CHIMICA ORGANICA I

Organizzazione

8 CFU / 64 ore (+ esercizi di preparazione agli scritti)

Docenti:

- Prof.ssa Fulvia Felluga
 - stanza 349, III piano Edificio C11
 - E-mail: ffelluga@units.it
 - Ricevimento: per appuntamento (e-mail)

Lezioni frontali (teoria) ed esercizi Lezioni slides/lavagna Materiale didattico su Moodle

Raccomandato seguire in presenza, prendere appunti e usare un libro!

Libri di testo

Janice Gorzynski Smith Organic Chemistry McGraw-Hill

John McMurry **Chimica Organica**PICCIN-NUOVA LIBRARIA

Brown W.H.; Foote, C.S.; Iverson, B.L. **Chimica Organica**EdiSES

D'Auria M.V.; Taglialatela Scafati O.; Zampella A.

Guida ragionata allo svolgimento di esercizi di chimica organica LOGHIA

Vollhardt K. Peter; Schore Neil E. Chimica organica Zanichelli

Solomons T.W. Graham; Fryhle Craig B. Chimica organica Zanichelli

Seyhan N. Ege Chimica Organica: Struttura e reattività Idelson-Gnocchi

Modalità di esame

Prerequisiti

aver superato l'esame di Chimica Generale ed Inorganica

Esame: Scritto e orale

Scritto:

- Prova scritta in appello ufficiale.
- 2 verifiche in itinere 30/4/2025 e 30/5/2025
- Seconda prova in itinere solo se si è superata la prima.
- Il voto della prova scritta resta valido per tutto l'anno accademico (fino alla sessione straordinaria di marzo).

Orale:

negli appelli ufficiali.

Chimica Organica

Struttura

Struttura e legami in molecole organiche semplici: geometria e distribuzione elettronica

Reattività

Reattività dei principali gruppi funzionali e meccanismi delle principali reazioni organiche

Struttura e reattività sono correlate

Obiettivi

- Assegnare struttura e nome ai composti organici.
- Predire:
 - La struttura tridimensionale
 - Gli effetti sulla reattività
 - Progettare semplici vie sintetiche.
- Comunicare con un linguaggio appropriato.

Contenuti

- Syllabus: https://units.coursecatalogue.cineca.it/insegnamenti/2024/118736/2024/ 9999/10161?coorte=2024&schemaid=12800
- Programma (in Moodle)

https://moodle2.units.it/pluginfile.php/753457/mod_resource/content/7/Programma%202024-25.pdf

- 1. Introduzione: struttura e legame, teorie acido-base, gruppi funzionali.
- 2. Stereochimica
- 3-12. Classi di composti organici

1. Introduzione

CHIMICA ORGANICA = Chimicadei Composti COVALENTI del Carbonio

H B N O Si P S F Cl Br I Eteroatomi

legami covalenti

I composti organici sono ubiquitari

- Biomolecole: carboidrati, lipidi, proteine e acidi nucleici.
- Materiali naturali: cotone, carta, legno, pelle, seta, lana, benzina, oli minerali.
- Molecole e materiali sintetici farmaci, plastiche, vernici, coloranti, fibre artificiali, fertilizzanti, aromi, cosmetici, detergenti, profumi, dolcificanti, etc.

Esistono più di 60.000.000 di molecole organiche e il loro numero è in costante aumento.

L'atomo di carbonio

- Numero Atomico: 6
- 2 Isotopi

```
<sup>12</sup>C (98,9%): 6 protoni, 6 neutroni
```

¹³C (1,1%): 6 protoni, 7 neutroni

Configurazione elettronica: 1s² 2s² 2p²

1. Il Carbonio forma legami covalenti con altri elementi

1 H Hydroger																	Helium
3 Li	Be											5 B	Ĉ	N	ő	9 F	10 Ne
Lithium 6.9	Beryllium 9.0											Boron 10.8	Carbon	Nitrogen	Oxygen	Fluorine	Neon 20.2
11	12											13	14	15	16	17	18
Na Sodium	Mg Magnesium											Al Aluminum	Si Silicon	Phosphorus	S Sulfur	CI Chlorine	Ar Argon
23.0 19	24.3	21	22	23	24	25	26	27	28	29	30	27.0 31	28.1 32	31.0	32.1	35	40.0 36
Ř	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ñi	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassiun 39.1		Scandium 45.0	Titanium 47.9	Vanadium 50.9	Chromium 52.0	Manganese 54.9	Iron 55.9	Colbalt 58.9	Nickel 58.7	Copper 63.5	Zinc 65.4	Gallium 69.7	Germanium 72.6	Arsenic 74.9	Selenium 79.0	Bromine	Krypton 83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te		Xe
Rubidium 85.5	Strontium 87.6	Yitrium 88.9	Zirconium 91.2	Niobium 92.9	Molybdenum 95.9	Technetium 99	Ruthenium 101.0	Rhodium 102.9	Palladium 106.4	Silver 107.9	Cadmium 112.4	Indium 114.8	Tin 118.7	Antimony 121.8	Tellurium 127.6	lodine	Xenon 131.3
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Caesium 132.9	Barium 137.4		Hafnium 178.5	Tantalum 181.0	Tungsten 183.9	Rhenium 186.2	Osmium 190.2	Iridium 192.2	Platinum 195.1	Gold 197.0	Mercury 200.6	Thallium 204.4	Lead 207.2	Bismuth 209.0	Polonium 210.0	Astatine 210.0	Radon 222.0
87	88	89-103	104	105	106	107	108	109	110								
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Uun								
Francium 223.0	Radium 226.0		Rutherfordium 261	Dubnium 262	Seaborgium 263	Bohrium 262	Hassium 265	Meitnerium 266	Ununnilium 272								

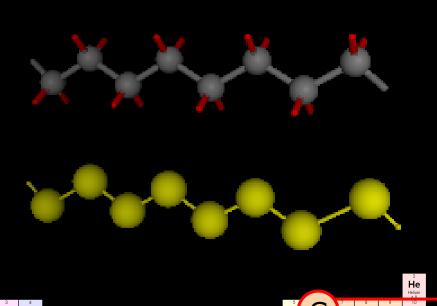
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium		Dysprosium		Erbium	Thulium	Ytterbium	Lutetium
138.9	140.1	140.9	144.2	147.0	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
132.9	232.0	231.0	238.0	237.0	242.0	243.0	247.0	247.0	251.0	254.0	253.0	256.0	254.0	257.0

Nella maggior parte delle molecole organiche il carbonio è combinato con relativamente pochi elementi.

2. Il Carbonio è tetravalente

C: 1s² 2s² 2p² 4 elettroni di valenza che vengono condivisi per completare l'ottetto

1																	
1 H Hydrogen 1.0	2						V	aler	nze			3	4	3	2	1	Helium
Li	⁴ Be																
Lithium 6.9	Beryllium 9.0											Boron 10.8	Carbon 12.0	Nitrogen 14.0	Oxygen 16.0	Fluorine 19.0	Neon 20.2
Na	Mg											13 Al	Si	15 P	16 S	CI	Ar
Sodium	Magnesium											Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
23.0 19	24.3 20	21	22	23	24	25	26	27	28	29	30	27.0 31	28.1 32	31.0 33	32.1 34	35.5 35	40.0 36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.1	Calcium 40.2	Scandium 45.0	Titanium 47.9	Vanadium 50.9	Chromium 52.0	Manganese 54.9	Iron 55.9	Colbalt 58.9	Nickel 58.7	Copper 63.5	Zinc 65.4	Gallium 69.7	Germanium 72.6	Arsenic 74.9	Selenium 79.0	Bromine 79.9	Krypton 83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te		Xe
Rubidium 85.5	Strontium 87.6	Yitrium 88.9	Zirconium 91.2	Niobium 92.9	Molybdenum 95 9	Technetium 99	Ruthenium 101.0	Rhodium 102.9	Palladium 106.4	Silver 107.9	Cadmium 112.4	Indium 114.8	Tin 118.7	Antimony 121.8	Tellurium 127.6	lodine 126.9	Xenon 131.3
55	56	57-71	72	73	95.9 74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва		Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Caesium 132.9	Barium 137.4		Hafnium 178.5	Tantalum 181.0	Tungsten 183.9	Rhenium 186.2	Osmium 190.2	Iridium 192.2	Platinum 195.1	Gold 197.0	Mercury 200.6	Thallium 204.4	Lead 207.2	Bismuth 209.0	Polonium 210.0	Astatine 210.0	Radon 222.0
87	88	89-103	104	105	106	107	108	109	110								
Fr	Ra	l	Rf	Db	Sg	Bh	Hs	Mt	Uun								
Francium 223.0	Radium 226.0		Rutherfordium 261	Dubnium 262	Seaborgium 263	Bohrium 262	Hassium 265	Meitnerium 266	Ununnilium 272								
220.0	220.0		201	202	230	202	200	200	212								
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1		
La	Ce	l Pr	l Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	l Lu			


	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	anthanum 138.9	Cerium 140.1	Praseodymium 140.9	Neodymium 144.2	Promethium 147.0	Samarium 150.4	Europium 152.0	Gadolinium 157.3	Terbium 158.9	Dysprosium 162.5	Holmium 164.9	Erbium 167.3	Thulium 168.9	Ytterbium 173.0	Lutetium 175.0
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
1	Actinium		Protactinium		Neptunium	Plutonium	Americium	Curium	Berkelium		Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
	132.9	232.0	231.0	238.0	237.0	242.0	243.0	247.0	247.0	251.0	254.0	253.0	256.0	254.0	257.0

Valenze: numero di elettroni necessari per il completamento del "doppietto" (H) e dell'ottetto (C,N,O, Hal, ...) nel caso di atomi neutri

3. Il Carbonio forma legami molto forti

Legame	Energia di dissociazione (kJ/M)
c—c	360
с—н	400-550
c—o	350-400
cn	360
NN	250
o—o	180

4 Il Carbonio forma catene

Cu Zn Ga

Au

Cd

Hg

TI Pb

Sb

Ро

Energia (kJ/mol)

C-C 360

N-N 230-280

0-0 160-200

	2	s^2	2	D ²	2
--	---	-------	---	----------------	---

 $3s^23p^4$

223.0	226.0		261	262	263	262	265	266	272					
225.0						- 74		- 74						
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Lanthanum	Cerium	Preseodymium		Promethium		Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
138.9	140.1	140.9	144.2	147.0	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
132.9	232.0	231.0	238.0	237.0	242.0	243.0	247.0	247.0	251.0	254.0	253.0	256.0	254.0	257.0

Fe

Zr Nb Mo

Hf

W

Re Os

Ta

5. Il carbonio forma catene ramificate e cicli

6. Il carbonio forma legami multipli

Legame	Energia di dissociazione
	(kJ/M)
c—c	360
c==c	700
с≡с	950
c—o	400
c==o	750
cn	360
с <u>—</u> м	700
с∭и	950

Composti Organici

Amoxicillina

(2S,5R,6R)-6-(2-amino-2-(4-hidroxyphenyl)acetamido)-3,3-dimehyl-7-oxo-4-thia-1-azabiciclo[3.2.0]heptane-2-carboxylic acid

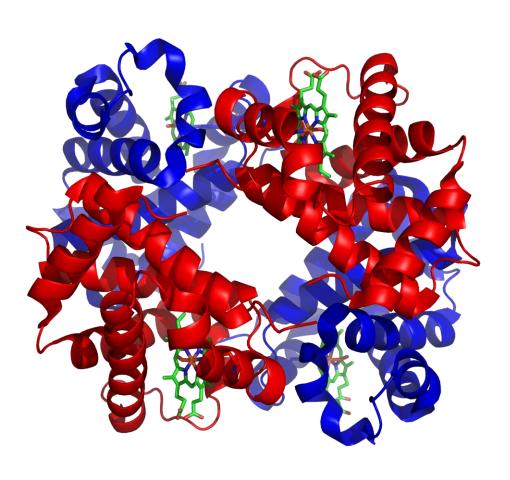
Fluoxetina Prozac

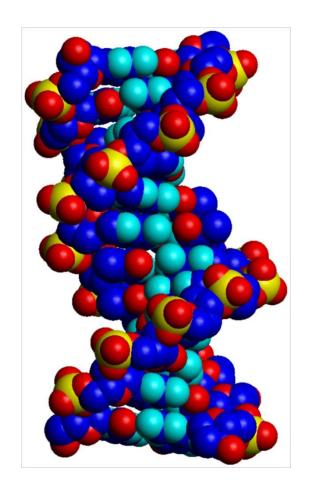
N-methyl-3-phenyl-3-[4-(trifluoromethyl)phenoxy]propan-1-amine

AZT

3'-azido-3'-deoxythymidine

Composti organici




Palitossina

Lophozozymus pictor

Composti organici

Proteine DNA

Disegnare molecole

Formule Molecolari

Strutturali (di Lewis)

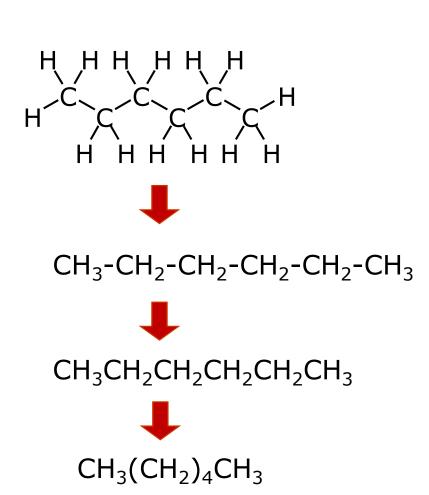
Empiriche

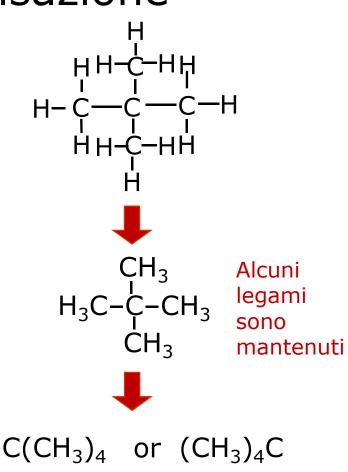
Acido solforico

Metano

$$C_2H_6$$

Etano


$$C_2H_2F_3NO$$


Trifluoroacetamide

Generica formula empirica di composti organici: $C_CH_HBr_{Br}Cl_{Cl}F_FI_lN_NO_O$

Formule condensate

Diversi gradi di condensazione

Formule condensate

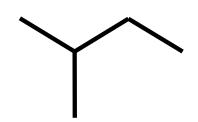
Formule condensate

 Strutture complesse possono essere scritte su una sola linea usando le parentesi.

$$CH_3$$

$$CH_3-CH-CH_2-CH_3 = CH_3CH(CH_3)CH(CH_2CH_3)CH_2CH_3$$

$$CH_3-CH_2-CH_3$$


$$CH_3-CH_3-CH_3$$

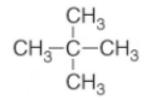
$$Alcani ramificati$$

Formule lineari (a zig-zag)

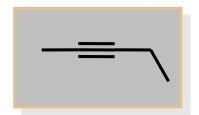
Informazioni minimali, non ambigue.

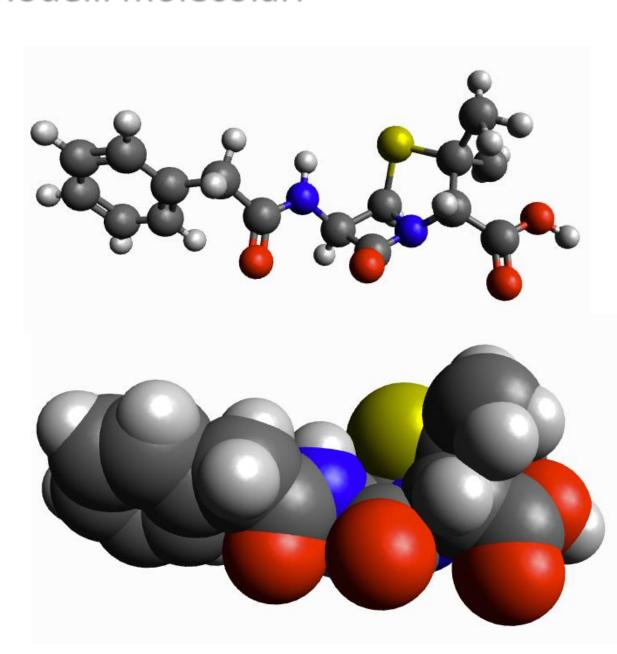
- Gli atomi di carbonio sono omessi.
 Essi si trovano ai punti di incontro di segmenti e e alla fine delle catene.
- Gli atomi di idrogeno sono omessi.
 Ogni valenza libera del C è saturata da idrogeni.
- Eteroatomi non vengono omessi.

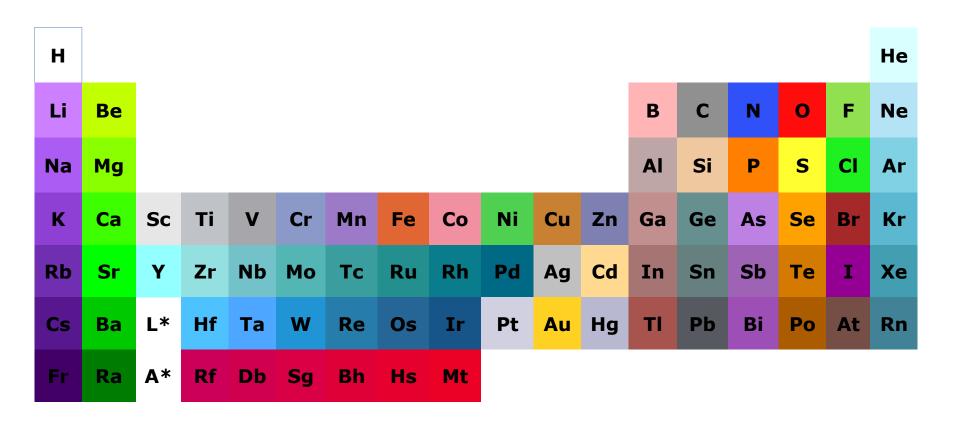
Formule lineari (a zig-zag)


CH₃CH₂CH₂CH₂CH₃

CH₃CH=CHCH₃






Esempi

Modelli molecolari

Benzilpenicillina (penicillina G)

Schema di colore degli elementi

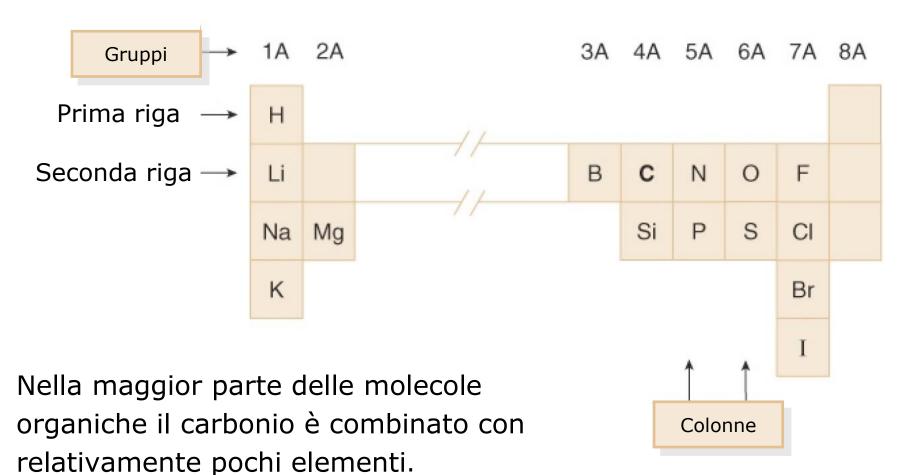
- Rappresentazione delle molecole organiche 1.54 Quanti idrogeni sono presenti attorno a ciascun atomo indicato?
 - - 2,4,6-undecatriene (isolato da limu lipoa, una comune alga marina bruna Hawaiana)
- COOH OH fexofenadina (un antistaminico non sedativo)
- 1.55 Inserisci tutti gli atomi di carbonio e di idrogeno in ciascuna molecola.
- - mentolo (isolato dall'olio di menta piperita)
- f. mircene (uno dei composti principali del luppolo)
- OH h. estradiolo (un ormone sessuale femminile)

etambutolo (farmaco usato per trattare la tubercolosi)

- 1.56 Converti ogni molecola in una struttura segmentata.
 - a. (CH₃)₂CHCH₂CH₂CH(CH₃)₂

b. CH₃CH(CI)CH(OH)CH₃

- c. (CH₃)₃C(CH₂)₄CH₂CH₃

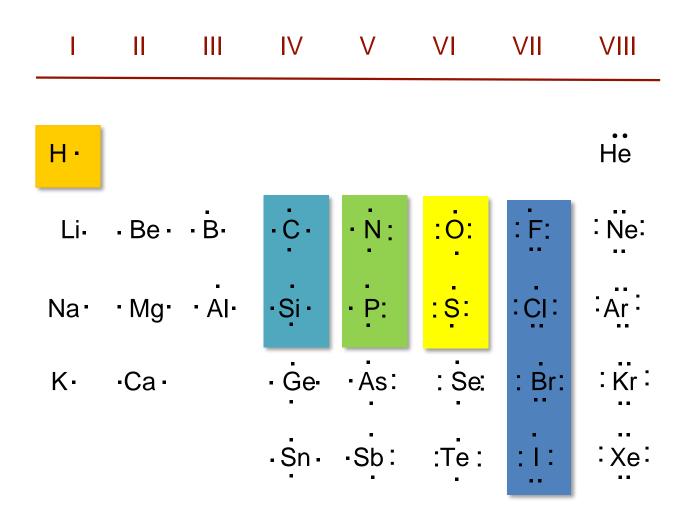

- limonene (dall'olio essenziale di limone)
- f. CH₃(CH₂)₂C(CH₃)₂CH(CH₃)CH(CH₃)CH(Br)CH₃
- 1.57 Converti le seguenti formule condensate in strutture di Lewis.
 - a. CH3CH2COOH
- c. CH3COCH2Br d. (CH₃)₃COH
- e. (CH₃)₃CCHO

b. CH3CONHCH3

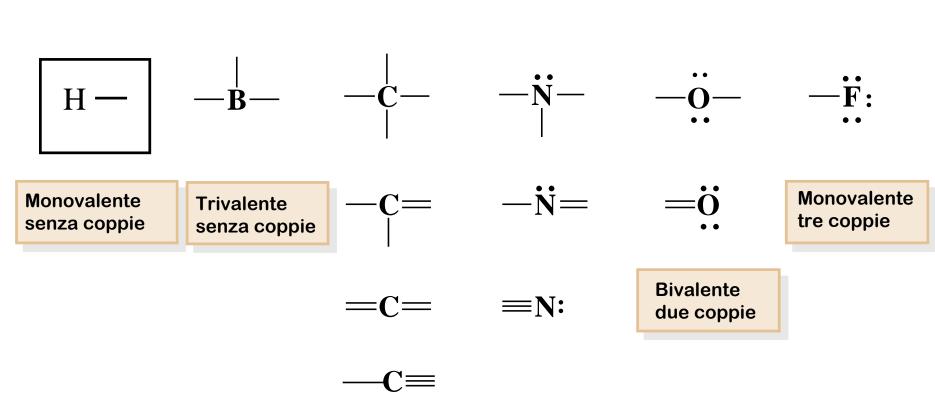
- f. CH3COCI
- 1.58 Inserisci in ogni ione tutti gli atomi di idrogeno e le coppie elettroniche non di legame.


2. Struttura atomica e legami

Elementi comuni

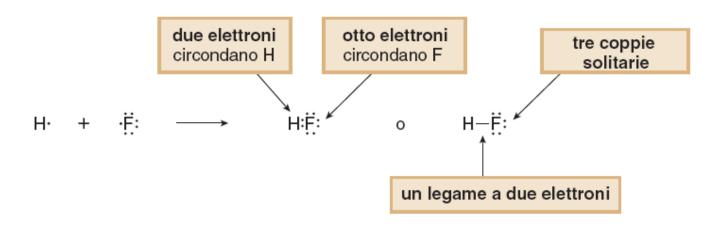


Modelli di Lewis


- I legami sono coppie elettroniche localizzate.
- Gli elettroni sono rappresentati da punti
- Tre regole generali:
 - Si considerano solo elettroni di valenza.
 - Se possibile, ogni elemento della 2ª riga deve avere 8 elettroni (regola dell'ottetto)
 - Ogni atomo di H ha due elettroni (duetto di elettroni)

Simboli di Lewis di elementi comuni

Patterns di legame per elementi comuni neutri


Tetravalente senza coppie

Trivalente una coppia

Strutture di Lewis

Ci sono tre regole generali per disegnare strutture di Lewis di molecule neutre:

- 1. Disegnare solo gli elettroni di valenza.
- 2. Assegnare ad ogni elemento della seconda riga un ottetto di elettroni, se possibile.
- 3. Assegnare ad ogni idrogeno due elettroni.

In una struttura di Lewis, una linea piena indica un legame covalente a due elettroni.

Patterns di legame per elementi comuni carichi

CATIONI

Trivalente senza coppie

—;;+

Trivalente una coppia

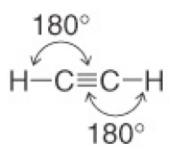
Tetravalente senza coppie

ANIONI

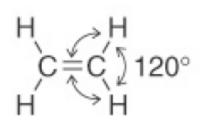
Trivalente una coppia

$$=$$
 \ddot{N}

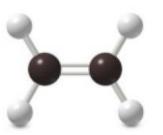
Bivalente due coppie

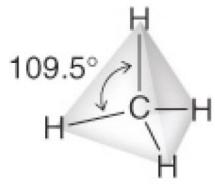

Monovalente tre coppie

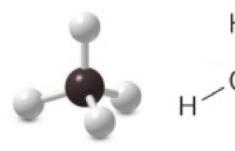
Quattro coppie


Geometria – Teoria VSEPR Valence Shell Electron Pairs Repulsion

Numero di gruppi	Geometria	Angoli
2	lineare	180°
3	trigonale planare	120°
4	tetraedrica	109.5°




acetilene



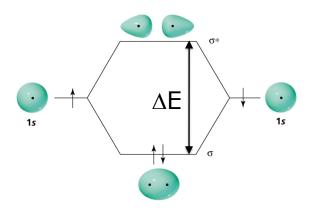
etilene

metano

Energie di legami multipli

Legame	Energia di dissociazione (kJ/M)		
c—c	360		
c==c	700		
с≡с	950		
c—o	400		
c==o	750		
cn	360		
С <u>—</u> N	700		
с∭м	950		

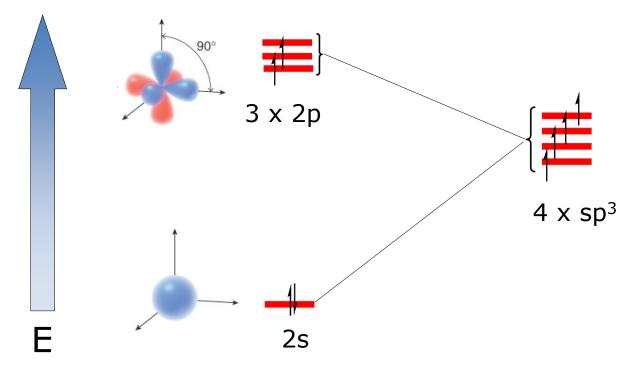
Il modello di Lewis non è adeguato!

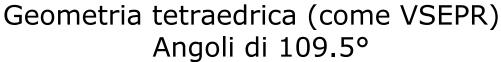

Modelli di legame chimico

- Teoria del legame di valenza
 - Un legame covalente è formato dalla sovrapposizione di due orbitali atomici e la coppia di elettroni è condivisa fra i due atomi.
 - Un legame di valenza è localizzato fra due atomi.

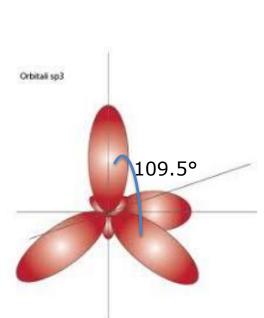
Molecola di H₂

- Teoria degli orbitali molecolari.
 - n orbitali atomici si combinano per dare un nuovo set di n orbitali molecolari (leganti e non leganti).
 - Gli orbitali molecolari sono delocalizzati su tutta la molecola.

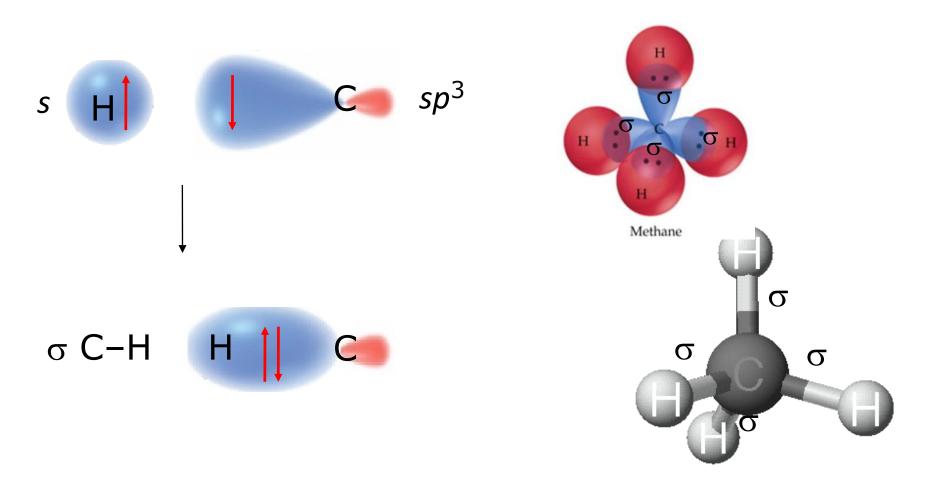

orbitali molecolari

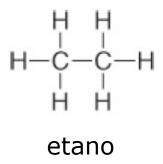

Orbitali di valenza

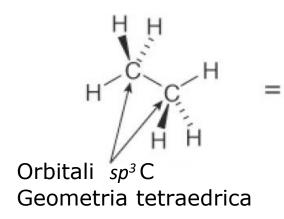
- ullet L'idrogeno H usa l'orbitale atomico 1s per formare legami σ
- Il carbonio e gli atomi della 2^a riga usano orbitali atomici ibridi (sp^3, sp^2, sp) per formare legami σ .
- Il carbonio e gli atomi della 2^a riga usano orbitali atomici p per formare legami π che hanno un piano nodale.
- Gli orbitali atomici sovrappongono meglio nei legami σ (sovrapposizione co-lineare, lungo l'asse di legame) che nei legami π (sovrapposizione in parallelo).

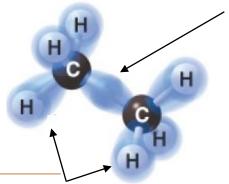

Ibridi sp³

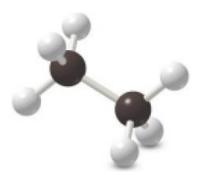
¹²C 1s², 2s², 2p²

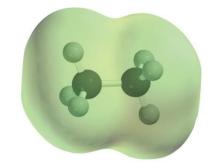




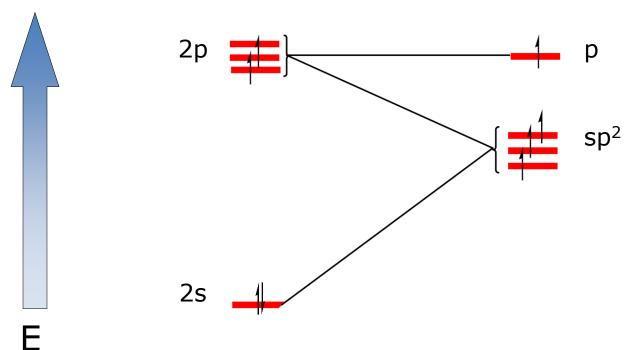

Metano

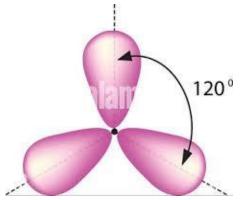

La sovrapposizione di un orbitale 1s dell'idrogeno (1 e⁻) con un orbitale sp^3 del carbonio (1 e⁻) forma un orbitale σ


Etano

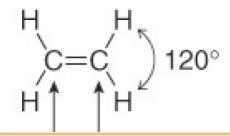


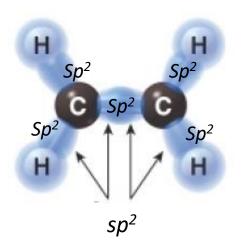
Gli ibridi *sp*³ del C sovrappongono con gli orbitali atomici *1s* dell' H per dare i legami σ C-H.

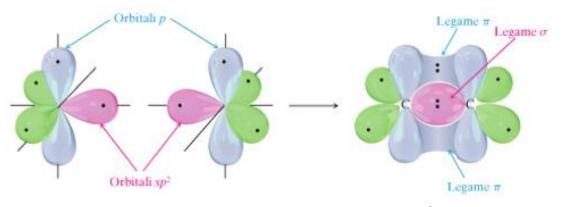

Due ibridi sp^3 sovrappongono per dare un legame σ C–C

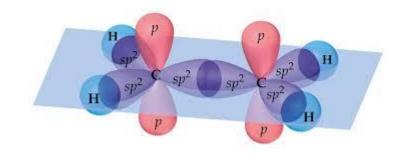


Ibridi sp²

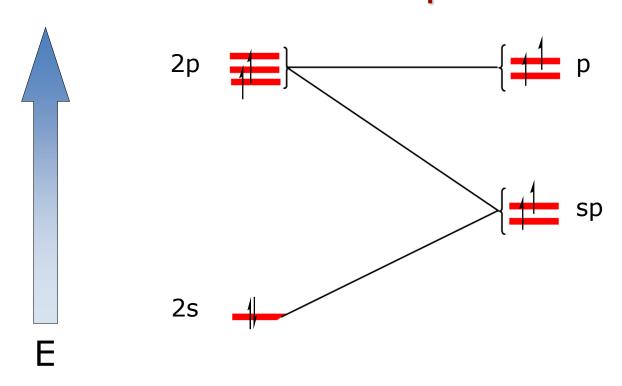

¹²C 1s², 2s², 2p²

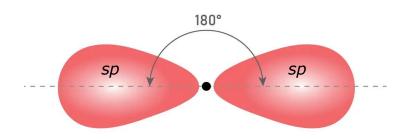

Geometria trigonale planare (come VSEPR) angoli di 120°



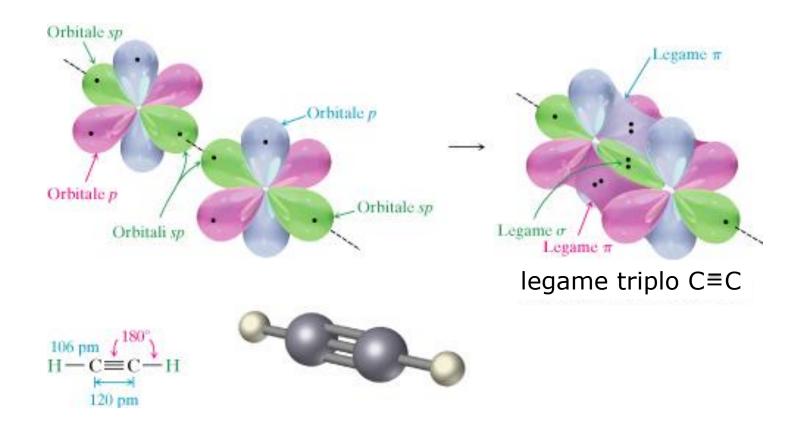

Etilene C₂H₄

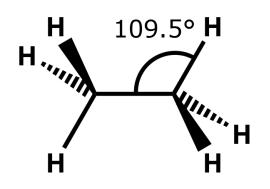
3 gruppi intorno al C Gli atomi di C sono ibridati sp^2

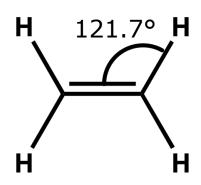


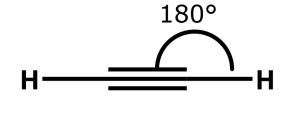


Doppio legame C=C 1 legame σ 1 legame π


Ibridi sp


Geometria lineare (come VSEPR) angoli di 180°



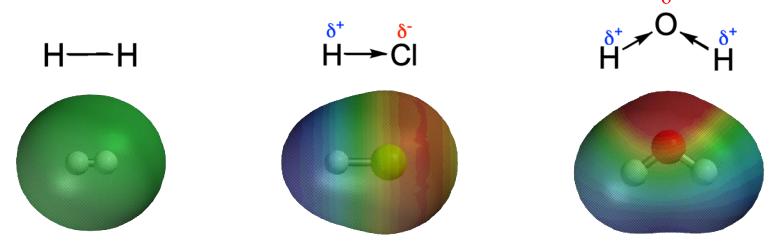

Acetilene C₂H₂

Strutture di C₂H₆, C₂H₄, C₂H₂


```
d<sub>C-C</sub> (Å): 1.54
d<sub>C-H</sub> (Å): 1.10
E<sub>C-C</sub> (kJ/M):
```

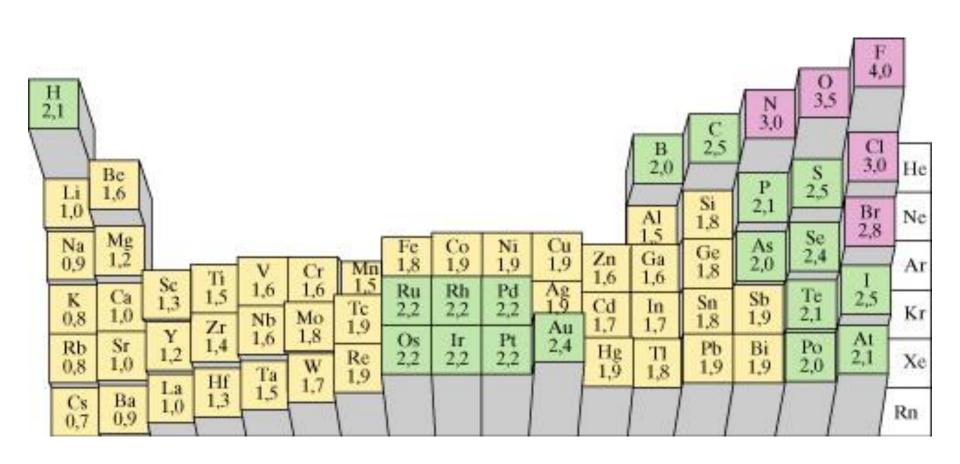
376

1.20 1.06


611

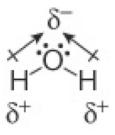
835

Legami Polari Interazioni Intermolecolari Legami Delocalizzati


Legami Covalenti Polari

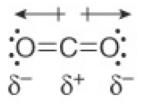
 Nei legami polari, gli elettroni di legame sono attratti dall'atomo più elettronegativo.

- Maggiore è la differenza di elettronegatività ΔX, maggiore è la polarità del legame covalente
 - $\Delta X > 1.9 \Rightarrow legame ionico$
 - ΔX < 0.5 \Rightarrow legame covalente apolare (es.: C-H, C-C)
 - $\Delta X = 0.5 1.9 \Rightarrow$ legame covalente polare (O-H, N-H, C-O, C-F..)

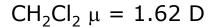

Scala di elettronegatività di Pauling

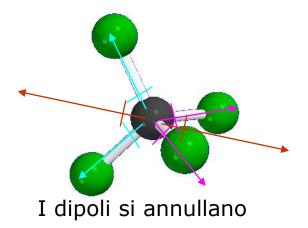


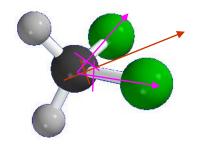
Polarità delle molecole


• Molecole polari hanno uno o più legami polari.

Es. H₂O

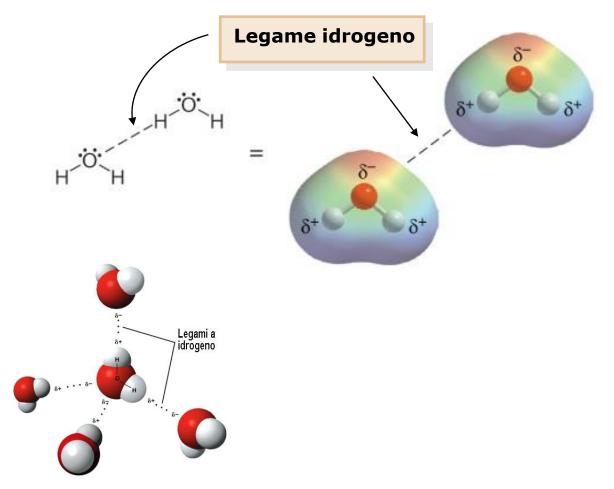





- Molecole apolari o non hanno legami polari o hanno legami polari i cui dipoli si annullano
- ES.: CO₂

 $CCI_4 \mu = 0 D$

I dipoli si sommano

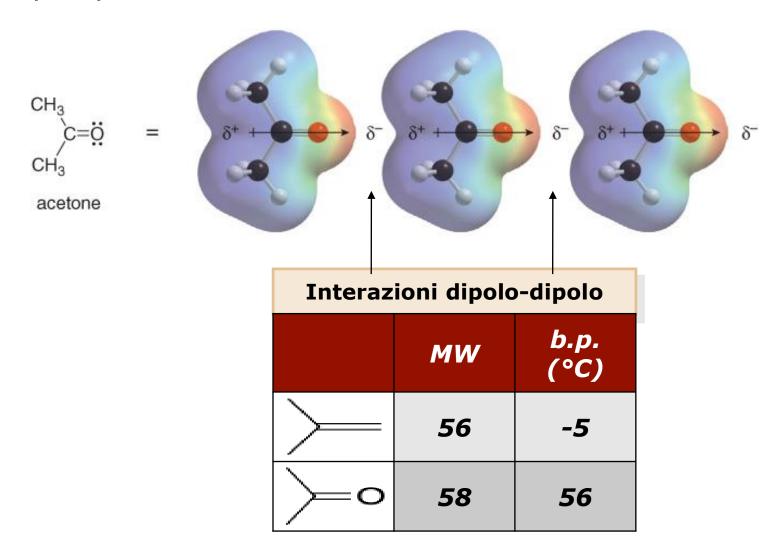

Interazioni Intermolecolari

 Interazioni intermolecolari sono anche chiamate interazioni non-covalenti o di non-legame

- Interazioni intermolecolari dipendono dal tipo e dal numero di gruppi funzionali
- Nelle molecole neutre ci sono tre tipi principali di interazioni intermolecolari.
 - Interazioni di Van der Waals (Forze di London) VDW
 - Interazioni dipolo-dipolo DD
 - Legami idrogeno HB

Il Legame Idrogeno

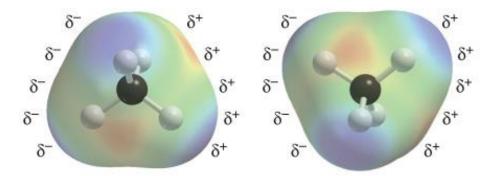
Il legame idrogeno è un'interazione elettrostatica fra un gruppo O-H o N-H e un lone pair su un O o su un N.



Il Legame Idrogeno

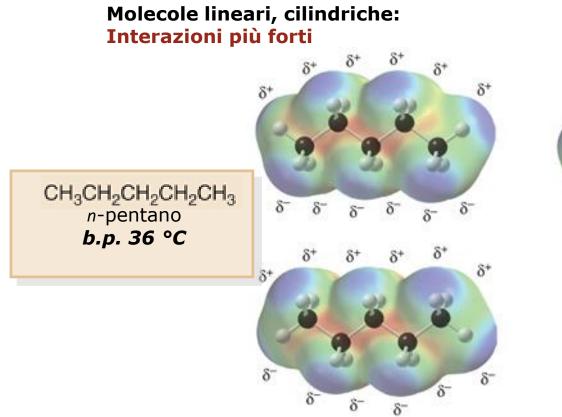
	MW	b.p. (°C)	H-bond
H ₃ C-CH ₃	30	-89	none
H ₃ C-NH ₂	31	-6	weak
H ₃ C-OH	32	65	strong

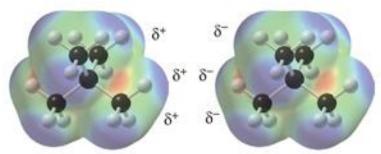
Interazioni Dipolo-Dipolo

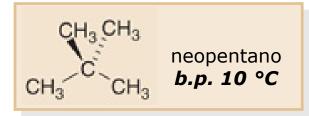

 Interazioni dipolo-dipolo sono forze di attrazione fra i dipoli permanenti di due molecole.

Forze di Van der Waals (London)

- Forze di VdW sono interazioni deboli che si originano da variazioni momentanee della distribuzione di densità elettronica.
- Sono le uniche forze di attrazione in molecole apolari.


Interazioni di Van der Waals fra due molecole di CH₄


I dipoli si generano da una asimmetria istantanea della densità elettronica


Forze di Van der Waals (London)

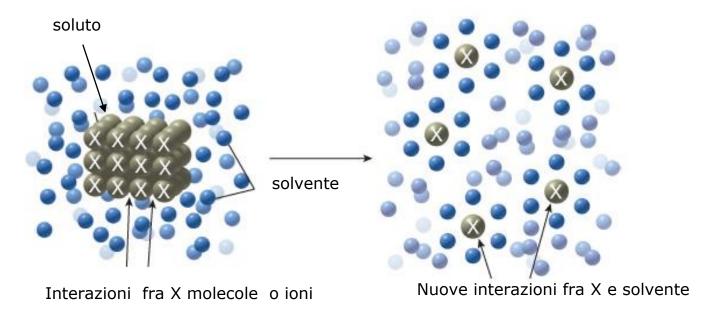
- Le interazioni di Van der Waals sono presenti in tutte le molecole.
- Più grande è l'area superficiale, più numerose sono le interazioni fra due molecole e più forti sono le forze intermolecolari.

Molecole sferiche, compatte: Interazioni più deboli

Sommario

Interazioni	Forza relativa	Presenti in	Esempi
Van der Waals VDW	Molto deboli	Tutte le molecole	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ CHO CH ₃ CH ₂ CH ₂ CH ₂ OH
Dipole-dipole DD	Deboli	Dipoli Permanenti	CH ₃ CH ₂ CH ₂ CHO CH ₃ CH ₂ CH ₂ CH ₂ OH
Hydrogen bond HB	Forti	Molecole con OH, NH, gruppi funzionali	CH ₃ CH ₂ CH ₂ CH ₂ OH
ionic	Molto forti	Composti ionici	NaCl, LiF

Molecole polari interagiscono più fortemente di quelle apolari

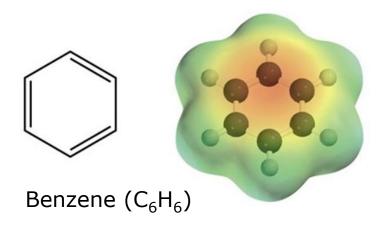

Punti di ebollizione e di fusione (B.p. e M.p.)

- □ Il punto di ebollizione è la temperatura a cui la pressione di vapore di un liquido è uguale alla pressione esterna.
- □ Il punto di fusion è la temperatura a cui si ha il passaggio da solido a liquido
- E' richiesta energia per rompere le interazioni intermolecolari.
- □ Più intense le interazioni intermolecolari, più elevati i b.p.
- Composti con M.W. simili:

Van der Waals **Dipolo-dipolo** Legame idrogeno Punto di ebollizione e di fusione CH₃CH₂CH₂CH₂CH₃ CH₃CH₂CH₂CHO CH₃CH₂CH₂CH₂OH pentano (m.w. 72) butanale (m.w. 72) 1-butanolo (m.w. 74) bp = 118 °C $bp = 36 \, ^{\circ}C$ $bp = 76 \,^{\circ}C$ $mp = -130 \, ^{\circ}C$ $mp = -96 \, ^{\circ}C$ $mp = -90 \, ^{\circ}C$

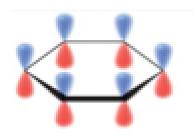
Solubilita'

- La solubilità è la misura del grado in cui un composto (soluto) si scioglie in un liquido (solvente).
- Interazioni fra ioni o molecole sono sostituite da interazioni con il solvente.

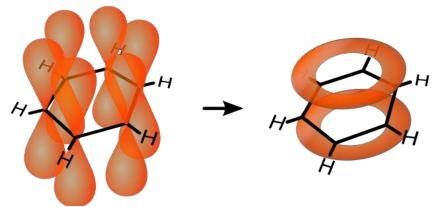


- Composti si sciolgono nei solventi con cui interagiscono più efficientemente
- "Il simile scioglie il suo simile."
- Composti polari si sciolgono in solventi polari, composti apolari o debolmente polari si sciolgono in solventi apolari/debolmente polari.

Elettroni e legami π delocalizzati. Risonanza


- Ci sono alcune molecole la cui struttura e proprietà non possono essere spiegate dal modello degli orbitali di valenza con elettroni localizzati (= da una singola struttura di Lewis)
- In questo caso, una singola struttura di Lewis è sostituita da un set di strutture di Lewis chiamate STRUTTURE LIMITE DI RISONANZA, nessuna delle quali rappresenta la molecola reale.
- Le strutture limite di risonanza hanno la stessa disposizione dei atomi ma una diversa distribuzione di elettroni (elettroni π e coppie di non legame).
- La molecola reale è un IBRIDO DI RISONANZA di queste strutture, cioè una struttura che ha le caratteristiche di tutte le forme limite.

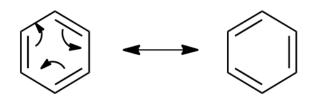
Risonanza – Legami delocalizzati



Caratteristiche:

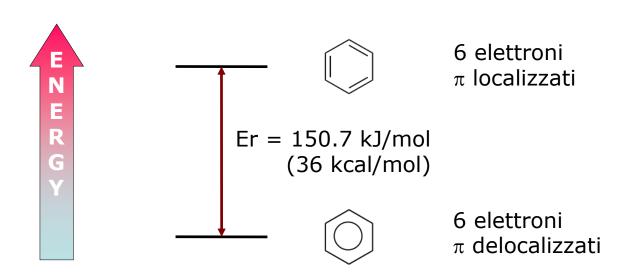
Stabilità Struttura simmetrica 6 legami C-C identici Equidistribuzione della densità elettronica

Benzene E' un composto ciclico Ogni atomo di C è ibridato sp²

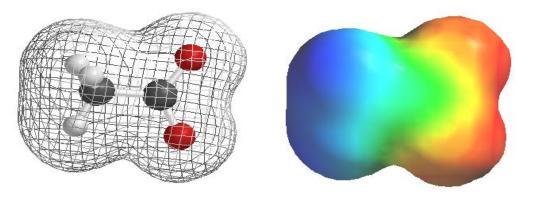

6 orbitali p non ibridati paralleli Ogni orbitale p sovrappone con i due p adiacenti

Nube π delocalizzata

Risonanza


Strutture di risonanza di Kekulè

Ibrido di risonanza



Stabilità:

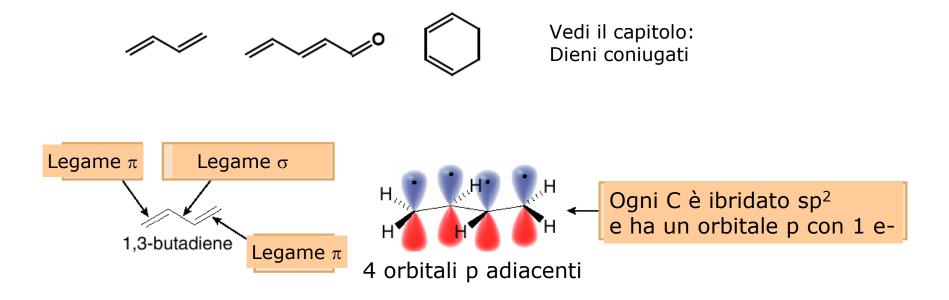
Esempio: ione acetato

Superficie di van der Waals

Mappa di densità elettronica

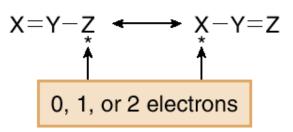
I due legami C-O sono identici, di lunghezza intermedia fra singolo e doppio La carica negativa è ugualmente distribuita sui due atomi di ossigeno La molecola è completamente SIMMETRICA

E' rappresentata compiutamente dall'ibrido di risonanza fra due forme limite:


Risonanza

- 1. Strutture di risonanza non sono reali. Nessuna singola struttura di risonanza può rappresentare adeguatamente la struttura reale di una specie con elettroni delocalizzati.
- 2. Strutture di risonanza non sono isomeri. Esse differiscono solo per la distribuzione degli elettroni, non per la disposizione dei nuclei.
- 3. Strutture di risonanza non sono in equilibrio.

Coniugazione e risonanza

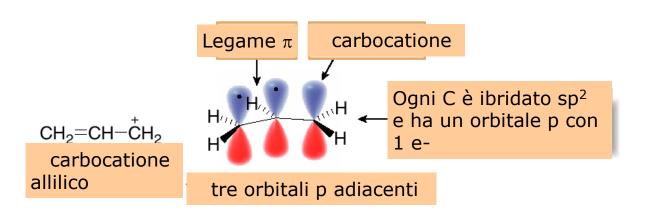

La delocalizzazione degli elettroni è tipica dei sistemi CONIUGATI I sistemi coniugati hanno almeno tre orbitali p adiacenti paralleli

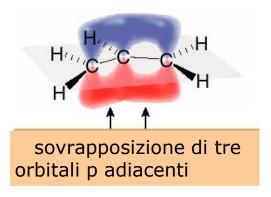
1. Sistemi con doppi legami coniugati

Coniugazione e risonanza

2. Sistemi allilici

$$Z = C, N, O$$


Esempi


2 elettroni (Speci neutre)

Coniugazione e risonanza

1. Cationi adiacenti a un legame π

Il carbocatione allilico è un esempio di sistema coniugato

Come si rappresenta?

$$CH_2=CH-CH_2^+$$
 \longleftrightarrow $H_2C-CH=CH_2$ $CH_2=C=-CH_2$ $CH_2=C=-CH_2$ H $CH_2=C=-CH_2$ $CH_2=-C=-CH_2$ $CH_2=-CH_2$ $CH_2=-CH_2$

- La coniugazione stabilizza il carbocatione allilico
- Il carbocatione allilico è stabilizzato per risonanza

Scrivere strutture di risonanza

2. Atomi con un lone pair adiacente a un legame π : anioni

$$\ddot{CH_2} = \ddot{C} + \ddot{\ddot{C}H_2} +$$

Esercizio: scrivere gli ibridi di risonanza

Freccia di risonanza

Per correlare le strutture limite di risonanza si usa il simbolo della freccia a doppia punta

Da non confondere con la doppia freccia delle reazioni di equilibrio:

$$CH_3COOH + H_2O \longrightarrow CH_3COO^- + H_3O^+$$
 equilibrio

Scrivere strutture di risonanza

3. Atomi con una coppia adiacente a un legame π in molecole neutre

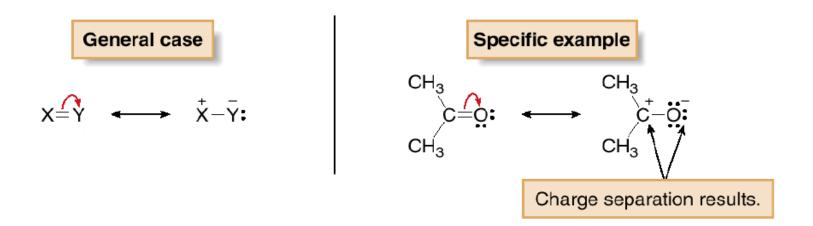
$$\widetilde{NR}_2$$
 \longrightarrow NR_2^+

$$\nearrow$$
"NR₂

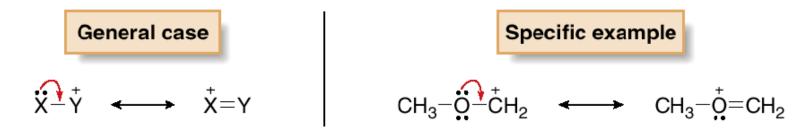
No legami π : Coppia elettronica localizzata in orbitale sp3

$$R$$
 Azoto trigonale Sp^2

Esercizio: scrivere l'ibrido di risonanza

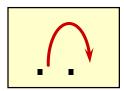

Scrivere strutture di risonanza

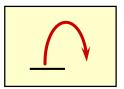
4. Doppi legami coniugati

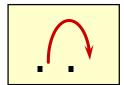

Esercizio: scrivere gli ibridi di risonanza

Altri sistemi descritti da forme di risonanza

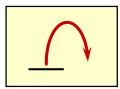
3. Doppi legami polari

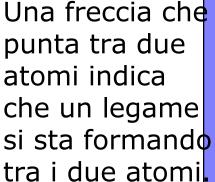


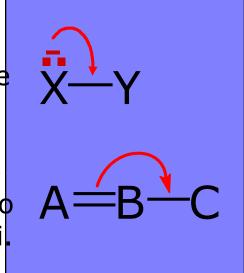

4. Coppia elettronica adiacente a una carica positiva

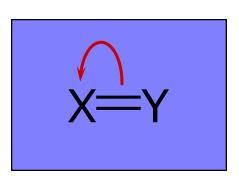

FRECCE RICURVE

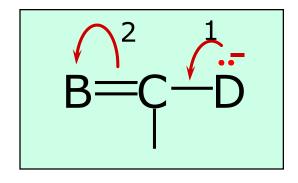
In chimica organica, una freccia ricurva indica il movimento di una coppia di elettroni.




FRECCE RICURVE

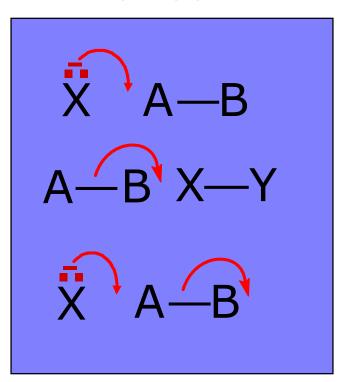



In chimica organica, una freccia ricurva indica il movimento di una coppia di elettroni.


Intramolecolare:

Una freccia che punta su un atom indica che gli elettroni si localizzano su quell'atomo come coppia non condivisa.

Talvolta un movimento ne forza un altro.

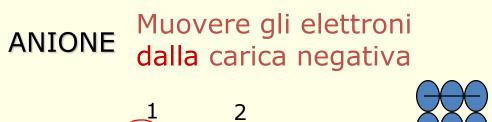

(Il carbonio ad esempio può avere solo 4 legami)

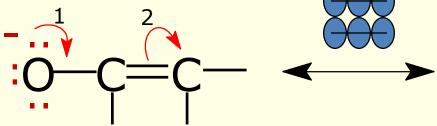
FRECCE RICURVE

In chimica organica, una freccia ricurva indica il movimento di una coppia di elettroni.

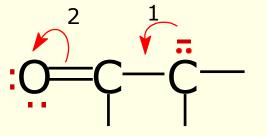
Intermolecolare:

Una freccia che punta tra due atomi indica che un legame si sta formando tra i due atomi.


Si forma un legame fra X e A


Si forma un legame fra B e X

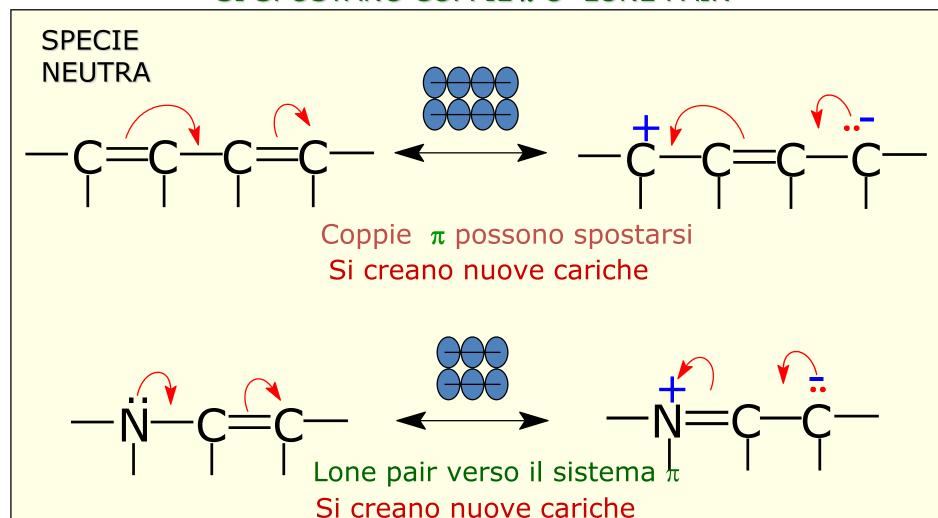
Si forma un legame fra X e A e si rompe il legame fra A e B


"FRECCE DI SPOSTAMENTO" - RISONANZA

LE REGOLE PER ANIONI E CATIONI

la carica si muove nessuna carica nuova

$$-c=c$$


CATIONE

Muovere gli elettroni verso la carica positiva

la carica si muove nessuna carica nuova

"FRECCE DI SPOSTAMENTO" - RISONANZA

REGOLE PER MOLECOLE NEUTRE SI SPOSTANO COPPIE π O LONE PAIR

1.43 Aggiungi le frecce curve per mostrare come la prima struttura di risonanza può essere convertita nella seconda H

a.
$$CH_3-\overset{\overset{}{C}-\overset{}{N}-CH_3}{\overset{\overset{}{\leftarrow}}{H}} CH_3 \overset{\overset{}{\leftarrow}}{\overset{\overset{}{\leftarrow}}{C}-\overset{\overset{}{N}-CH_3}{\overset{\overset{}{\leftarrow}}{H}} CH_3}$$
 c. $\overset{\overset{\overset{}{\leftarrow}}{\overset{\overset{}{\leftarrow}}{C}-\overset{\overset{}{N}-CH_3}{\overset{\overset{}{\leftarrow}}{H}}} CH_3$

1.44 Segui le frecce curve per disegnare la seconda struttura di risonanza di ciascuna specie.

a.
$$CH_3 - \stackrel{\uparrow}{N} \equiv N$$
: \longleftrightarrow

a.
$$CH_3 - \stackrel{\uparrow}{N} \equiv N$$
: \longleftrightarrow b. $CH_3 - \stackrel{\downarrow}{C} = \stackrel{\downarrow}{C} + \stackrel{\downarrow}{$

Disegna una seconda struttura di risonanza per ogni ione.

:O: a.
$$CH_3-\ddot{C}-\ddot{\bigcirc}$$
: b. $CH_2=\ddot{N}H_2$ c. \ddot{O} : d. $H-\ddot{C}-\ddot{H}$

b.
$$CH_2 = \stackrel{+}{N}H_2$$

1.46 Per ciascuno ione del Problema 1.45 disegna l'ibrido di risonanza.

Acidi e Basi Elettrofili e Nucleofili Meccanismi delle reazioni organiche

Acidi e Basi di Brønsted-Lowry

Una reazione acido-base è una reazione di trasferimento di un protone

$$X-H+:B \longrightarrow X^- + BH^+$$

 $\delta^- \delta^+$

- Acidi donano protoni a un accettore
 - Tutti gli acidi di Brønsted-Lowry contengono un protone ionizzabile, derivante da un legame X-H polare (X = O, alogeno)
- Le basi accettano un protone da un donatore

Tutte le basi di Brønsted-Lowry contengono un lone pair o un legame π .

Acidi di Brønsted-Lowry HA		Basi di Brønsted-Lowry B:			
Inorganici	Organici	Inorganiche		Organiche	
HCI H ₂ SO ₄ HSO ₄	CH ₃ CO ₂ H Acido acetico	H₂Ö:	:NH ₃	CH ₃ NH ₂ metilammina	CH₃Ö:¯ Ione metossido
H ₂ O H ₃ O ⁺	OH HO ₂ CCH ₂ -C-CH ₂ CO ₂ H COOH Acido citrico	≟ÖH	∹ÑH₂	CH ₃ C=Ö CH ₃ acetone	CH ₂ =CH ₂ etilene

Acidi di Brønsted-Lowry (BL)

pKa

Acido molto debole

50

 $CH_4 + H_2O \longrightarrow CH_3^- + H_3O^+$

 $HCI + H_2O \longrightarrow H_3O^+ + CI^-$ Acido forte -7 $CH_3COOH + H_2O \longrightarrow CH_3COO^- + H_3O^+$ Acido debole 5 $NH_3 + H_2O \longrightarrow NH_2^- + H_3O^+$ Acido molto debole 34

Basi di Brønsted-Lowry (BL)

In
$$H_2O$$
:

$$pK_B$$
 pKa pK_B (dell'acido coniugato BH+) pK_B pK_B

$$NH_3 + H_2O \longrightarrow NH_3^+ + OH^-$$
 5

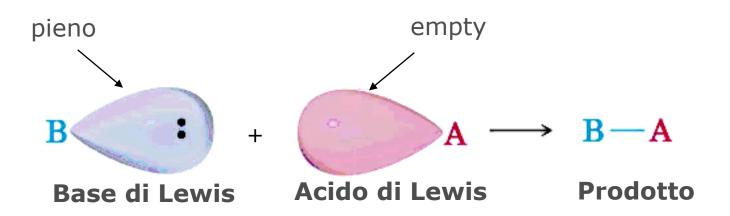
Acidi organici

Elemento	Elettronegatività	Legame	Acidità
Н	2.1		
С	2.5	С-Н	NO
N	3.0	N-H	NO
0	3.5	О-Н	SI'

Formula	Nome	Ka	pKa	Acidità
R-OH	Alcoli	<10 ⁻¹⁵	> 15	Minore dell'H ₂ O
Ar-OH	Fenoli	10-9	9	Debolmente dissociati
R-COOH	Acidi carbossilici	> 10 ⁻⁵	> 5	Più dissociati

Ar = Arene = gruppo aromatico (benzene e derivati)

Basi Organiche


Gruppo	Coppia elettronica	Elettronegatività	Basicità
$-\dot{c}-$	NO	-	NO
-Z-	1	3.0	SI
− ö −	2	3.5	DEBOLE
×-	ALMENO 1		FORTE

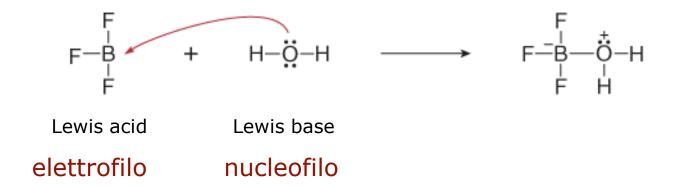
Acidi e Basi di Brønsted-Lowry

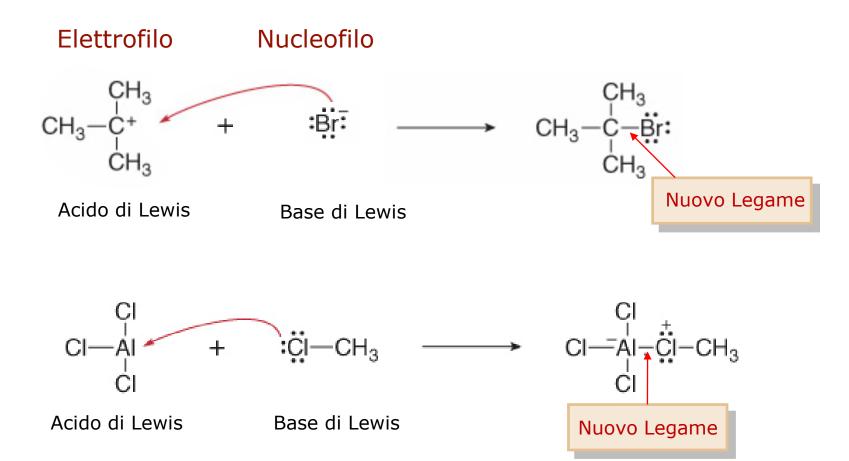
Certe molecole possono comportarsi da acidi e da basi

Acidi e Basi di Lewis

- Un acido di Lewis accetta una coppia elettronica da un donatore. Gli acidi di Lewis hanno un orbitale vuoto a bassa energia.
- Una base di Lewis dona una coppia elettronica a un accettore. Le basi di Lewis hanno un orbitale pieno ad alta energia (= lone pair o orbitale π)

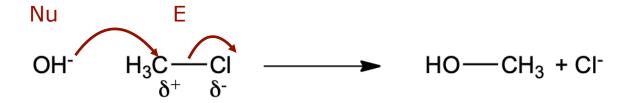
Acidi e Basi di Lewis

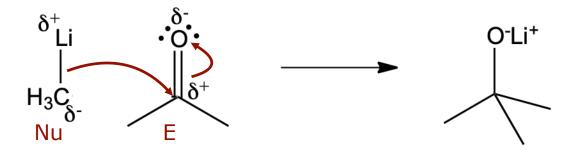

- Tutti gli acidi di Brønsted-Lowry sono anche acidi di Lewis. Non tutti gli acidi di Lewis sono acidi di Brønsted-Lowry.
- Solo speci con protoni ionizzabili sono acidi di BL mentre ogni accettore di elettroni è un acido di Lewis.


• Tutte le basi di Brønsted-Lowry sono anche basi di Lewis. Esse devono avere un lone pair o un legame π .

Reazioni fra Acidi e Basi di Lewis

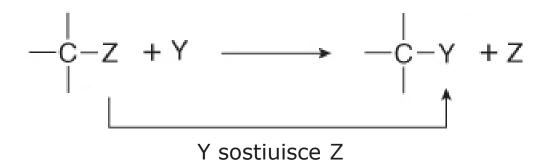
- Le reazioni organiche possono essere descritte, nella maggior parte dei casi, come reazioni fra una specie povera di elettroni (acido di Lewis) e una specie ricca di elettroni (base di Lewis acids)
- La specie elettronpovera (acido di Lewis) è chiamata elettrofilo.
- La specie elettronricca (base di Lewis) è chiamata nucleofilo.
- Il movimento di elettroni è indicato con frecce recurve.




Elettrofili e Nucleofili

Elettrofili e Nucleofili

• Nucleofili ed elettrofili possono anche contenere legami polari



Reazioni Organiche

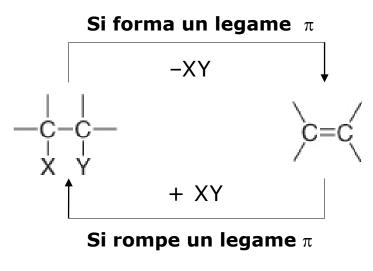
- Tipo di reazione (= rottura e formazione di legame)
 - > sostituzione
 - addizione
 - eliminazione
 - riarrangiamento/trasposizione
- Meccanismo (= movimento di elettroni)
 - ionico (polare)
 - > radicalico
 - periciclico

Sostituzioni

- □ In una reazione di sostituzione, un atomo o gruppo Y sostituisce un atomo o gruppo Z legati a un atomo di carbonio.
- Le sostituzioni coinvolgono rottura e formazione di <u>legami σ.</u>

Eliminazioni

□ In una reazione di eliminazione, due legami σ si rompono e si forma un legame π (e uno σ).


Addizioni

□ In una reazione di addizione si rompe un legame π e si formano due nuovi legami σ .

Addizioni ed Eliminazioni

Le eliminazioni sono l'inverso delle addizioni. Un legame π si forma nelle eliminazioni e un legame π si rompe nelle addizioni.

Eliminazione

Addizione

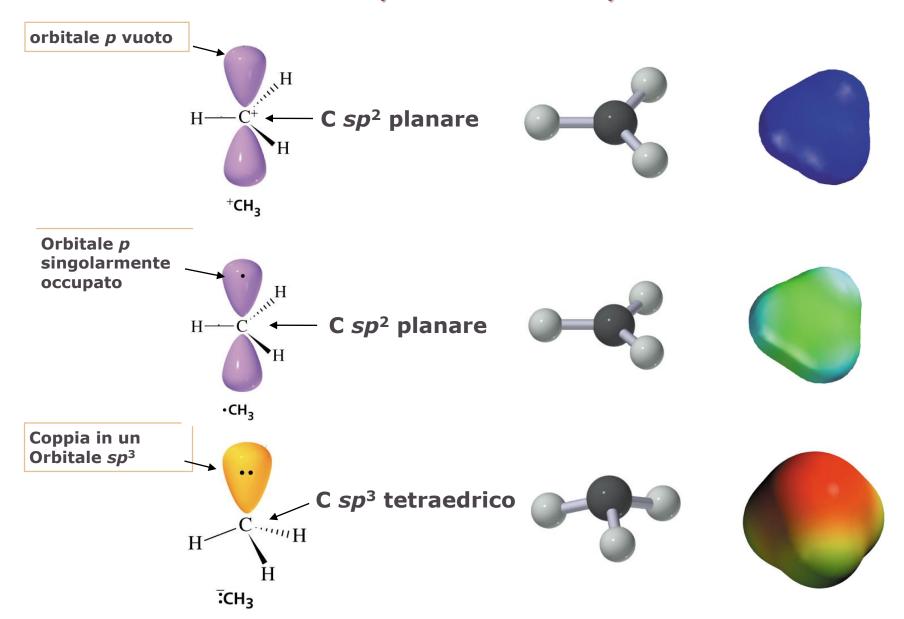
Riarrangiamenti o Trasposizioni

□ In un riarrangiamento o trasposizione un reagente si trasforma in un suo isomero strutturale cambiando lo schema dei legami.

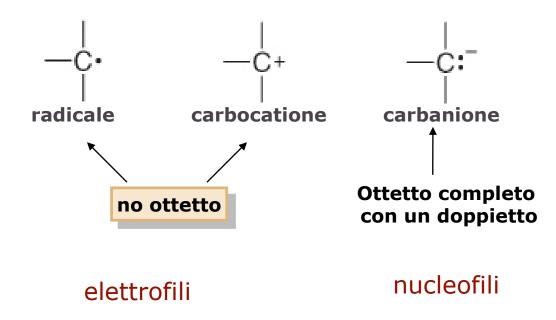
$$CH_3CH_2$$
 H CH_3 CH_3

Rottura dei legami

Formazione di legami


- Un nuovo legame si può formare in due modi:
 - Da due radicali ognuno dei quali contribuisce con un elettrone.

 Da un nucleofilo che contribuisce con una coppia di elettroni e un elettrofilo che accetta la coppia di elettroni. Nu ed E possono essere ioni o molecole neutre.


Nella formazione di un legame viene rilasciata energia

Carbocationi, Carbanioni, Radicali

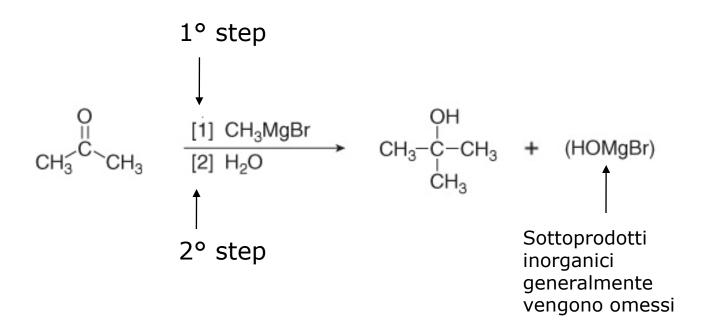
Carbocationi, Carbanioni, Radicali

- Radicali and carbocationi sono elettrofili perchè l'atomo di carbonio centrale non ha l'ottetto.
- Carbanioni sono nucleofili perchè l'atomo di carbonio centrale ha un doppietto.

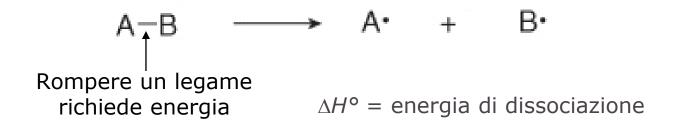
Un Meccanismo di Reazione.....

 Descrive in che ordine si rompono e si formano i legami e le velocità dei singoli step.

 In una reazione concertata i reagenti si convertono direttamente nei prodotti in un solo step


 Una reazione multistep coinvolge la formazione di uno o più intermedi reattivi.

Come scrivere una reazione organica


Come scrivere una reazione organica

• In una sequenza, ogni step va numerato.

Energie di dissociazione dei legami

□ L'energia di dissociazione dei legami è l'energia necessaria per rompere un legame omoliticamente.

Energie di dissociazione dei legami

- L'energia di dissociazione dei legami è una misura della loro forza
- Più forte è il legame più elevata è l'energia della sua dissociazione.
- In generale, legami più forti sono più corti
- Le energie di dissociazione diminuiscono lungo un gruppo.

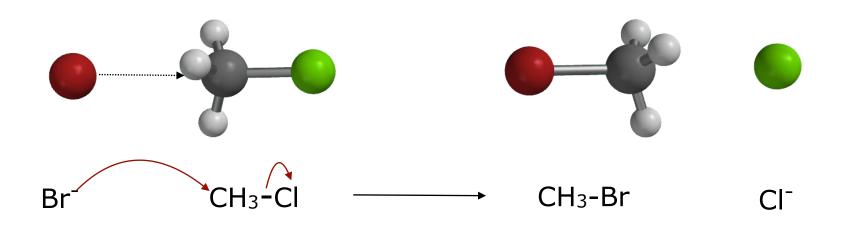
Dimensioni dell'alogeno e lunghezza di legame

CH₃-F

CH₃-CI

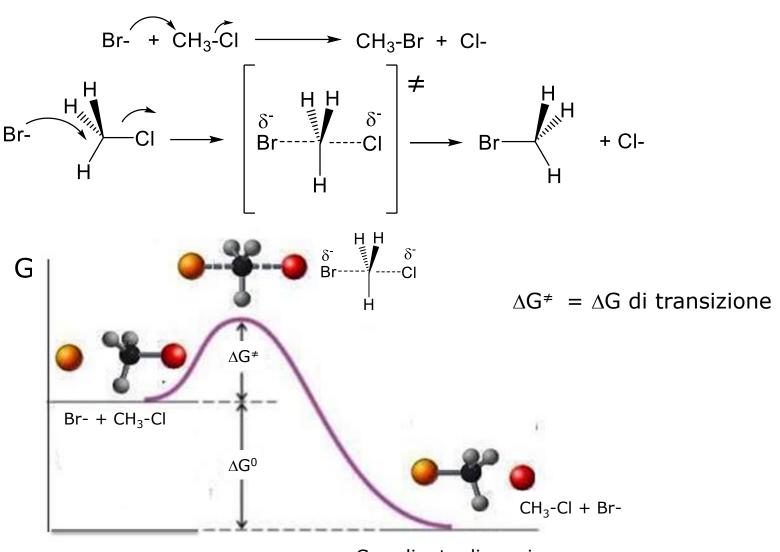
CH₃-Br

 CH_3-I


 $\Delta H^{\circ} = 109 \text{ kcal/mole}$ 84 kcal/mole

70 kcal/mole

56 kcal/mole


Forza di legame

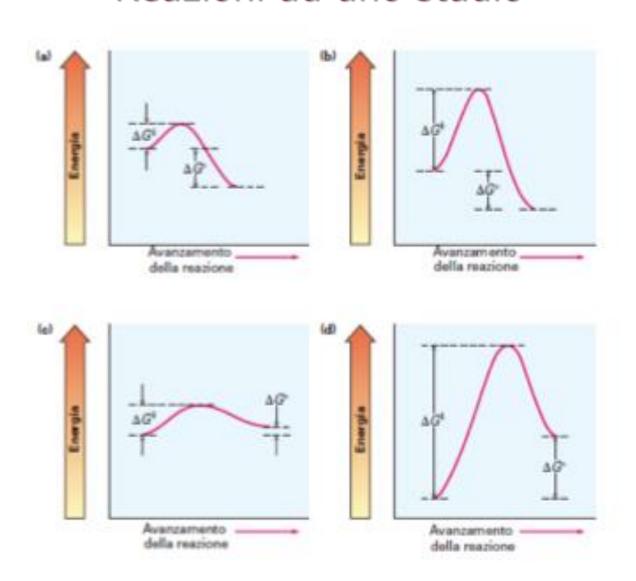
Teoria dello Stato di Transizione e Teoria Collisionale

- Teoria collisionale: vi sono urti rigidi fra le specie reagenti
- Teoria dello stato di transizione: la struttura dei reagenti si deforma continuamente per arrivare alla struttura dei prodotti, passando attraverso una situazione transiente chiamata Stato di Transizione

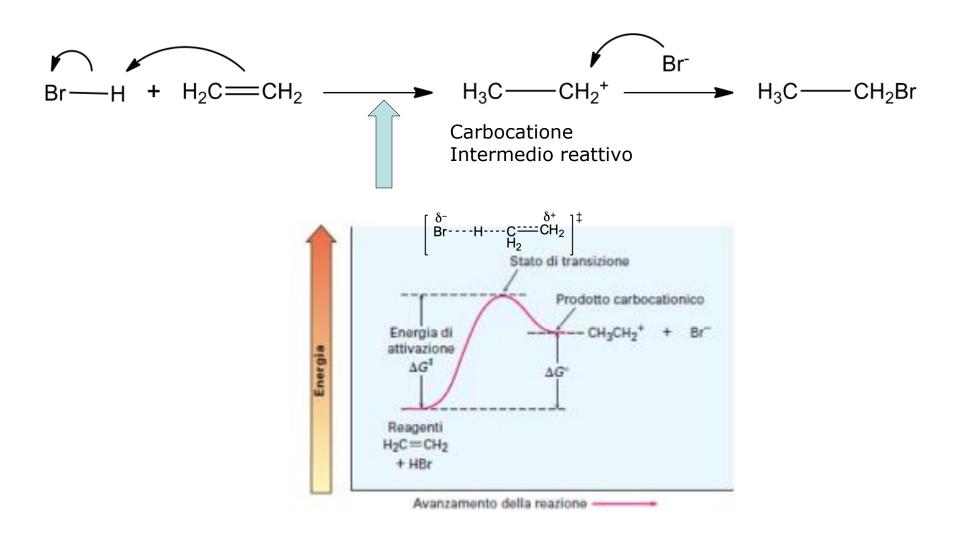
Stato di Transizione

Coordinata di reazione

Teoria dello Stato di Transizione Diagrammi Energetici


- L'energia di attivazione ∆G[≠] è la barriera energetica che deve essere superata affinchè la reazione possa avvenire
- $\Theta \Delta G^{\neq} = \Delta H^{\neq} T\Delta S^{\#}$
- Θ ΔG[≠] è correlate alla costante di velocità della reazione (parametron cinetico).

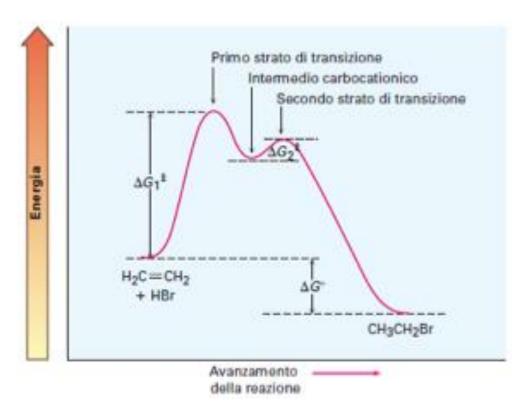
Equazione di Eyring
$$k = \frac{k_B T}{h} e^{-\frac{\Delta G^*}{RT}}$$


- □ La struttura dello stato di transizione è intermedia fra quelle dei reagenti e dei prodotti. Nello stato di transizione ci sono legami parziali e cariche parziali (se il meccanismo è ionico)
- Gli stati di transizione sono rappresentati in parentesi quadra con il simbolo *.

Diagrammi di Energia

Reazioni ad uno stadio

Diagrammi di Energia Reazioni a due stadi



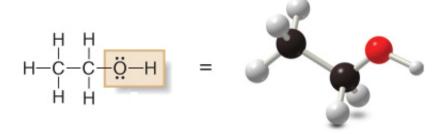
Diagrammi di energia

Diagramma di energia completo per una reazione a due stadi

Br—H +
$$H_2C$$
— CH_2 — \rightarrow H_3C — CH_2^+ — \rightarrow H_3C — CH_2Br

Intermedio carbocationico

Residuo Organico G (Catena idrocarbonica)


Gruppo Funzionale

(da un idrocarburo)

(eteroatomo o gruppo di atomi che contiene uno o più eteroatomi)

Un gruppo funzionale è un atomo o un gruppo di atomi in parte o interamente diversi dal C che hanno specifiche e ben definite proprietà chimico-fisiche.

- Solo legami C-C e C-H
- Nessun gruppo funzionale
- Non possiede legami polari e legami π: non reattivo (inerte).
- Gas a NTP
- Insolubile in acqua

• OH gruppo funzionale

- Legami polari C-O e O-H
- Lone pair su O
- Reagisce con elettrofili
- Reagisce con basi forti
- Liquido a NTP
- Solubile in acqua

- 1. Definiscono una classe di composti
 - -Composti che appartengono alla stessa classe hanno proprietà e reattività simili.
- 2. Frequentemente essi costituiscono sito di reazione.
 - Definiscono la reattività di una molecola.
- 3. Determinano il nome
 - Per esempio tutti i chetoni hanno suffisso –one:
 - » acetone
 - » ciclopropanone
 - » cortisone

Idrocarburi

- Solo atomi di C e di H
- Alifatici (alcani, alcheni, alchini) e aromatici.

Idrocarburo	Struttura Generale	Esempio	Gruppo Funzionale
Alcani	R-H	CH ₃ CH ₃	
Alcheni	c=c	HC=CH	Doppio legame
Alchini	—C≡C—	H-C≡C-H	Legame Triplo
Aromatici			Anello aromatico

Gruppi Funzionali contenenti legami σ C-Y

Nome della classe	Struttura	Esempio	Struttura 3D	Gruppo Funzionale
Alogenuri alchilici	R-X:	CH ₃ -ër:	-	–X alogeno
Alcoli	(X=F, Cl, Br, I) R-ÖH	сн₃-ён		-OH idrossi
Eteri	R-Ö-R	СН₃-Ö-СН₃	2 2	−OR alcossi
Ammine	$R = \ddot{N}H_2$ o $R_2\ddot{N}H$ or $R_3\ddot{N}$	CH ₃ NH ₂		-NH ₂ ammino
Tioli	R-ÄH	СН ₃ ЁН	2	-SH mercapto
Solfuri	R-ÿ-R	сн₃-Ё-сн₃	3 3	-SR alchiltio

Gruppi Funzionali contenenti legami il legame C=O

Nome della classe	Struttura	Esempio	Struttura 3D	Gruppo Funzionale
Aldeidi	:O: C H	CH ₃ CH	25	H-C=O formile
Chetoni	:O: 	CH ₃ CCCH ₃	2 2	C=O carbonile
Acidi carbossilici	:O: R ⊂ ÖH	сн ³ _С <u>ё</u> н	3	-COOH carbossile
Esteri	eo: R ÖR	CH3 ÖCH3		-COOR
Amidi	:O: R C N H (o R) H (o R)	:O: CH ₃ CNH ₂		-CONH ₂ -CONHR -CONR ₂
Cloruri Acilici	R C CI:	:O:		-COCI

Molecole Polifunzionali

alcol alchene

nicotina

colesterolo

ammide

caffeina

mescalina