

INFN Magnetometer

Collaboration meeting 19 April 2024

P. Girotti on behalf of the g-2 Italian collaboration

Outline

- Magnetometry 101
- Post Run-6 campaigns
- Absolute calibration
- Kick shape measurements
- Kick transient measurements
- Conclusions

Half WavePlate (in)

INFN Magnetometer

• Goal: measure $\sim 10^{-7}$ T transients with $\sim \mu s$ sampling

Magnet ramp up

- Faraday rotation due to magnetic field
- Ramp up useful to determine absolute calibration

Magnet ramp up

- Faraday rotation due to magnetic field
- Ramp up useful to determine absolute calibration

Equalizing output

- Input HWP to optimize polarization quality
- Output HWP to equalize output at equilibrium

Motorized and remotely operated!

Equalizing output

- Input HWP to optimize polarization quality
- Output HWP to equalize output at equilibrium

Equalizing output

- Input HWP to optimize polarization quality
- Output HWP to equalize output at equilibrium

Motorized and remotely operated!

Kick measurement

- Two separate fast diodes for kick measurements (300 Mhz)
- Two balanced slow diodes for transient measurement (2 Mhz)

Time [µs]

Transient anatomy

Post Run-6 campaigns

October							
S	Μ	Т	W	Т	F	S	
1	2	3	4	5	6	7	
8	9	10	11	12	13	14	
15	16	17	18	19	20	21	
22	23	24	25	26	27	28	
29	30	31	1	2	3	4	
5	6	7	8	9	10	11	
December							
S	Μ	Т	W	Т	F	S	
26	27	28	29	30	1	2	
3	4	5	6	7	8	9	
10	11	12	13	14	15	16	
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	
24 31	25 1	26 2	27 3	28 4	29 5	30 6	
24 31 Jan	25 1 Iuary	26 2	27 3	28 4	29 5	30 6	
24 31 Jan	25 1 Iuary M	26 2 / T	27 3 W	28 4 T	29 5 F	30 6 S	
24 31 Jan S 31	25 1 nuary M 1	26 2 / T 2	27 3 W 3	28 4 T 4	29 5 F 5	30 6 S 6	
24 31 Jan S 31 7	25 1 Nuary M 1 8	26 2 / T 2 9	27 3 W 3 10	28 4 T 4 11	29 5 F 5 12	30 6 S 6 13	
24 31 S 31 7 14	25 1 nuary M 1 8 15	26 2 / T 2 9 16	27 3 W 3 10 17	28 4 T 4 11	29 5 F 5 12 19	30 6 S 6 13 20	
24 31 Jan S 31 7 14 21	25 1 Mary 1 8 15 22	26 2 T 2 9 16 23	27 3 W 3 10 17 24	28 4 T 4 11 18 25	29 5 F 5 12 19 26	30 6 S 6 13 20 27	
24 31 S 31 7 14 21 28	25 1 M 1 8 15 22 29	26 2 T 2 9 16 23 30	27 3 W 3 10 17 24 31	28 4 T 4 11 18 25 1	29 5 F 5 12 19 26 2	30 6 S 13 20 27 3	

October 2023:

- 550+ hours of acquisition
- Many configurations tested here:
 - Nominal and offset radii
 - Free-standing and clamped bridge
 - Various magnet and kicker setpoints
 - Fast kick shape measurements
 - Vibration measurements (new quadrant photodiode)

Post Run-6 campaigns

October							
S	Μ	Т	W	Т	F	S	
1	2	3	4	5	6	7	
8	9	10	11	12	13	14	
15	16	17	18	19	20	21	
22	23	24	25	26	27	28	
29	30	31	1	2	3	4	
5	б	7	8	9	10	11	
De	December						
S	Μ	Т	W	Т	F	S	
26	27	28	29	30	1	2	
3	4	5	6	7	8	9	
10	11	12	13	14	15	16	
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	
31	1	2	3	4	5	6	
Jar	January						
S	Μ	Т	W	Т	F	S	
31	1	2	3	4	5	6	
7	8	9	10	11	12	13	
14	15	16	17	18	19	20	
21	22	23	24	25	26	27	
28	29	30	31	1	2	3	
4	5	6	7	8	9	10	

October 2023:

- 550+ hours of acquisition
- Many configurations tested here:
 - Nominal and offset radii
 - Free-standing and clamped bridge
 - Various magnet and kicker setpoints
 - Fast kick shape measurements
 - Vibration measurements (new quadrant photodiode)

December 2023:

- HWPout symmetry test
- Full 16-kicks supercycle measurement

Post Run-6 campaigns

October							
S	Μ	Т	W	Т	F	S	
1	2	3	4	5	б	7	
8	9	10	11	12	13	14	
15	16	17	18	19	20	21	
22	23	24	25	26	27	28	
29	30	31	1	2	3	4	
5	б	7	8	9	10	11	
De	December						
S	Μ	Т	W	Т	F	S	
26	27	28	29	30	1	2	
3	4	5	6	7	8	9	
10	11	12	13	14	15	16	
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	
31	1	2	3	4	5	6	
Jai	January						
S	Μ	Т	W	Т	F	S	
31	1	2	3	4	5	6	
7	8	9	10	11	12	13	
14	15	16	17	18	19	20	
21	22	23	24	25	26	27	
28	29	30	31	1	2	3	
4	5	6	7	8	9	10	

04/19/24

October 2023:

- 550+ hours of acquisition
- Many configurations tested here:
 - Nominal and offset radii
 - Free-standing and clamped bridge
 - Various magnet and kicker setpoints
 - Fast kick shape measurements
 - Vibration measurements (new quadrant photodiode)

December 2023:

- HWPout symmetry test
- Full 16-kicks supercycle measurement

January 2024:

- 230+ hours of eddy currents measurements
- Measurement at various magnet setpoints
- Vibration suppression studies with Quarter WavePlate
- Best campaign for transient determination at R0

Absolute calibration

- Magnet ramps to determine mV/mG sensitivity
 - Magnet non-linearity (mG/A) determined too
- Total light output (sum of diodes) to normalize for laser fluctuations
- Blumlein amplitude to normalize different HWP settings and alignments

15%

Amplitude trend

1.1

1.05

0.95

0.9

0.85

0.8

R0

Kick amplitude [arb. u.]

Kick shape

- R0 and R1 with magnet ON measured in Oct 8-9
- Measurement done in AC-coupling mode no light output normalization :(
 - Can't distinguish between kick warmup effects vs laser fluctuation
- Proposed acquisition with DC-coupling for this week but MC-1 is now in shutdown mode
- Kick **shape** is very consistent between R0 & R1

Eddy currents

• Oscillations with magnet **ON** are a puzzle since long time

Eddy currents

B.

04/19/24

• Oscillations with magnet **ON** are a puzzle since long time

- Signal oscillation produced by angle of crystal vs B field
 - Right order of magnitude for $\sim 10 \ \mu m$ oscillations
- January campaign focused on solving this puzzle
- Magnet scan, Quarter WavePlate studies
 P. Girotti | INFN Magnetometer

17 / 46

Magnet scan

- Magnet strength values corresponding to the nodes of descending ramp measurements
- [3043, 3619, 4353, 5173] A
- Faraday rotation angles: [2.5π, 3π, 3.5π, 4π]

Magnet scan

- Magnet strength values corresponding to the nodes of descending ramp measurements
- [3043, <mark>3619</mark>, 4353, 5173] A
- Faraday rotation angles: [2.5π, 3π, 3.5π, 4π]

- Vibrations suppressed for the nodes with negative slope! (2.5π, 3.5π)
- This is very surprising
- Physical reason not understood yet

04/19/24

P. Girotti | INFN Magnetometer

19/46

HWP scans

- HWP optimization scan performed at each magnet setpoint
- HWP angle chosen to maximize **blumlein** amplitude (or SNR)
- Very different behavior between the various setpoints $[2.5\pi, 3\pi, 3.5\pi, 4\pi]$
- Physical reason not yet understood

Quarter WavePlate

- Quarter WavePlate inserted on Jan 23rd
 - Last 6 days of acquisition
 - 100% remote, eventually proven to be the best quality data
- 45° incident linearly polarized light becomes circularly polarized
 - No Faraday effect
- Goal is to measure effects not depending on the kicker magnetic field
- First, QWP scan to determine working setpoints

QWPscan

 Some QWP values manage to zero the blumlein amplitude → perfect circular polarization

QWPscan

- Some QWP values manage to zero the blumlein amplitude → perfect circular polarization
- Some values enhance or decrease measured vibrations
- But never truly suppressed as for 2.5π , 3.5π Faraday nodes

- QWP values chosen for long eddy currents measurements:
- 62°, 130° \rightarrow blumlein maximized
- 22.5°, 85° \rightarrow blumlein minimized
- $0^{\circ} \rightarrow$ blumlein negative

04/19/24

Vibration subtraction

- Three significant acquisitions
- QWP 22.5°: zero blumlein and transient → oscillations are not field transients
- Sign, phase, amplitude of oscillation in the three cases is very similar but not exactly equal. Can we cancel them out?

P. Girotti | INFN Magnetometer

Minimization scan

- Finding the best combination of P, N, Z with a minimization scan
- wPos*Pos + wNeg*Neg + wZero*Zero
- Vibration quantified as trace RMS in [2,6] ms range

Magnet strength

- Back to magnet strength comparison \rightarrow with calibration and no vibrations
- Full current (blue) treated with vibration subtraction with QWP
- "Overshoot" at \sim 0.2 ms correlated with magnet current

 $B(t) = b - Ae^{-t/\tau}$

$$B(t) = b - Ae^{-t/\tau} \sin(ft + \phi)$$

B(t) = $b - Ae^{-t/\tau} \sin(ft + \phi) + A_1 e^{-t/\tau_1} \sin(f_1 t + \phi_1)$

 $B(t) = b - Ae^{-t/\tau} \sin(ft + \phi) + A_1 e^{-t/\tau_1} \sin(f_1 t + \phi_1) + A_2 \sin(f_2 t + \phi_2)$

Radial dependence

- R0 is at magic radius, R1 is +17.5 mm
- Blumlein amplitude higher at $R1 \rightarrow +22\%$
- Eddy currents transient higher at R1 $\rightarrow \sim 2x \otimes 30 \ \mu s$

Beam distribution Run3b

31/46

04/19/24

Radial dependence

- Kick radial dependence:
- From magnetometer magnet ramp calibrations and slow diodes
 - Blumlein ratio R1/R0 ~ 1.22 $\pm 0.06^*$
- From magnetometer kick measurements
 - Kick ratio R1/R0 ~ $1.27 \pm 0.20^{*}$
- From the kicker paper: https://arxiv.org/pdf/2104.07805.pdf
 - Kick ratio R1/R0 ~ 1.08
- Simple Biot-Savart simulation (thin wires) -
 - Kick ratio R1/R0 ~ 1.13

32 / 46

Conclusions

Interested? More details in: Dec 2023: DocDB 29814 Feb 2024: DocDB 30020 Apr 2024: DocDB 30161

- Overall, very successful 2023/2024 magnetometer campaigns with many fully-remote shifts
- Many periscope improvements but didn't remove oscillations
- Magnet scan + QWP studies are now shining light on this puzzle → successful vibration cancellation
- Both kick and transient data show higher effects at outer radius (+22% kick, +90% transient at +17.5 mm)
- Only missing item is an accurate kick amplitude absolute determination (drift-limited to ±15%)
- Analysis toward completion, TODOs:
 - Bk term estimation
 - Systematics uncertainties

Thank you for your attention!

04/19/24

Backup slides

Hardware

- Newport diode laser (635 nm)
- Two TGG crystals encapsulated in periscopes placed between kicker plates
- Halfwave plates for input polarization and output equalization (remotely controlled)
- Detectors:
 - Balanced photodiode for eddy currents
 measurements
 - Fast photodiodes for kick shape measurements
 - Quadrant photodiode for mechanical vibration measurements
- Fully remote-controlled DAQ laptop, digitizer, and delay generator

Periscopes

- Two periscopes
 - R0 (magic radius)
 - R1 = R0 + 15 mm
- New bridge design wrt 2022 with added rigidity
- Kicker cage clamp repurposed to hold the bridge since Oct 17

Periscope positioning

- R0 and R1 positioning determined with kicker mock-up at MC-1
- Bridge positioning has few millimeters of play
- $R0 = 0 \pm 2 mm$
- $R1 = +17.5 \pm 2 \text{ mm}$

Oscillations

Smoothing

- Given the high-frequency oscillations, some smoothing operations have been studied
- Running Average with triangular kernel is a good compromise in removing high frequencies withouth altering eddy currents shape

Trace (SNR > 15.0) Kick 1

R0 vs R1 (Eddy)

- Blumlein used for relative calibration.
- R0 measurements spanning Oct, Dec, and Jan campaigns
- Relative calibration gives excellent consistency
- R1 transient is +90% wrt R0

R0 vs R1

B field [G]

- Absolute calibration from with blumlein
- R0: 243 G (±10%)
- R1: 308 G (±15%)
- R1/R0 ~1.27
- Note: need to correct for cos² nonlinearity

INFN Magnetometer

Light output

- Trend of blumlein/(A+B) 6 Blumlein/(A+B) [arb.u.] 62 60 58 56 54 52 12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00 Time
- Blumlein amplitude strongly correlates with sum of diodes (A+B)
- Much more stable after normalization
- A+B used to normalize between ramp and eddy currents too

January stability

- QWP 0° acquired two times, 5 days apart
- Traces are remarkably similar

Vibration analysis

- Quadrant photodiode measures x,y oscillations of the laser beam after exiting the periscopes
- Low frequencies (100, 200, 300 Hz) evident and correlated with kicks
- 17 kHz visible too in the first 1 ms after the first kick

Time [ms]

04/19/24

HWP scans

- Blumlein always [35-55] mV
- Vibration never suppressed

 Vibration suppressed only for 2.5π and 3.5π Faraday angles

P. Girotti | INFN Magnetometer

45 / 46

Full trace

- Combination successfully reduces ~20 kHz vibrations
- Slow drifts (> 10 ms) remain

