
showing that ctl-1, and possibly other free
radical–scavenging enzymes, are required for
long life-span (11). Neurons may be particu-
larly sensitive to free radical damage during
aging. In fact, overexpression of Cu/Zn SOD
in only motorneurons can extend Drosophila
life-span by 48% (3).

We propose that neuronal DAF-2 activity
maintains relatively low levels of free radi-
cal–scavenging enzymes, such as SOD-3 and
CTL-1, by antagonizing the DAF-16 tran-
scription factor. Loss of DAF-2 activity from
neurons, relieving the negative regulation of
DAF-16, induces higher expression levels of
these free radical–scavenging enzymes,
thereby protecting neurons from oxidative
damage. By this model, neuronal daf-2 sig-
naling might regulate an organism’s life-span
by controlling the integrity of specific neu-
rons that secrete neuroendocrine signals,
some of which may regulate the life-span of
target tissues in the organism. Our results,
together with those from Drosophila, suggest
that oxidative damage to neurons may be a
primary determinant of life-span.
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Structure of the Protease
Domain of Memapsin 2

(b-Secretase) Complexed with
Inhibitor
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Memapsin 2 (b-secretase) is a membrane-associated aspartic protease in-
volved in the production of b-amyloid peptide in Alzheimer’s disease and
is a major target for drug design. We determined the crystal structure of the
protease domain of human memapsin 2 complexed to an eight-residue inhibitor
at 1.9 angstrom resolution. The active site of memapsin 2 is more open and less
hydrophobic than that of other human aspartic proteases. The subsite locations
from S4 to S29 are well defined. A kink of the inhibitor chain at P29 and the change
of chain direction of P39 and P49 may be mimicked to provide inhibitor selectivity.

The accumulation of the 40- to 42-residue
b-amyloid peptide (Ab) in the brain is a key
event in the pathogenesis of Alzheimer’s dis-
ease (AD) (1). Ab is generated in vivo

through proteolytic cleavage of the mem-
brane-anchored b-amyloid precursor protein
(APP) by b- and g-secretases. The g-secre-
tase activity, which cleaves APP within its
transmembrane domain, is likely mediated by
the transmembrane protein presenilin 1 (2–
4). The b-secretase cleaves APP on the lu-
menal side of the membrane and its activity
is the rate-limiting step of Ab production in
vivo (5). Both proteases are potential targets
for inhibitor drugs against AD. Our group (6)
and others (7) recently cloned a human brain
aspartic protease, memapsin 2 or BACE, and
demonstrated it to be b-secretase. Memapsin
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2 is a class I transmembrane protein con-
sisting of an NH2-terminal protease do-
main, a connecting strand, a transmem-
brane region, and a cytosolic domain (6, 7 ).
Sequence homology with other aspartic
proteases suggests that memapsin 2 has a
pro sequence of about 48 residues at its
NH2-terminal region. The protease domain
of pro-memapsin 2, expressed recombi-
nantly, hydrolyzes peptides from the APP
b-secretase site but has a broad specificity
(6 ). We have used this specificity informa-
tion to design potent inhibitors against this
enzyme (8). OM99-2, an eight-residue tran-
sition-state inhibitor (Fig. 1) has a K i of 1.6
nM for memapsin 2. To develop memapsin
2 inhibitors with therapeutic potential would
require, besides good potency and pharmacoki-
netic properties, low molecular weight (,700
daltons) and high lipophilicity in order to pen-
etrate the blood-brain barrier (9). We deter-
mined the three-dimensional structure of the
memapsin 2 with an active site–bound
OM99-2 at 1.9 Å resolution in order to define a
template for the rational design of memapsin 2
inhibitor drugs.

Fully active recombinant memapsin 2,
which contains 21 residues of the putative pro
region, residues numbers 28p–48p (10) but
without the transmembrane and intracellular
domains (11), was crystallized as a complex
with OM99-2 (12). We report here a crystal
structure of this complex at 1.9 Å resolution.
The crystal structure was determined using
molecular replacement methods (12) with hu-
man pepsin (22% sequence identity) as the
search model. The statistical data are shown
in Table 1.

The bilobal structure of memapsin 2
(Fig. 2A) has the conserved general folding
of aspartic proteases (13). The inhibitor is
located in the substrate binding cleft be-
tween the NH2- and COOH-terminal lobes
(10) (Fig. 2A). Active-site Asp32 and
Asp228 and the surrounding hydrogen bond
network are located in the center of the
cleft (Fig. 2, A and B) and are conserved
(14 ). The hairpin loop known as the “flap”
(10) partially covers the cleft. The active-
site carboxyls are, however, not co-planar,
and the degree of deviation (50°) exceeds
those observed previously. Whether this is

specific for OM99-2 binding has not been
determined.

Compared to pepsin (15), the most signif-
icant structural differences are the insertions
and a COOH-terminal extension in the C-
lobe. Four insertions, A, C, D, and F (10)
(Fig. 2, A and B), as helices and loops are
located on the adjacent molecular surface
near the NH2-terminus of the inhibitor. Inser-
tion F (10), which contains four acidic resi-
dues, forms the most negatively charged re-
gion on the molecular surface. Together,
these insertions significantly enlarge the mo-
lecular boundary of memapsin 2 as compared
to pepsin (Fig. 2B). These surface structural
changes may function in the association of
memapsin 2 with other cell-surface compo-
nents. Insertions B and E are located on the
molecular surface near the COOH-terminus
of the inhibitor. Loop E is connected to a
b-strand that is paired with part of the
COOH-terminal extension. The active-site
cleft of memapsin 2 is, in general, more
open and accessible than that of pepsin,
owing to structural differences near respec-
tive subsites P4, P2, and P19 (see below) and
the absence of six pepsin residues
[P292TESGE297 (16 )] at memapsin 2 resi-
dues Thr329/Gly330 on a loop opposite the
flap across the active-site cleft. The 35-resi-
due COOH-terminal extension (10) unique to
memapsin 2 consists mostly of highly or-
dered structure (residues 359–385). Residues
369–376 form a b structure with seven hy-
drogen bonds to strand 293–299, whereas
residues 378–383 form a helix (Fig. 2A).

Fig. 1. The chemical structure of
memapsin 2 inhibitor OM99-2
with the constituent amino acids
and their subsite designations.
The hydroxyethylene transition-
state isostere is between P1-Leu
and P19-Ala.

A B

Fig. 2. The crystal structure of memapsin 2 complexed to inhibitor OM99-2.
(A) Stereo view of the polypeptide backbone of memapsin 2 is shown as a
ribbon diagram. The N-lobe and C-lobe are blue and yellow, respectively,
except the insertion loops, designated A to G (10) in the C-lobe are magenta
and the COOH-terminal extension is green. The inhibitor bound between

the lobes is shown in red. (B) The chain tracing of human memapsin 2 (dark
blue) and human pepsin (gray) is compared. The light blue balls represent
identical residues which are topologically equivalent. The disulfide bonds are
shown in red for memapsin 2 and orange for pepsin. The COOH-terminal
extension is in green. The active-site aspartic acids are shown in yellow.
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Two of the three disulfide pairs (residues 155
and 359 and 217 and 382) unique to memap-
sin 2 fasten both ends of the extension region
to the C-lobe. This COOH-terminal extension
is longer than those observed previously for
aspartic proteases and is conformationally
quite different (17–20). The last eight resi-
dues (386–393) are not seen in the electron
density map. Their mobility suggests the pos-
sibility of forming a short stem between the
globular catalytic domain and the trans-mem-
brane domain. Of the 21 putative pro residues
present in the enzyme (10), only the last six,
43p–48p, are visible in the electron density
map. The others are likely mobile, which is
consistent with an unstructured pro segment

being displaced from the active-site cleft by
the inhibitor (21).

The interactions of the eight-residue in-
hibitor OM99-2 with memapsin 2 include
four hydrogen bonds between two active-
site aspartates and the hydroxyl of the tran-
sition-state isostere, and ten hydrogen
bonds from different parts of the binding
cleft and flap to inhibitor backbone (Fig. 3).
Most of these hydrogen bonds are highly
conserved among eukaryotic (14, 22, 23)
and HIV (24 ) aspartic proteases, except
hydrogen bonds to Gly11 and Tyr198. The
protease residues in contact with individual
inhibitor side chains (Fig. 3) are, however,
quite different compared with other aspar-

tic proteases (especially at S3, S1, and S19).
Some of these differences can be traced to
various insertions and deletions around the
cleft. Five NH2-terminal residues of
OM99-2 are in an extended conformation
and, with the exception of P19-Ala, all have
clear contacts (within 4 Å) which define
protease subsites (Fig. 3). The protease S4

subsite is mostly hydrophilic and open to
solvent. The inhibitor P4-Glu side chain is
hydrogen bonded to P2-Asn and is also
close to the Arg235 and Arg307 side chains
(Fig. 3), which may explain why deleting
this residue from OM99-2, to give the
shorter inhibitor OM99-1, causes a 10-fold
increase in K i (8, 25). The protease S2

subsite is also relatively hydrophilic and
open to solvent. The hydrophilic character
of the memapsin 2 S4 and S2 subsites is not
conserved in the corresponding subsites of
human aspartic proteases, such as pepsin,
gastricsin, and cathepsins D and E. This
difference may be utilized to design selec-
tivity into memapsin 2 inhibitors. The rel-
atively small S2 residues Ser 325 and Ser 327

(Gln and Met, respectively, in pepsin) may
accommodate an inhibitor side chain larger
than P2-Asn. The memapsin 2 S1 and S3

subsites, consisting mostly of hydrophobic
residues, have conformations very different
from pepsin due to the absence of a pepsin
helix at residues 111–114 (26, 27 ). The

Fig. 3. Stereo presentation of interactions between inhibitor OM99-2 (orange) and memapsin 2
(light blue). Nitrogen and oxygen atoms are marked blue and red, respectively. Hydrogen bonds are
indicated in yellow dotted lines. Memapsin 2 residues which comprise the binding subsites are
included.

Fig. 4. Electron density of inhibitor OM99-2 and the differences in the binding of Swedish and
native APP at P1 and P2.The omit electron density map (the u Fou 2 u Fcu map with the inhibitor
excluded from the phase calculation), contoured at 2 s, is superimposed onto the inhibitor model
with carbon atoms in green, nitrogen atoms in blue, and oxygen atoms in red. Asn and Leu side
chains are those for the Swedish mutant APP at P2 and P1, respectively. The hydrogen bonds
between inhibitor P2 residue Asn and Arg235 are shown in magenta. The side chains of Lys and Met
(in yellow) are those for the wild-type APP, and are modeled for comparison. The turn of the
inhibitor backbone at P29 is clearly visible.

Table 1. Data collection and refinement statistics.

Data statistics
Space group P21
Unit cell a, b, and c (Å) 53.7, 85.9, 109.2
a, b, and g (degrees) 90.0, 101.4, 90.0
Resolution (Å) 25.0–1.9
Number of observed

reflections 144,164
Number of unique

reflections 69,056
Rmerge* 0.061 (0.25)
Data completeness (%)

(25.0–1.9 Å)
90.0 (68.5)

^I/s(I)& 13.7 (3.0)

Refinement statistics
Rworking† 0.180
Rfree† 0.224
RMS deviation from ideal

values
Bond length (Å) 0.014
Bond angle (degrees) 1.8

Number of water
molecules 529

Average B factor (Å2)
Protein 28.3
Solvent 34.0

*Rmerge 5 Shkl Si uIhkl, i 2 ^Ihkl& u/ Shkl ^Ihkl&, where Ihkl, i is
the intensity of the ith measurement and ^Ihkl& is the
weighted mean of all measurements of Ihkl. †Rworking
(and Rfree) 5 SuuFou 2 uFcuu/ SuFou, where Fo and Fc are the
observed and calculated structure factors. Numbers in
parentheses are the corresponding numbers for the high-
est resolution shell (2.00–1.9 Å). Reflections with Fo/s(Fo)
^ 0.0 are included in the refinement and R factor
calculation.
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inhibitor side chains of P3-Val and P1-Leu
are closely packed against each other and
have substantial hydrophobic contacts with
the enzyme (Fig. 3), especially P1, which
interacts with Tyr71 and Phe108. In native
APP, the P2 and P1 residues adjacent to the
b-secretase cleavage site are Lys and Met,
respectively. Swedish mutant APP has Asn
and Leu in these positions, resulting in a
60-fold increase of kcat /Km over that of the
native APP (6 ) and an early onset of AD
(28). The inhibitor P2-Asn side chain has
hydrogen bonds to P4 Glu and Arg235 (Figs.
3 and 4). Replacing P2-Asn with Lys would
result in the loss of these hydrogen bonds
and the positive charge would likely inter-
act unfavorably with the Arg235 side chain.
P1-Met would also likely have less favor-
able contact with the enzyme than P1-Leu
(Fig. 4). No close contact with memapsin 2
was seen for P19-Ala. An aspartic acid at
this position, as in native APP, may be
accommodated.

The direction of inhibitor chain turns at
P29 and leads P39 and P49 toward the protein
surface (Figs. 3 and 4). As a result, the
backbone of these three inhibitor residues
deviates from the regular extended confor-
mation. The side chains of P39-Glu and
P49-Phe point toward the molecular surface,
but have little interaction with the protease,
while the terminal COOH group of P49 has
a salt bridge to Lys224 and hydrogen bond-
ed to the hydroxyl group of Tyr198. These
two COOH-terminal residues have relative-
ly high average B factors (56.7 Å2 for
P93-Glu and 71.9 Å2 for P94-Phe as compared
to 27.4, 22.6, 21.5, 23.7, 24.7, and 29.7 Å2

for residues P4–P29, respectively) and
poorly defined electron density, suggesting
that they are relatively mobile. In contrast,
the S39 and S49 subsites in renin-inhibitor
(CH-66) complex (23) have a defined struc-
ture. The topologically equivalent region of
these renin subsites (residues 293–298 in
pepsin numbering) is absent in memapsin
2. The conformation of P29 to P49, including
a kink at P29 and the change of backbone
direction at P39 and P49, is rare in aspartic
protease inhbitors. The backbone turn at P29
is likely caused by a hydrogen bond be-
tween P29 carbonyl and hydroxyl of Tyr198,
not seen in the inhibitor complexes of renin
(23) and endothiapepsin (22). A similar
hydrogen bond is present in pepsin and a
similar P29 kink has been observed for one
of its inhibitors (27 ). The conformation of
the three COOH-terminal residues of
OM99-2, including the kink at the P29 back-
bone, may be a way to direct a long protein
substrate out of the active-site cleft.

The well-defined subsite structures
spanning P4 to P29 provide a template for
rational design of drugs against memapsin
2. The unusual conformation of subsites

P29, P39, and P49 may facilitate the design of
inhibitors selective for memapsin 2.
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