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Figure 6.3-1 Positional and orientational order in different types of materials.
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Figure 6.3-4 A wave traveling along a principal axis and polarized along another principal axis \ - .
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Figure 6.3-5 A linearly polarized wave at 45° in the z = 0 plane (a) is analyzed as a superposition
of two linearly polarized components in the = and y directions (normal modes), which travel at
velocities ¢,/ny and ¢,/ns [(b) and (c), respectively]. As a result of phase retardation, the wave is
converted from plane polarization to elliptical polarization (a). It is therefore clear that the initial
linearly polarized wave is not a normal mode of the system.
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Figure 6.3-7 Variation of the refractive index n(6) of the extraordinary wave with 6 (the angle
between the direction of propagation and the optic axis) in a uniaxial crystal, and directions of the
electromagnetic fields of the ordinary (o) and extraordinary (e) waves. The circle with a dot at the
center located at the origin signifies that the direction of the vector is out of the plane of the paper,
toward the reader.
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Figure 6.3-8 The vectors D, E, k, and S
all lie in a single plane, to which H and B
are normal. Also D 1 kand E L S. The
wavefronts are orthogonal to k.
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Figure 6.3-9 One octant of the k surface for (a) a biaxial crystal (n; < ny < ng); (b) a uniaxial
crystal (ny = ny = n,, ng = n.); and (¢) an isotropic crystal (n; = ny = ng = n).
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Figure 6.3-12 The normal modes for a plane wave traveling in a direction k that makes an angle
0 with the optic axis z of a uniaxial crystal are: (a) An ordinary wave of refractive index n, polarized
in a direction normal to the k—z plane. (b) An extraordinary wave of refractive index n () [given by
(6.3-15)] polarized in the k—z plane along a direction tangential to the ellipse (the k surface) at the
point of its intersection with k. This wave is “extraordinary” in the following ways: D is not parallel
to E but both lie in the k—z plane, and S is not parallel to k so that power does not flow along the
direction of k; the rays are therefore not normal to the wavefronts so that the wave travels “sideways.”
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(a) Forward wave (b) Backward wave

Figure 6.4-1 (a) The rotation of the plane of polarization by an optically active medium results
from the difference in the velocities for the two circular polarizations. In this illustration, the right
circularly polarized wave (R) is faster than the left circularly polarized wave (L), i.e., ny < n_, so
that p is positive and the material is dextrorotatory. (b) If the wave in (a) is reflected after traversing
the medium, the plane of polarization rotates in the opposite direction so that the wave retraces itself.
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(a) Forward wave (b) Backward wave

Figure 6.4-2 (a) Polarization rotation in a medium exhibiting the Faraday effect. (b) The sense of
rotation is invariant to the direction of travel of the wave.
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Magnetic materials MO material A(m) V (adTm~') Reference
Diamagnetic Dense flint glass 505 33.6  Thamaphat et al. (2006)

525 30.4

YAG 632.8 5.86  Munin etal. (1992)
5145 9.13
501.7 9.67
496.5 9.9
488 10.27
476.5 10.78
4724 11
465.8 11.36
4579 11.82
BK-7 glass 6328 430
5145 6.72
501.7 7.16
496.5 7.29
488 7.58
476.5 7.98
4724 8.13
465.8 8.41
4579 8.70
Dynasil 1001 632.8 3.48
5145 5.48
501.7 5.76
496.5 59
488 6.14
476.5 6.46
' 4724 6.57

465.8 6.79
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the light aligned for maximum and minimum transmittance, as indicated.
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Figure 6.6-4 Controlling light intensity by means of a wave retarder with variable retardation I'
placed between two crossed polarizers.
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Figure 6.6-5 An optical isolator that makes use of a Faraday rotator transmits light in one
direction. (a) A wave traveling in the forward direction is transmitted. (b) A wave traveling in the
backward (or reverse) direction is blocked.
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Figure 6.6-6 A Faraday rotator followed by a half-wave () retarder is a nonreciprocal device that:
(a) maintains the polarization state of a linearly polarized forward-traveling wave, but (b) rotates the
plane of polarization of the backward-traveling wave by 90°.



