Università di Trieste, A.A. 2022/2023 – Lauree Triennali in Fisica

Fondamenti di Elettrodinamica, Sessione Autunnale, I Appello – 5.9.2023

Cognome Nome

Istruzioni per lo svolgimento del tema:

Per ciascun problema, descrivere sinteticamente la soluzione evidenziando le leggi e/o i principi fisici invocati e le approssimazioni utilizzate. Rispondere alle domanda poste fornendo la grandezza incognita espressa simbolicamente in funzione delle grandezze date o di quelle ottenute in altre risposte, riportando, ove richiesto, il corrispondente risultato numerico con il corretto numero di cifre significative e con le unità di misura appropriate.

Problema 1

Una particella di massa M e carica q_1 si muove con velocità costante $\vec{\mathbf{v}}$ lungo l'asse z di un sistema di assi cartesiani. All'istante t=0 la particella si trova nell'origine degli assi. Si consideri un punto P(x,y,z). Sapendo che i potenziali ϕ e $\overrightarrow{\mathbf{A}}$ generati dalla particella si possono esprimere come

$$\phi = \frac{q_1}{4\pi\epsilon_0} \frac{1}{s}$$
 e $\overrightarrow{\mathbf{A}} = \frac{\overrightarrow{\mathbf{v}}}{\mathbf{c}^2} \phi$, dove $s = [(1 - \beta^2)(x^2 + y^2) + (z - vt)^2]^{1/2}$ e $\beta = v/c$:

- a) mostrare esplicitamente che ϕ ed $\overrightarrow{\mathbf{A}}$ soddisfano il gauge di Lorentz;
- b) calcolare i campi $\overrightarrow{\mathbf{B}}$ ed $\overrightarrow{\mathbf{E}}$ nel punto P all'istante t, mostrando che $\overrightarrow{\mathbf{E}}$ è parallelo al vettore $\overrightarrow{\mathbf{R}}$, che va dalla posizione della particella al tempo presente t al punto P.

Si supponga che una seconda particella, di massa $m \ll M$ e carica q_2 , si trovi all'istante t nel punto P in moto con velocità $\vec{\mathbf{v}}$. Determinare:

c) l'accelerazione istantanea della carica q_2 al tempo t.

Problema 2

Due gusci sferici conduttori di raggi a e b, con a < b, sono disposti concentricamente e caricati con cariche +q e -q, rispettivamente. Al centro di questa configurazione è fissato un dipolo magnetico ideale di momento $\overrightarrow{\mathbf{M}}$.

Determinare:

- a) i campi elettrico e magnetico in tutto lo spazio;
- b) il momento angolare totale del sistema;
- c) la variazione di momento angolare se il guscio esterno viene scaricato a terra.

Problema 3

Il Sole emette per radiazione una potenza totale $P_\odot=4.0\cdot 10^{26}$ W. Sapendo che il raggio del Sole è $R_\odot=7.0\cdot 10^8$ m e che la distanza media Sole-Marte è $R_{SM}=2.28\cdot 10^{11}$ m, stimare:

- a) l'ampiezza media dei campi elettrico e magnetico della radiazione sulla superficie del sole;
- b) l'irradianza solare sulla superficie di Marte.

Problema 4

Un aereo si muove con velocità costante di modulo v lungo l'asse x di un sistema di riferimento inerziale solidale con la superficie terrestre. Ad un certo istante, l'aereo passa davanti ad un'antenna a forma di asta fissata al suolo, la cui lunghezza a riposo è $L=1.0\,$ m. L'antenna forma un angolo $\theta=45^{\circ}$ con l'asse x.

Determinare:

- a) la lunghezza dell'antenna vista da un sistema di riferimento solidale con l'aereo, il cui asse x' si mantenga parallelo con l'asse x durante il moto;
- b) l'angolo che l'antenna forma con l'asse x'.