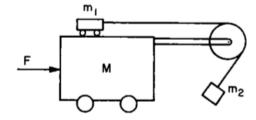
Università di Trieste - A.A. 2018/2019 - Lauree Triennali in Ingegneria

A

FISICA GENERALE 1, Prova Scritta, 13.02.2020

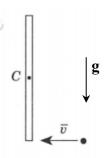

COGNOME Corso di Studi:Nome Corso di Studi:	

<u>Istruzioni</u>:

Per ciascuna domanda rispondere fornendo solo il risultato finale: la grandezza incognita espressa simbolicamente in funzione delle grandezze date, e poi il corrispondente risultato numerico, con il corretto numero di cifre significative e con le unità di misura appropriate. Fare attenzione ai segni nelle risposte numeriche.

Problema 1. Nel sistema mostrato in figura, la forza costante orizzontale \vec{F} agisce su M in modo che m_1 non si muova rispetto a m_2 . Si assuma m_1 = 5.0 kg, m_2 = 4.0 kg e si trascurino tutti gli attriti, la massa della fune e quella della carrucola.

(a) Determinare l'espressione algebrica e il valore numerico dell'angolo α che la fune a cui è appesa m_2 forma con la verticale.

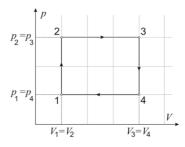


(b) Determinare l'espressione algebrica e il valore numerico del modulo dell'accelerazione del sistema.

(c) Disegnare il diagramma di corpo libero per la massa M, descrivendo brevemente tutte le forze a cui è soggetta.

Problema 2. Una sbarra lineare omogenea <u>posta verticalmente</u>, di massa M=1.2 kg e lunghezza L=20 cm, può ruotare senza attrito attorno ad un asse passante per il suo centro C e perpendicolare alla sbarra (v. Figura). Un proiettile di massa m=M/3, che si muove con velocità costante \vec{v} perpendicolare alla sbarra, con il verso indicato in figura e modulo v=15 m/s, colpisce la sbarra in un estremo e vi rimane agganciato. Determinare:

(a) rispetto all'asse passante per C, il momento di inerzia I_0 della sbarra prima dell'urto e quello del sistema in rotazione dopo l'urto (I_1);



(c) il lavoro W compiuto da un agente esterno che arresti il sistema in tre giri e mezzo.

Problema 3. Una certa quantità n = 2.5 mol di gas perfetto monoatomico compie il ciclo di trasformazioni mostrato in figura, dove $p_2 = 3$ p_1 e $V_3 = 4$ V_1 .

(a) Disegnare lo stesso ciclo nel piano (V,T), indicando anche il verso di percorrenza.

(b) Determinare il calore scambiato dal gas nel ciclo assumendo che V_1 = 4.5 litri e p_1 sia la pressione atmosferica.

(c) Determinare la variazione di entropia del gas fra gli stati 1 e 3.