transmission electron 
microscopy of small intestinal epithelium shows intercellular junctions, a microvillus brush 
border and exclusion of organelles from the dense band of cortical actin just beneath the 
brush border. Scale bar = 500 nm. Inset: apical junctional complex, composed of the tight 
junction (TJ), adherens junction (AJ) and desmosome (D). Scale bar = 200 nm. c | Scanning 
electron microscopy shows the continuous brush border surface of the small intestine. 
Scale bar = 2 μm. Inset: Densely packed microvillus array. Scale bar = 500 nm. 
d | Freeze-fracture electron microscopy shows tight junction strands. Scale bar = 100 nm. 
e | Epithelial cells are held together and communicate through junctions. Schematic 
depicting junctional transmembrane proteins of the tight junction (claudins and tight 
junction-associated MARVEL proteins (TAMPs)), adherens junction (E‑cadherin) and 
desmosome (desmogelin and desmocollin) connected to the actin cytoskeleton via 
cytosolic proteins (ZO1, catenins and desmoplakin). Tight and adherens junctions 
interact with the actin cytoskeleton, and desmosomes connect to intermediate filaments.
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This  finding is consistent with biophysical studies 
demonstrating that claudin proteins such as claudin‑2 
form paracellular channels with exquisite size and 
charge selectivity, and both closed and open states, sim-
ilar to transmembrane ion channels28,72–74. Interestingly, 
crypt but not surface epithelial cells express claudin‑2 
under normal conditions, consistent with the increased 
paracellular permeability of the former75–77.

The cytokine TNF has also been shown to regulate 
tight junction function, and the clinically relevant role 
of TNF in IBD pathogenesis is clearly demonstrated by 
the efficacy of anti-TNF antibodies, which reduce dis-
ease severity and restore intestinal barrier function78,79. 
Repair of epithelial barrier function following anti-TNF 
therapy might reflect mucosal healing in the setting of a 
dampened immune system. However, preclinical stud-
ies have shown that TNF signalling also modulates tight 
junction barrier function directly48,80–83. This relationship 
was first recognized in vitro by the association between 
barrier loss and increased myosin light chain (MLC) 
phosphorylation in response to TNF80. Pharmacological 
inhibition of MLCK activity in vitro rapidly reduced MLC 
phosphorylation and restored tight junction barrier func-
tion80. Using both pharmacological and genetic methods 
of MLCK inhibition, TNF-induced MLC phosphoryl
ation and tight junction barrier dysfunction was shown 
to be required for diarrhoea in vivo84. Subsequently, 
TNF was found to also upregulate claudin‑2 expression, 
thereby enhancing pore pathway flux68. However, this 
process only occurred after many hours of TNF treat-
ment in contrast to the rapid regulation of MLCK tran-
scription85, and is therefore best considered a secondary 

phase of TNF-induced barrier regulation that might be 
indirect. Notably, the expression of constitutively active 
MLCK (CA‑MLCK) within the intestinal epithelium 
also upregulated claudin‑2 expression in vivo, despite 
the absence of overt disease29,48,86.

Further studies demonstrated the contribution of 
tight junction barrier loss to the pathogenesis of experi
mental colitis (discussed in the next section)48,86. TNF 
diminishes epithelial barrier function largely by indu
cing occludin internalization via a caveolin-1‑dependent 
process87, which was demonstrated in vivo as either 
pharmacological or genetic inhibition of caveolin‑1 
function limited both occludin internalization and 
TNF-mediated diarrhoea87. Furthermore, occludin 
overexpression in intestinal epithelial cells limited TNF-
induced barrier loss and prevented TNF-induced diar-
rhoea87. This finding reflects the relative preservation of 
tight junction occludin pools, despite MLCK activation, 
in mice that overexpress occludin87. These data indi-
cate that the removal of occludin from tight junctions, 
rather than some other component, leads to barrier loss. 
In vitro studies have corroborated this finding by show-
ing that occludin depletion results in decreased barrier 
function and that occludin-deficient intestinal epithe-
lial cell monolayers are resistant to further TNF-induced 
barrier loss88,89. Given the greater paracellular perme
ability of crypt epithelium relative to surface epithelium, 
it is notable that crypt epithelia have substantial intra-
cellular occludin pools in the absence of inflammatory 
stimuli, whereas surface epithelia do not75–77. Subsequent 
domain analyses suggest that barrier regulation by 
occludin requires direct interactions between occludin 
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Figure 2 | Three distinct paracellular epithelial permeability pathways are disrupted during disease 
pathogenesis. During homeostasis (left) there is little underlying mucosal immune activity and the ‘leak’ and ‘pore’ 
pathways, regulated by tight junctions, define intestinal permeability. In the presence of an intact epithelium, cellular 
membranes seal the ‘unrestricted’ pathway, which is independent of tight junctions. During disease pathogenesis (right), 
increased mucosal immune activation leads to TNF and IL‑13 production, which can cause increased permeability across 
the leak and pore pathways, respectively. TNF enhances leak pathway permeability by both increasing myosin light chain 
kinase (MLCK) transcription and activity at the tight junction and causing occludin endocytosis. Pore pathway 
permeability is increased by IL‑13‑dependent claudin‑2 upregulation. As inflammatory disease progresses, epithelial 
apoptosis occurs and permeability across the high-capacity, charge and size-nonselective unrestricted pathway 
dominates. Upon removal of inflammatory stimuli, the epithelium regenerates to seal the unrestricted pathway and 
restore permeability dependent on tight junctions. Multiple therapeutic approaches targeting the intestinal epithelial 
barrier have been proposed (centre). These approaches aim to either inhibit initiation and progression of disease through 
immunosuppression or inhibition of barrier loss dependent on tight junctions, or through restoration of epithelial barriers 
after disease onset by inhibiting inflammation or promoting epithelial regeneration. EGF, epidermal growth factor; 
IL‑13R, IL‑13 receptor; TNFR2, TNF receptor 2. 
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and ZO1 (REF. 88). Unlike claudin channels that represent 
the structural pathway route of pore pathway conduct-
ance, the precise sites of paracellular leak pathway flux 
are not yet defined. The observation that overexpression 
of the occludin-related protein tricellulin reduces leak 
pathway conductance without affecting the pore path-
way suggests that tricellular junctions might be the sites 
of leak pathway flux90,91. Interestingly, tricellulin is found 
at both tricellular and bicellular tight junctions, rather 
than only at the former, after occludin knockdown88,92. 
This finding raises the possibility that redistribution of 
tricellulin following occludin endocytosis contributes to 
TNF-induced barrier loss88,91–93. However, neither intes-
tinal barrier defects nor intestinal disease have been 
described in humans or mice with tricellulin muta-
tions94–96. Humans with occludin mutations have not yet 
been identified, but occludin-knockout mice, which are 
deaf, display tricellulin redistribution to bicellular tight 
junctions within the inner ear97 and have been reported 
to lack intestinal barrier defects98,99.

Although the leak and pore pathways represent 
distinct routes across the paracellular barrier, the two 
pathways are often affected in parallel. For example, in 
patients with IBD and in the SAMP1/YitFc mouse model 
of colitis, claudin‑2 mRNA expression is increased and 
occludin expression is decreased, indicating that both 
leak and pore pathways are activated65,100. Mechanistic 
interplay between the pathways was demonstrated 
using mice expressing a CA‑MLCK within the intes-
tinal epithelium29. Colonic mucosae of these mice dis-
played increased cation selectivity that could not be 
explained by MLCK-dependent increases in leak path-
way flux. Instead, in vivo responses to MLCK activation 
were shown to result in mucosal immune activation, 
enhanced IL‑13 expression, and subsequent increases 
in claudin‑2 expression that led to increased cation flux 
across the pore pathway29.

Intestinal barrier function and disease
Impaired intestinal barrier function has been associated 
with an increasing variety of diseases — both intesti-
nal and systemic (TABLE 1) — leading to the popular
ization of the catch-all diagnosis of so-called leaky gut 
syndrome101–103. The vast majority of these associations 
are merely correlative, but experimental evidence relat-
ing barrier dysfunction to disease pathogenesis exists 
in some cases, including IBD and coeliac disease103. 
Some bacterial pathogens are also capable of reducing 
tight junction barrier function including MLCK activ
ation during enteropathogenic Escherichia coli infec-
tion80,104,105, direct interactions with specific claudins 
by Clostridium perfringens enterotoxin106,107 and Rho 
GTPase inhibition by C. difficile toxins108,109.

IBD. The association between intestinal barrier dys-
function and intestinal disease was first recognized 
by studies using an ex vivo approach that documented 
increased permeability in active IBD, in both ulcerated 
and non-ulcerated epithelia110–112. Subsequent studies 
revealed that tight junction function, ultrastructure 
and protein composition are altered in patients with 
active IBD71,113. Expression and activity of MLCK as well 
as expression of claudin‑2 are also increased in active 
IBD, suggesting that tight junction dysregulation might 
have a pathogenic role in IBD before epithelial ulcer
ation114,115. Consistent with this idea, intestinal perme
ability has been reported as a fairly sensitive prognostic 
indicator of relapse to active disease in patients with 
Crohn’s disease during clinical remission116,117. These 
results have been corroborated by a study of 43 patients 
with Crohn’s disease, which also reported increased 
levels of the intestinal inflammation marker, faecal 
calprotectin, before relapse118. This finding blurs the 
exact role of intestinal barrier dysfunction in relapse 
because, as indicated by in vitro and in vivo studies, 

Table 1 | Associations of representative diseases and disease models with intestinal barrier loss

IBD Coeliac disease Graft versus host disease Type I diabetes 
mellitus

Structural alterations

Pore 
pathway

Increased claudin‑2 expression48,65,70,114 Increased claudin‑2 
expression153,154,208

Increased claudin‑2 expression177 NA

Leak 
pathway

Reduced occludin expression65; increased 
MLCK expression and activity48,85,115; 
MLCK inactivation reduces severity48

Reduced occludin 
expression138,153

Reduced occludin expression209 NA

Unrestricted 
pathway

Ulceration, epithelial apoptosis48,127,210 NA Epithelial apoptosis211 NA

Functional alterations

Pore 
and/or leak 
pathways

Increased lactulose:mannitol ratio and 
PEG‑400 permeability in disease111,112,212–214, 
impending relapse116–118,215 and in some 
healthy relatives121,124,216

Increased 
lactulose:mannitol 
ratio in disease111,130,217

Increased sucralose permeability175 Increased 
lactulose:mannitol 
ratio178,179,218

Leak and/or 
unrestricted 
pathways

Increased 4 kD dextran and Evan’s blue flux 
in DSS-induced colitis127,219,220

Increased lactulose 
permeability; 
corrected by 
gluten-free diet113

Development of experimental minor 
mismatch disease requires intestinal 
damage177; the extent of barrier loss 
induced by pre-transplant conditioning 
correlates with disease severity221

Pathogenic 
bacteria that 
increase intestinal 
permeability 
accelerate disease222

DSS, dextran sulfate sodium; MLCK, myosin light chain kinase; PEG, polyethylene glycol.
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subclinical levels of inflammation might be respon-
sible for increased permeability. Consistent with this 
hypothesis, inflammatory cytokine exposure is associ-
ated with increased epithelial cell turnover in vivo55, and 
one clinical study using confocal laser endomicroscopy 
reported that increased epithelial shedding and leak-
age of fluorescein dye across the intestinal epithelium 
in patients with IBD correlated directly with risk of 
relapse within 1 year119. Despite this finding, it is worth 
noting that the fluorescein dye flux observed was into 
the lumen, suggesting that barrier defect might result 
in local fluid efflux and, therefore, might enable only 
limited passive transport of luminal materials into 
the mucosa. Furthermore, many studies have shown 
relative maintenance of barrier function at sites of 
epithelial shedding55,56,120.

The contribution of increased intestinal perme
ability to disease pathogenesis was first proposed with 
the realization that a subset of first-degree relatives of 
patients with Crohn’s disease also display increased 
intestinal permeability121. Some of these individ
uals might also have an altered microbial metabolic 
state122,123. Although first-degree relatives do have an 
increased risk of developing Crohn’s disease relative 
to the overall population, it remains to be determined 
if the subset with increased intestinal permeability are 
at greater risk than those without increased intestinal 
permeability. However, interestingly, relatives with 
increased intestinal permeability tend to carry a specific 
disease-associated polymorphism of NOD2 (previously 
known as CARD15), which encodes a protein involved 
in bacterial recognition124. Although interesting in the 
context of disease, these studies also demonstrate that 
increased intestinal permeability alone is insufficient to 
cause overt clinical disease, as many healthy first-degree 
relatives also harbour this deficit121,125. Nevertheless, 
one case report identified a first-degree relative who 
had increased intestinal permeability before clinical 
presentation of Crohn’s disease, suggesting a potential 
pathogenic role for intestinal barrier function in IBD126. 
This single case report must, however,  be interpreted 
with caution given the individual’s already increased 
risk of developing IBD. Furthermore, as noted, no 
studies have assessed long-term disease risk in first-
degree relatives with increased intestinal permeability. 
However, a range of exciting data from experimental 
mouse models have provided evidence supporting 
the idea that intestinal barrier loss can be one compo-
nent that contributes to a multifactorial mechanism of 
IBD pathogenesis48,49,86,127.

Coeliac diseae. In simple terms, coeliac disease becomes 
apparent when genetically susceptible individuals ingest 
gluten-containing foods. Luminal and brush border 
enzymes digest gluten into gliadin, an alcohol soluble 
peptide. In patients with coeliac disease, gliadin drives 
mucosal immune activation by incompletely defined 
mechanisms that result in intestinal inflammation and 
epithelial damage128. To accomplish this step, gliadin 
must cross the epithelial barrier. Although the route by 
which gliadin is passed from the lumen to the lamina 

propria is controversial (transcellular or paracellular 
route), diminished intestinal barrier function is pro-
posed to have a pathogenic role in coeliac disease. 
Support for the hypothesis that barrier loss contributes 
to coeliac disease pathogenesis first came from obser-
vations that intestinal permeability to nonmetabolizable 
sugars is increased during active disease and decreases 
to normal ranges after consumption of a gluten-free 
diet for several months129. Conversely, gluten challenge 
in patients with coeliac disease who have been on a 
gluten-free diet can increase intestinal permeability129. 
Later studies found that intestinal permeability posi-
tively correlates with disease activity and is increased 
in both patients with coeliac disease and their healthy 
relatives130,131. Moreover, improvements in barrier func-
tion have been shown to precede histological evidence 
of disease improvement after initiation of a gluten-free 
diet132, and have even been reported in patients with 
diarrhoea-predominant IBS after introduction of a 
gluten-free diet133.

Animal models of coeliac disease include a sub-
set of Irish setter pups, which are gluten sensitive134. 
Similar to patients with coeliac disease, gluten-sensitive 
Irish setter pups display gluten-dependent increases in 
intestinal permeability that precede histological entero
pathy134. These observations are supported by multiple 
studies showing increased intestinal permeability upon 
gluten exposure in gluten-sensitive HLA-DQ8 trans-
genic mice135,136. Each of these results can potentially be 
explained by immune signalling to intestinal epithelia 
that results in increased permeability. Consistent with 
this idea, removal of the immune stimulus (that is, 
gliadin) restores intestinal barrier function129. However, 
in vitro studies indicate that gliadin might have a direct 
effect on the intestinal epithelium, as exposure to gliadin 
and gliadin peptides produces a substantial reduction 
in barrier function of confluent intestinal epithelial cell 
(IEC‑6) monolayers137. A similar result was reproduced 
using the human intestinal epithelial cell line Caco‑2, 
and in this study, size-selectivity of gliadin-induced 
barrier defects was assessed by measuring flux of both 
4 kDa and 70 kDa FITC-dextran across treated mono
layers138. This study revealed that gliadin-exposed Caco‑ 
2 monolayers were considerably more permeable to 
small (4 kDa) but not large (70 kDa) dextrans, indicating 
an increase in leak pathway flux without increased flux 
across the unrestricted pathway138.

The mechanism for gliadin-mediated reductions 
of epithelial barrier function has been proposed to 
involve upregulation of zonulin, a putative regulator 
of tight junction permeability. Zonulin expression is 
increased in patients with active coeliac disease, and a 
zonulin antagonist, larazotide acetate (AT‑1001), inhib-
its gliadin-induced reductions in epithelial permeability 
in vitro and in vivo139,140. Unfortunately, although some 
clinical benefit has observed, trials of larazotide have not 
demonstrated reductions in intestinal permeability141.

Other mechanisms of barrier loss in coeliac disease 
might reflect polymorphisms in myosin-IXb, which have 
been linked to coeliac disease142,143. Myosin-IXb is a Rho-
GTPase-activating protein (GAP) that plays a part in  
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actin remodelling144. The myosin-IXb polymorphisms 
linked to coeliac disease are within the N‑terminal 
portion of myosin-IXb, the region of the protein that 
confers Rho-GAP activity144,145. However, studies of 
myosin-IXb variants in additional populations have 
failed to demonstrate an association with coeliac dis-
ease146,147. These conflicting results might be due to 
population differences, unidentified environmental 
cofactors, or false-positive or false-negative results. 
Nevertheless, some support for a pathogenic role of 
myosin-IXb polymorphisms comes from studies link-
ing the variants to Crohn’s disease and ulcerative coli-
tis148–150. Although it remains to be tested if the identified 
myosin-IXb variants are pathogenic, the association of 
polymorphisms in a single protein with multiple disease 
entities underscores the hypothesis that common cellu-
lar mechanisms might underlie multiple inflammatory 
diseases. In vitro studies using Caco‑2 monolayers have 
shown an essential role of myosin-IXb in intestinal epi-
thelial wound closure, tight junction protein localiza
tion and epithelial barrier function at steady state151. All 
of these data suggest that myosin-IXb might have an 
important role in maintaining the barrier by regulating 
both the tight junction and epithelial repair. Although 
intestinal permeability has not been studied in patients 
carrying myosin-IXb polymorphisms, it is interesting 
to speculate that these variants might increase dis-
ease susceptibility by enhancing flux across both tight 
junction leak and unrestricted pathways. Indeed, myo-
sin-IXb-knockout mice were shown to have diminished 
epithelial barrier function, characterized by increased 
40 kDa dextran flux152. These observations are prob
ably explained by increased rates of epithelial apoptosis. 
However, intestinal epithelia from myosin-IXb-knock-
out mice also display increased subapical phosphoryl
ated MLC and reduced ZO1 recruitment to tight 
junctions152. Other studies have identified changes in 
claudin protein expression that might also affect flux 
across the tight junction pore pathway153,154. Thus, as 
in IBD, all three flux pathways probably contribute to 
permeability increases in coeliac disease.

One final factor that might affect transmucosal flux 
in coeliac disease is the reduction in mucosal surface 
area as a result of villous blunting, which is often associ
ated with reactive crypt hyperplasia128. Together, these 
events result in a skewing of the crypt:villus surface 
area ratio. The leak pathway of crypt tight junctions 
is far more permeable than in the villus75–77, which 
probably increases leak pathway flux. However, pore 
pathway flux might also be reduced as a result of the 
overall loss of surface area. These changes explain 
the increased permeability to lactulose (as it is a leak 
pathway probe), decreased flux of the pore pathway 
probe mannitol and increased lactulose:mannitol ratio 
in coeliac disease130,155,156.

Mouse models of intestinal barrier function in disease. 
A variety of mouse models have led to a more sophis-
ticated understanding of the contribution of intestinal 
barrier function to inflammatory diseases. The critical 
role of epithelial barrier function in homeostasis was 

demonstrated in chimeric mice expressing a dominant 
negative N‑cadherin cytoplasmic tail within intestinal 
epithelia157,158. E‑Cadherin-mediated interactions were 
disrupted in intestinal epithelial cells expressing the 
N‑cadherin tail, which resulted in aberrant epithelial 
differentiation, chronic active inflammation and dys-
plasia157. A histologically similar inflammatory process 
characterized by erosions and ulcerations was reported 
in mice lacking intestinal epithelial p120‑catenin, which 
display marked E‑cadherin downregulation owing to 
enhanced degradation in the absence of p120‑catenin159. 
Mice with a targeted, conditional E‑cadherin deletion 
within intestinal epithelium have also been generated160. 
These mice display altered differentiation patterns, 
enhanced epithelial apoptosis, bloody diarrhoea and 
impaired bacterial defense160. Disease in each of these 
models probably reflects marked disruption of tight 
junctions secondary to adherens junction disassembly, 
aberrant epithelial differentiation and epithelial apop-
tosis, and can therefore be considered a model of dis-
ease driven, at least partially, by unrestricted pathway 
defects. This disruption might be a component of IBD 
pathogenesis, but it is unlikely to reflect a primary mech-
anism in disease presenting after the neonatal period. 
Nevertheless, it is interesting that polymorphisms near 
the E‑cadherin-encoding gene CDH1 have been linked 
to ulcerative colitis161.

Similar to human patients162–164, colitis development 
in IL10-/- mice165,166 is highly variable in penetrance, age 
of onset and severity. Environmental stimuli and genetic 
factors, including both targeted changes and strain-
specific differences, contribute to the observed vari
ation166,167. Moreover, enteric bacteria are necessary for 
colitis onset, as germ-free IL10-/- mice do not develop dis-
ease and antibiotic treatment can attenuate colitis166,168,169,  
which correlates with observations of altered microbial 
communities in patients with IBD170. Although the pri-
mary defect in IL‑10-deficient mice is immune, intesti-
nal barrier defects are present before clinical evidence 
of disease onset and do not develop under germ-free 
conditions168. However, whether increased intestinal 
permeability is a key pathogenic component of colitis in 
IL10-/- mice or simply an early marker of mucosal injury 
is unclear from these data. Several studies suggest that 
the former might be true. First, it is now well-appreciated 
that the NSAID piroxicam can promote disease develop-
ment in IL10-/- mice171. Given that NSAIDs are known to 
result in epithelial damage, NSAID treatment probably 
provokes disease by increasing flux across the unre-
stricted pathway. Similarly, administration of a zonulin 
agonist enhanced intestinal permeability and modestly 
increased disease severity in IL10-/- mice172. Conversely, 
a zonulin antagonist reduced intestinal permeability and 
disease severity in IL10-/- mice173. Although the mech-
anism of action of these agents (including their speci-
ficity) is unclear, these data do suggest that modulating 
intestinal permeability can affect colitis genesis in IL‑10-
deficient mice.

Mouse models with targeted apical junctional com-
plex defects might shed light on the role of the tight-
junction-mediated barrier in colitis development and 
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progression. For example, mice lacking junctional 
adhesion molecule‑A (JAM‑A), which facilitates tight 
junction assembly and leukocyte transmigration, dis-
play altered claudin protein expression and increases in 
epithelial apoptosis, proliferation and migration even 
in the absence of clinically apparent disease127. JAM‑A-
deficient mice are also hypersensitive to DSS injury127. 
This observation might indicate that JAM‑A expression 
is either protective against intestinal epithelial damage 
or enhances regenerative capacity, but could also reflect 
the inability of knockout mice to mount an adequate 
response to DSS injury given the pre-existing chronic 
epithelial damage. Importantly, JAM‑A is expressed in 
many tissues and a specific role for intestinal epithelial 
JAM‑A has not been assessed. Notably, however, intes-
tinal epithelial, but not endothelial, JAM‑A expression 
is downregulated in patients with IBD127.

A more precisely targeted model has taken advan-
tage of the physiologically and pathophysiologically 
relevant tight junction regulator MLCK to increase 
intestinal paracellular permeability. In this model, 
CA‑MLCK was expressed specifically within intesti-
nal epithelia86. This perturbation increased intestinal 
paracellular permeability without affecting epithelial 
maturation, proliferation or turnover, much like the 
subset of healthy first-degree relatives of patients with 
Crohn’s disease with increased intestinal permeability86. 
CA‑MLCK transgenic mice mature normally without 
developing spontaneous disease, but they do exhibit 
subclinical immune activation with type 1 T helper 
(TH1) cell polarization86. Furthermore, when chal-
lenged by adoptive transfer of effector T cells, disease 
onset is accelerated, severity is worsened and overall 
survival is reduced relative to nontransgenic litter-
mates86. These experimental data are consistent with 
patient data indicating barrier dysfunction alone is 
insufficient to cause clinically detectable disease, and 
also provide direct evidence that isolated tight junction 
dysfunction can contribute to disease pathogenesis in 
susceptible hosts. As discussed earlier, the CA‑MLCK-
induced increase in leak pathway permeability also 
results in claudin‑2 upregulation and enhanced pore 
pathway flux29.

A subsequent study investigated the interplay 
between immune activation, TNF signalling, intesti-
nal epithelial MLCK expression and intestinal barrier 
function using an immune-mediated adoptive trans-
fer colitis mouse model48. Similar to human disease115, 
intestinal epithelial MLCK expression increased as 
colitis progressed48,115. In mice, this finding was accom-
panied by increased intestinal epithelial transcription 
and expression of TNFR2 (TNF receptor 2), which 
had been shown to mediate TNF-induced increases 
in MLCK transcription in vitro83. Consistent with this 
finding, TNFR2‑deficient mice failed to upregulate 
MLCK expression or MLC phosphorylation within 
intestinal epithelium48. By contrast, deletion of TNFR1, 
which often regulates signalling in immune cells, had 
no effect on intestinal epithelial MLCK expression or 
activity48,83. Furthermore, mice lacking either TNFR2 
or epithelial MLCK were substantially protected from 

increases in mucosal TNF production and permeabil-
ity, and deletion of either gene markedly delayed onset 
of colitis48. Interestingly, claudin‑2 upregulation was 
also attenuated in MLCK-deficient mice48. Although 
the mice studied were generalized knockouts of the 
non-muscle long MLCK, the ability of intestinal epi-
thelial CA‑MLCK expression to fully restore all features 
of disease (including claudin‑2 expression) in MLCK-
deficient mice indicates that the results are a specific 
effect of intestinal epithelial MLCK deletion48. These 
data indicate that both TNFR2 and MLCK inhibition 
might be appropriate targets for future biologic thera
pies, and raise the possibility that TNFR2 blockade 
might have advantages over TNF-targeted biologic 
agents in terms of reduced overall immunosuppression 
and toxicity.

Intestinal barrier function and systemic disease. 
Increased intestinal permeability has been reported in 
patients with an array of autoimmune diseases, suggest-
ing a link between exposure to microbial antigens and 
development of autoimmune disease103. Most notable 
among these associations is the link between graft versus 
host disease (GVHD), which develops in many patients 
after allogeneic stem cell (bone marrow) transplant
ation174. For many years it was known that the magni-
tude of intestinal barrier defects, primarily representing 
increased flux across the unrestricted pathway, corre-
lated with the severity of experimental GVHD175,176. 
However, whether this finding merely represented the 
correlation between the extent of epithelial damage and 
GVHD severity or, alternatively, indicated that intes-
tinal barrier loss played a specific causative role, was 
unclear. One study177 has shown that intestinal barrier 
loss is not required for the development of GVHD in 
the context of major antigen mismatch-driven bone 
marrow transplantation, which is the most commonly 
used experimental model47,176,177. However, in the more 
clinically relevant setting of minor antigen mismatch 
transplantation, intestinal epithelial damage (that is, 
increased unrestricted pathway flux) was an essential 
cofactor in disease pathogenesis177. Remarkably, this 
requirement could be overcome by intraperitoneal 
delivery of lipopolysaccharide, suggesting that trans-
mucosal flux of bacterial products might be the key 
disease-promoting event triggered by intestinal epithe-
lial damage177. The specific role of barrier loss mediated 
by tight junctions in GVHD has not yet been defined.

Decreased intestinal barrier function has also been 
noted before clinical disease onset in patients with type 1 
diabetes mellitus178 and in the biobreeding diabetes-
prone (BBDP) experimental rat model of type 1 diabe-
tes mellitus179. One study comparing the microbiota of 
BBDP rats to diabetes-resistant (BBDR) rats has shown 
more abundant Lactobacillus and Bifidobacterium in 
the resistant rats180–182. However, whether alterations 
in microbiome composition are caused by diabetes or 
whether the alterations have a role in disease develop-
ment remains unknown. In another mouse model of 
diabetes (the nonobese diabetic mouse model), diabe-
tes development can be influenced by exposure to, and 
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ability to sense, luminal microbial stimuli183,184. Owing to 
its role as the primary regulator of interaction between 
the immune system and luminal antigens, the epithelial 
barrier is likely to be essential in preventing diabetes 
development. Indeed, a pathogenic link between barrier 
dysfunction and diabetes has been proposed to work 
through the negative tight junction regulator zonulin, 
as zonulin expression is increased in BBDP rats and 
administration of anti-zonulin antibodies decreases 
autoantibody production and the development of clin-
ical type 1 diabetes mellitus in this model185. Although 
one study has reported that increased concentrations of 
serum zonulin correlate with intestinal permeability in 
patients with type I diabetes mellitus, a causative role 
of zonulin in patients has not been demonstrated186 and 
this area of investigation remains controversial.

Targeting the epithelial barrier
Targeting and restoring the epithelial barrier is a 
tempting therapeutic goal. Unfortunately, no thera
pies currently exist to do so clinically, and one mol
ecule (larazotide acetate) shown to restore epithelial 
barrier function in preclinical studies did not repli-
cate barrier-protective effects in clinical trials140,141,187. 
Nevertheless, many promising approaches to target the 
epithelial barrier have been proposed.

Epithelial barrier restoration. Engraftment of intes-
tinal stem cells has been proposed as a therapy for 
repairing damaged gastrointestinal mucosa (that is, the 
unrestricted pathway)188,189. Technological advances 
have made long-term culture and expansion of intes-
tinal stem cells possible and have led many to believe 
that isolation, expansion and transplantation of intes-
tinal stem cells can aid in epithelial regeneration190–192. 
This idea is supported by one study in which mice were 
subjected to DSS-induced epithelial damage and given 
either a mock enema or enema with cultured intesti-
nal stem cells during recovery after DSS withdrawal193. 
Stem cells were able to engraft in areas of ulceration 
and serve as long-lived intestinal stem cells in vivo. 
However, engraftment efficiency was low and resulted 
in minimal immediate improvement and no long-term 
improvement after removal of DSS, suggesting that the 
most effective way to restore the barrier is to remove 
the disease stimulus193. Moreover, the Lgr5+ intestinal 
stem cells that are expanded and engrafted have been 
proposed to serve as cancer stem cells194,195, and care-
ful characterization of enteroid gene expression over 
many passages has not been performed, leaving open 
the possibility that engrafted enteroids might harbour 
malignant potential. Although detailed characterization 
and improved culture and engraftment methods might 
make this method more promising, without removal 
of the underlying stimulus causing epithelial damage 
(DSS in this case), this approach is unlikely to provide 
meaningful benefit.

More targeted approaches have also been pro-
posed and involve potentiating signalling pathways 
important for epithelial expansion196,197. Two factors 
essential for the growth and expansion of intestinal 

stem  cells  — epidermal growth factor (EGF) and 
R‑spondin‑1 — are possible therapeutic agents for 
restoring damaged epithelia. Activation of EGF recep-
tor protects against TNF-induced apoptosis of epithe-
lial cells198, and R‑spondin‑1 reduces disease severity 
in epithelial damage models of colitis199. However, one 
might be cautious of this approach because both EGF 
and R‑spondin‑1 are mitogens, and both EGF and the 
R‑spondin-augmented Wnt pathway are dysregulated 
in colon cancer200,201. For example, loss of a negative 
regulator of the EGF pathway (LRIG1) results in hyper-
proliferation of intestinal epithelial cells in mice202,203. 
However, one study indicated that EGF receptor sig-
nalling actually decreased colon cancer incidence and 
altered colonic cytokine production in IL‑10-knockout 
colitic mice, supporting the potential of this approach 
in a subset of patients with colitis204.

Tight junction regulation. An alternative approach to 
barrier maintenance focuses on tight junction regulation 
and has potential in preventing initial IBD development 
in susceptible individuals, and in promoting mainten
ance of remission47,48. As discussed, tight junction 
permeability is physiologically regulated to facilitate 
nutrient transport, raising concern of potential tox
icity from this approach. Although further studies are 
necessary to characterize and mitigate these potential 
undesired effects, two targets are particularly enticing. 
One promising target is MLCK, which has a well-defined 
mechanism of action with respect to barrier function in  
physiology and pathophysiology in vitro, in vivo and 
in patients with IBD115. Additionally, studies have shown 
beneficial effects of MLCK inhibition in mouse mod-
els of colitis when inhibition occurs specifically in the 
intestinal epithelium48,84. However, MLCK inhibition 
harbours potentially detrimental off-target effects due 
to the fact that all MLCK isoforms share a common 
catalytic domain. For example, smooth muscle MLCK 
is essential for gastrointestinal motility, blood pressure 
regulation and airway contractility205–207. Although 
MLCK remains a promising target, more specific means 
of targeting long MLCK must be developed before con-
sidering MLCK as a drug target for treating human dis-
ease. Claudin‑2 also offers a potentially druggable target 
by either modulating claudin‑2 anchoring at the tight 
junction or directly targeting dynamic claudin‑2 pore 
opening and closing events28,30. Unfortunately, no drug 
for claudin‑2 modulation currently exists.

Conclusions
Currently, the best therapy for treating epithelial barrier 
loss is to treat the underlying disease, as increased 
permeability is as likely to be a consequence of the dis-
ease as it is to be a cause. For example, anti-TNF anti-
bodies, which are successful therapies for IBD, treat 
the underlying immune activation while also markedly 
reducing intestinal permeability to near normal levels78. 
Although targeting the epithelial barrier shows promise, 
more research is needed to define the mechanisms of 
epithelial homeostasis and disease pathogenesis before 
therapeutically targeting the epithelial barrier.
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In terms of future directions, establishing or refut-
ing a pathogenic role for intestinal barrier dysfunction 
requires further investigation in both clinical stud-
ies and experimental models. Determining whether 
increased permeability in healthy first-degree relatives 
of patients with Crohn’s disease is a risk factor for dis-
ease development will also be important. Delineating 
the contributions of pore, leak and unrestricted path-
ways to observations of increased intestinal perme
ability in both intestinal and systemic diseases will be 
necessary for mechanistic understanding of barrier 
function in disease, and subsequent rational therapeu-
tic design. Claudin‑2 and MLCK are potential thera-
peutic targets for modulation of tight junction pore 
and leak pathway permeability, respectively. However, 

developing the means to inhibit intestinal epithelial 
MLCK (to limit leak pathway flux increases) without 
toxicities due to systemic MLCK inhibition will be chal-
lenging. Likewise, modulating claudin‑2 pores (pore 
pathway) without negatively affecting overall epithe-
lial water and ion transport might also be complex. 
Tight junction proteins also have roles beyond barrier 
maintenance, including epithelial morphogenesis and 
differentiation. Defining the underlying structure–
function relationships and their contributions to other 
physiological processes is a requisite precursor to tar-
geting barrier function without detrimental effects on 
other systems. If these goals can be achieved, the intes-
tinal barrier remains a promising therapeutic target in 
select disease states.
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