ESERCIZI sul MOTO

La distanza tra due caselli A e B di un'autostrada rettilinea è ℓ . Nell'istante in cui un'auto parte da A con accelerazione a_A (che si mantiene costante), per il casello B transita nel verso opposto una seconda auto con una velocità v_B (che si mantiene costante).

Le due auto procedono l'una verso l'altra e, quando si incrociano, quella partita da A cambia il suo moto e procede verso B con velocità costante (quella che aveva raggiunto a quell'istante), mentre l'altra prosegue senza cambiamenti il suo moto uniforme alla volta di A.

Chi arriverà per prima al casello di destinazione e con quale vantaggio rispetto alla seconda? DATI NUMERICI: $\ell=5\,km$; $a_A=0.2\,ms^{-2}$; $|v_B|=80\,km/h$.

Esercizio 3.1 Un pallone viene calciato da una quota iniziale h con una velocità di modulo $|\vec{v}_0| = v_0$ e angolo (con l'orizzontale) α . Si vuole centrare la porta avversaria che è alta z_1 e si trova ad una distanza x_1 dal punto di lancio. Si trovi l'intervallo di valori entro i quali deve essere compreso v_0 affinché il pallone entri direttamente in porta.

APPLICAZIONE NUMERICA: $h = 40 \, cm$; $\alpha = 40^{\circ}$; $z_1 = 2.44 \, m$; $x_1 = 24 \, m$.

Esercizio 3.3 Un corpo sale scivolando senza attrito lungo un piano inclinato di $\alpha = \pi/4$ rad rispetto all'orizzontale, soggetto ad una accelerazione diretta verso il basso (e parallela al piano inclinato) di modulo $|\vec{a}| = g \sin \alpha$ (vedi la figura 9). L'altezza del piano inclinato è $\overline{OB} = h = 45$ cm e la velocità iniziale, $v_0 = |\vec{v}_0|$ che il corpo possiede nel punto A, è doppia di quella che gli permetterebbe di arrivare in B con velocità nulla. Si calcoli la lunghezza del segmento \overline{OC} .

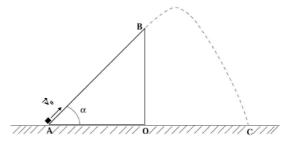


Figura 9: relativa all'esercizio 3.3

Esercizio 3.4 Un aereo in picchiata si muove con velocità costante di modulo $|\vec{v}|=360\,km/h$, mantenendo un'inclinazione costante $\alpha=-\pi/6\,rad$ rispetto all'orizzontale. Ad un'altezza $h=800\,m$ l'aereo sgancia una prima bomba e dopo un intervallo di tempo $\Delta t=1\,s$ una seconda bomba. Si calcoli (trascurando la resistenza dell'aria) la distanza d tra i punti in cui le bombe raggiungono il suolo.

Esercizio 3.5 Un corpo puntiforme viene lanciato da un'altezza $h_1 = 10 \, m$ rispetto alla superficie di un lago, che è profondo $h_2 = -5 \, m$ (vedi la figura 10). La velocità iniziale del corpo è: $|\vec{v}_0| = 10 \, m/s$ e il vettore forma un angolo $\alpha = 30^\circ$ con il semiasse positivo delle x.

Supponendo che l'effetto della resistenza dell'acqua sul moto del corpo, senza gravità, sia quello di decelerarlo nelle due direzioni x e z della stessa quantità indipendentemente dai valori della velocità, e che quindi all'accelerazione di gravità si sommi un'accelerazione con componenti, relativamente agli assi così come appaiono in figura, $a_x = -3 \, m/s^2$ e $a_z = 3 \, m/s^2$, calcolare:

- (a) la coordinata del corpo sul fondo del lago (nel sistema della figura);
- (b) il tempo impiegato dal corpo per percorrere l'intera traiettoria.

Figura 10: relativa all'esercizio 3.5

Esercizio 3.6 Ad un'altezza dal suolo $h = 7.1 \, m$ si lancia orizzontalmente con velocità $|\vec{v_0}| = 9.1 \, m/s$ una pallina di gomma (vedi una schematizzazione nella figura 11).

a) Si calcoli la distanza l_1 da O del punto P_1 nel quale la pallina tocca terra, le componenti secondo gli assi x e z del vettore velocità \vec{v}_1 e l'angolo α che questo forma con il semiasse positivo delle x al momento dell'urto.

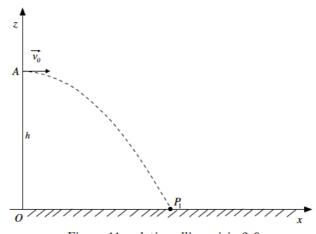


Figura 11: relativa all'esercizio 3.6

Nell'urto si ha una diminuzione del modulo della velocità: la componente della velocità secondo l'asse x, subito dopo l'urto, risulta inferiore del $20\,\%$ al valore che aveva subito prima dell'urto, la componente secondo l'asse z cambia segno e in valore assoluto diminuisce del $20\,\%$.

- b) Si calcoli l'altezza massima raggiunta dopo il primo rimbalzo e la distanza l_2 da O del successivo punto P_2 di urto della pallina sul suolo.
- c) E poi? Se si ipotizza la stessa perdita ad ogni rimbalzo, la pallina si allontanerà indefinitamente lungo l'asse x?

Esercizio 3.7 Da un punto O di un piano, che è inclinato di un angolo α rispetto all'orizzontale, viene calciato un pallone con una velocità iniziale di modulo $|\vec{v}_0|$, diretta nel verso ascendente del piano e con un angolo β rispetto al profilo del piano inclinato. Determinare la distanza l, dal punto O, del punto in cui cade il pallone, il modulo della velocità d'incidenza con il piano e il suo angolo, o rispetto al piano inclinato stesso oppure rispetto alla direzione orizzontale (si consideri il pallone puntiforme e trascurabile la resistenza dell'aria).

APPLICAZIONE NUMERICA: $\alpha = 30^{\circ}$; $|\vec{v}_0| = 18 \, m/s$; $\beta = 20^{\circ}$.

RISULTATI

```
3.1 - 15.31 \, m/s < v_0 < 16.31 \, m/s
```

3.3
$$-\overline{OC} = 3.1 \, m$$

3.4 -
$$d \simeq 54 \, m$$

3.5 -
$$x_f \simeq 20 \, m$$
 $t_{\rm tot} = 2.3 \, s$

3.6 - a)
$$l_1 = 11 \, m$$
, $v_{1x} = 9.1 \, m/s$, $v_{1z} = -12 \, m/s$, $\alpha = -52^{\circ}$

b)
$$z_{\text{max}} = 4.54 \, m$$
, $l_2 = 25 \, m$

3.7 -
$$l = 19.4 \, m$$
 $|\vec{v}(t_V)| = 11.6 \, m/s$ $\gamma'(t_V) = -32.1^{\circ}$ $\gamma(t_V) = -2.1^{\circ}$