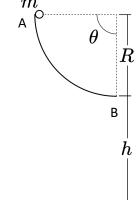
Università di Trieste A.A. 2020/2021 Lauree Triennali in Ingegneria A FISICA GENERALE 1, Prova Scritta, 14.02.2022

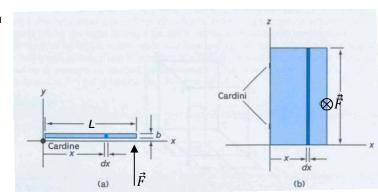

Cognome CdS: CdS:

Istruzioni:

Per ciascuna domanda rispondere fornendo solo il risultato finale: la grandezza incognita espressa simbolicamente in funzione delle grandezze date, e poi il corrispondente risultato numerico, con il corretto numero di cifre significative e con le unità di misura appropriate. Fare attenzione ai segni nelle risposte numeriche.

Problema 1. Un punto materiale di massa $m=1.0~{\rm kg}$ parte da fermo nel punto A e scivola con attrito trascurabile lungo una rampa in forma di un arco di cerchio di raggio $R=1.0~{\rm m}$, con angolo sotteso di $\theta=90^{\circ}$. La base di questo arco, punto B, è all'altezza $h=1.5~{\rm m}$ sopra il suolo.

a) Disegnare i due diagrammi a corpo libero della massa m nel punto B, uno subito prima e uno subito dopo del distacco dalla rampa.


b) Determinare i **vettori** velocità e accelerazione del punto materiale quando si è appena staccato dalla rampa.

c) Disegnare la traiettoria e calcolare la distanza d tra il punto B sulla base dell'arco e il punto di contatto del punto materiale con il suolo.

Problema 2. La porta in figura ha densità uniforme ρ , massa M, larghezza L, spessore b e altezza h.

a) Impostare l'integrale e scrivere l'espressione algebrica del momento d'inerzia della porta Iz rispetto all'asse z passante per i cardini assumendo $b \ll L$. Verificare che la porta con M = 27.3 kg e L = 0.95 m, ha $Iz = 8.2 \text{ kg} \cdot \text{m}^2$.

$$Iz = \int$$

b) Calcolare la massa m che, attaccata a distanza L dai cardini, raddoppi il momento d'inerzia della porta $I'z=2Iz$.
m=
c) Per aprire la porta con momento d'inerzia $l'z$ e inizialmente ferma, si applica forza \vec{F} in modulo costante e diretta sempre perpendicolarmente alla porta stessa durante la rotazione. Quanto vale il modulo F necessario a far ruotare la porta di un quarto di giro in 1.0 s?
F=
Problema 3 . Un blocco di ghiaccio di massa $m_1=250~{ m g}$ inizialmente in equilibrio termico in un congelatore a -30.0°C (4 stelle) è estratto e posto in un contenitore adiabatico. All'interno dello stesso contenitore è versata una massa $m_2=1.00~{ m kg}$ di acqua a +100.0°C.
a) Si verifichi che la massa di acqua è in grado di sciogliere completamente il ghiaccio.
b) Si calcoli la temperatura T_e della miscela all'equilibrio termico.
c) Si calcolino le variazioni di entropia ΔS_1 e ΔS_2 , relative alle trasformazioni subite dalle masse m_1 ed m_2 rispettivamente. I valori ottenuti sono in accordo con il Secondo Principio della Termodinamica (ed in particolare l'enunciato relativo all'entropia)?
Si usino i seguenti valori approssimati • calore specifico del ghiaccio: $c_g=2093 \mathrm{J/(kg\cdot K)}$ • calore specifico dell'acqua: $c_a=4180 \mathrm{J/(kg\cdot K)}$ • calore latente di fusione del ghiaccio: $\lambda_f=3.35\cdot 10^5 \mathrm{J/kg}$