
Università di Trieste A.A. 2018/2019 Lauree Triennali in Ingegneria A

FISICA GENERALE 1, Prova Scritta, 12.09.2019

Cogno	me CdS: CdS:
Istruzioni	:
Per ciasc	una domanda rispondere fornendo solo il risultato finale: la grandezza incognita espressa simbolicamente in funzione delle e date, e poi il corrispondente risultato numerico, con il corretto numero di cifre significative e con le unità di misura appropriate. nzione ai segni nelle risposte numeriche.
; ;	Problema 1 . Un oggetto di massa $m = 350 \mathrm{g}$ viene appeso lentamente (in modo da evitare oscillazioni) all'estremo libero di una molla ideale, a sua volta appesa ad un supporto fisso, allungandola di un tratto $d_1 = 7.0 \mathrm{cm}$. Si ripete il medesimo esperimento con la molla appesa al soffitto di un ascensore in movimento e si osserva che la molla si allunga di un tratto $d_2 = 8.5 \mathrm{cm}$. a) Determinare la costante elastica k della molla.
,	b) Disegnare il diagramma delle forze applicate all'oggetto appeso nell'ascensore (1) dal punto di vista di un osservatore inerziale e (2) come visto da un osservatore non inerziale, solidale con l'ascensore.
	c) Determinare il modulo a ed il verso (verso l'alto o verso il basso?) dell'accelerazione dell'ascensore.

Problema 2. Un'asta omogenea AB di massa $m=12\,\mathrm{kg}$ e lunghezza L è appoggiata su due superfici piane lisce (attrito trascurabile) come in figura. Essa giace nel piano verticale, inclinata di un angolo $\theta=30^\circ$. È tenuta in equilibrio da una molla ideale di costante elastica $k=2.0\cdot10^3\,\mathrm{N/m}$ applicata tra il punto 0 e il punto B.

a) Disegnare il diagramma delle forze applicate all'asta.

b) Calcolare le intensità F_A e F_B delle reazioni vincolari esercitate sull'asta dalle superfici piane nei punti A e B .
c) Calcolare l'allungamento Δl della molla.
Problema 3. Un quantitativo pari a $n=4.0\mathrm{mol}$ di gas ideale biatomico è contenuto alla temperatura $T_1=520\mathrm{K}$ nel volume V_1 di un cilindro a pareti adiabatiche (termicamente isolanti) chiuso da un pistone mobile, anch'esso termicamente isolante. Il pistone viene spostato lentamente, in modo che il gas sia sottoposto ad un'espansione adiabatica reversibile fino ad occupare un volume $V_2=4V_1$. a) Calcolare la temperatura T_2 del gas alla fine dell'espansione adiabatica.
b) Calcolare la variazione di energia interna ΔU del gas nell'espansione adiabatica.
Il cilindro è collegato tramite un rubinetto, inizialmente chiuso, a un secondo recipiente di volume V_2 , inizialmente vuoto. Se, <u>alla fine della prima espansione adiabatica</u> , si apre il rubinetto, il gas fluisce anche nel volume aggiuntivo. c) Determinare le variazioni di entropia ΔS e di energia interna ΔU del gas in questa seconda trasformazione (espansione libera).
Problema 4. L'acqua, considerata come un fluido incomprimibile di viscosità trascurabile, scorre in un tubo orizzontale con pressione relativa 51 kPa e velocità 1.8 m/s. Ad un certo punto il diametro del tubo passa da 25 mm a 18 mm. Quali sono la velocità e la pressione relativa nella regione del tubo di diametro ridotto?