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Seismology I - Oscillators...

What is a wave? 

Small perturbations of a 
stable equilibrium point

Linear restoring 
force

Harmonic 
Oscillation
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Seismology I - Oscillators...

Oscillatory Motion

The motion of an object can be predicted if the 
external forces acting upon it are known.

A special type of motion occurs when the force on the 
object is proportional to the displacement of the object 
from equilibrium.

If this force always acts towards the equilibrium 
position a back and forth motion will results about the 
equilibrium position.

This is known as periodic or oscillatory motion.
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Seismology I - Oscillators...

Familiar examples of periodic motion
1. Pendulum

2. Vibrations of a stringed instrument

3. Mass on a spring
Other examples include

1. Molecules in a solid

2. Air molecules in a sound wave

3. Alternating electric current
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Seismology I - Oscillators...

Simple Harmonic Motion

If an object oscillates between two positions for an 
indefinite length of time with no loss of mechanical 
energy the motion is said to be simple harmonic motion.

Fixed point X=0

Equilibrium 

Spring 
compressed 

Spring 
stretched

Example: Mass on a spring.
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Seismology I - Oscillators...

X=0

Spring exerts a force on the mass to restore it to its original position.

F ∝ -x    or    F = -kx      (Hooke’s Law)
where k is a +ve constant, the spring constant

F +ve

x -ve

F -ve

x +ve
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Seismology I - Oscillators...

A mass under a restoring force

From Newton’s 2nd Law

This is the condition for simple harmonic motion
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Seismology I - Oscillators...

Some definitions:
The time taken to make one complete oscillation is the 
period T.

The frequency of oscillation, f = 1/T   in  s-1 or  Hertz

The distance from equilibrium to maximum displacement is 
the amplitude of oscillation, A.

An object moves with simple harmonic motion (SHM) 
when the acceleration of the object is proportional to 
its displacement and in the opposite direction. 
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Seismology I - Oscillators...

Consider the following:

The general equation for the curve traced out by the pen 
is   x = A cos (ωt + δ)

where (ωt + δ) is the phase of the motion

and  δ  is the phase constant

x

time

A

-A
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Seismology I - Oscillators...

We can show that the expression x = A cos (ωt + δ)

is a solution of                         by differentiating wrt time

Compare this to   a = -(k/m)x   

x = A cos (ωt + δ)   is a solution if   
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Seismology I - Oscillators...

We can determine the amplitude of the oscillation (A) 
and the phase constant (δ) from the initial position xo 
and the initial velocity vo 

The system repeats the oscillation every T seconds

therefore              x(t) = x(t+T)

and 

The function will repeat when ωT = 2π  
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Seismology I - Oscillators...

We can relate ω, f and the spring constant k using the 
following expressions.

ω is known as the angular frequency and has units of rad.s-1
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Seismology I - Oscillators...

Time dependence of x, v and a of an object 
undergoing SHM

v v =-ωAsin(ωt)

t

a a =-ω2Acos(ωt)

t

x x =Acos(ωt)

T/2   T

t

13



Seismology I - Oscillators...

Energy in Simple Harmonic Motion

In SHM the total energy (E) of a system is constant but the 
kinetic energy (K) and the potential energy (U) vary wrt.
Consider a mass a distance x from equilibrium and acted upon 
by a restoring force

Kinetic Energy

Potential Energy

Substitute ω2=k/m
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Seismology I - Oscillators...

Graphical representation

Potential

Energy

Kinetic

Energy
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Seismology I - Oscillators...

Total energy E =          K                 +            U

but

In SHM the total energy of the system is proportional 
to the square of the amplitude of the motion

Total Energy
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Seismology I - Oscillators...

Graphical representation

At maximum displacement K=0       ∴  E = U
At equilibrium    U=0  and  v=vmax   ∴   E = K
At all times E = K + U is constant

Average energy = ½E
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Seismology I - Oscillators...

Lennard-Jones potential 

Potential 
energy

Interatomic 
distance
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Seismology I - Oscillators...

The Simple Pendulum

A simple pendulum consists of 
a string of length L and a bob 
of mass m.

When the mass is displaced 
and released from an initial 
angle φ with the vertical it 
will swing back and forth with 
a period T.

We are going to derive an 
expression for T.
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Seismology I - Oscillators...

Forces on mass:
     mg (downwards)
     tension (upwards)

When mass is at an angle φ to 
the vertical these forces have to 
be resolved.

Tangentially:
weight = mg sin φ (towards 0)
tension = T cos 90 = 0 

+ve

0
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Seismology I - Oscillators...

we find           s = Lφ

+ve

0

Using 

From Newton’s 2nd Law (N2)
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Seismology I - Oscillators...

+ve

0

or

For small φ      sinφ ~ φ 

ie SHM with   

This has the solution

             φ = φo cos (ωt + δ) 
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Seismology I - Oscillators...

Period of the motion  

ie the longer the pendulum the greater the 
period   

Note: T does not depend upon amplitude of 
oscillation

even if a clock pendulum changes amplitude 
it will still keep time
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Seismology I - Oscillators...

Period of the motion  

This is only true for φ < 10o

Generally   

Tipler Fig 14-16
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Seismology I - Oscillators...

Dark blue pendulum is the simple
 approximation, 

light blue pendulum shows the numerical 
solution of the nonlinear differential 
equation of motion.

If the initial angular displacement is significantly large the small angle 
approximation is no longer valid
The error between the simple harmonic solution and the actual solution 
becomes apparent almost immediately, and grows as time progresses. 
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Seismology I - Oscillators...

What is a wave? 

Small perturbations of a 
stable equilibrium point

Repulsive Potential ∝ 1/rm

Attractive Coulombic 
Potential ∝ 1/r

Total Potential

Linear restoring 
force

Harmonic 
Oscillation

26



Seismology I - Oscillators...

What is a wave? - 2

Small perturbations of a 
stable equilibrium point

Linear restoring 
force

Harmonic 
Oscillation

Coupling of 
harmonic oscillators 

AB

0 0

the disturbances can 
propagate
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Seismology I - Oscillators...

Coupled systems

Simplest example: Two identical 
pendula A and B connected by a 
light unstretched spring.
(a) Move A to one side, while 
holding B fixed, then release.

AB

0 0

AB

0 0

x

A will oscillate with gradually 
decreasing amplitude.
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Seismology I - Oscillators...

(b) Move A and B to same side 
by equal amounts then release.

The distance between A and B 
is constant and equal to the 
relaxed length of the spring, 
and the spring exerts no force 
on either mass.

Each pendulum is essentially 
free and oscillating with its 
natural frequency 

AB

0 0

xx

AB

0 0L
g

o =ω
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Seismology I - Oscillators...

If xA and xB are the 
displacements of A and B resp.
The equations of motion are

ie both masses vibrate at the 
same frequency and with the 
same amplitude.

AB

0 0

xx

AB

0 0

)tcos(cx oA ω=

)tcos(cx oB ω=

This is one   NORMAL MODE   
of a coupled system
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Seismology I - Oscillators...

Move A and B to opposite sides 
by equal amounts then release.

The spring is first stretched 
then a half cycle later it will be 
compressed.

The motions of A and B will be 
mirror images.

AB

0 0

xx

AB

0 0

This is the second  NORMAL 
MODE of the system
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Seismology I - Oscillators...

Equation of motion for coupled oscillators 

Consider the situation where 
both masses are free to move 
and both are displaced a small 
distance x

AB

0 0
x xThe spring is stretched by 2x 

and exerts a restoring force of 
2kx on the masses 

Equation of motion for mass A 0kx2xm
dt
xdm AA

2
o2

A
2

=+ω+

0x)2(
dt
xd

A
2
c

2
o2

A
2

=ω+ω+ m
k2

c =ωwhere

32



Seismology I - Oscillators...

')2( 2
c

2
o ω=ω+ωif 






 +=ω

m
k2

l
g'then 

This has the solution          xA = D cos ω’t

Motion of B is the mirror image of A        xB = -D cos ω’t

Each pendulum oscillates with SHM. 

The coupling spring has increased the restoring force and 
therefore increased the frequency of oscillation.

A and B are always 180o  (π)  out of phase.
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Seismology I - Oscillators...

What is a wave? - 2

Small perturbations of a 
stable equilibrium point

Linear restoring 
force

Harmonic 
Oscillation

Coupling of 
harmonic oscillators 

the disturbances can 
propagate, superpose and 
stand

Normal modes of the system
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Seismology I - Oscillators...

N coupled oscillators

Consider a flexible elastic string to which is attached N 
identical particles, each mass m, equally spaced a distance L 
apart.  
The ends of the string are fixed a distance L from mass 1 
and mass N.  The initial tension in the string is T.

Consider small transverse 
displacements of the 
masses x

y

      1           2            3                                             N-2         N-1          N 

Lm
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Seismology I - Oscillators...

Suppose particle 1 is displaced to y1, 
particle 2 to y2  etc  

Length of string between 
particles 1 and 2

 = cos α1 = L / L’ 
ie     L’ = L /cos α1 

   L’ ~ L (1 + α1
2 /2) ie the increase in length = L (α1

2  / 2)

for small angles this increase is small and can be ignored

for small α  cos α ~ (1 - α1
2 /2)

T
T

 1                2                  3

α1

α2

1 2

y2

y1α1
L

L’
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Seismology I - Oscillators...

consider masses p-1, p and p+1 at some point along  string

for small displacements  y  (compared to L)

Resultant Force on p    =    -T sin αp-1
  + T sin αp

p-1                    p                       p+1

αp-1

αp
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Seismology I - Oscillators...

yp+1yp

yp-1
αp-1

L

L (αp-12/2)

ypαp
L

L (αp2/2)

Force on particle   
  

€ 

Fp = −T
yp − yp−1

L

 

 

 
 

 

 

 
 + T

yp+1 − yp

L

 

 

 
 

 

 

 
 

  

€ 

sinαp =
yp+1 − yp

L (1 +αp
2 /2)

~
yp+1 − yp

L
for small α

  

€ 

sinαp−1 =
yp − yp−1

L (1 + αp−1
2 /2)

~
yp − yp−1

L
for small α
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Seismology I - Oscillators...

ppp amFbut =

Substitute T/mL = ωo2

)yy()yy(
dt
yd

p1p
2
o1pp

2
o2

p
2

−ω+−ω−=∴ +−

  

€ 

Fp = −T
yp − yp−1

L

 

 

 
 

 

 

 
 + T

yp+1 − yp

L

 

 

 
 

 

 

 
 

  

€ 

m
d2yp

dt2
= −T

yp − yp−1

L

 

 

 
 

 

 

 
 + T

yp+1 − yp

L

 

 

 
 

 

 

 
 
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Seismology I - Oscillators...

0)yy(y2
dt
yd

or 1p1p
2
op

2
o2

p
2

=−ω−ω+ −+

We can write a similar expression for all N particles

Therefore we have a set of N (coupled) differential 
equations one for each value of p from p=1 to p=N.

N.B. at fixed ends:    y0 = 0    and   yN+1 = 0

+
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Seismology I - Oscillators...

Special case N=1

This is transverse harmonic 
motion with angular frequency

T T

L L

m

1Nfor0)yy(y2
dt
yd

02
2
o1

2
o2

1
2

==−ω−ω+

0)yy(y2
dt
yd

Generally 1p1p
2
op

2
o2

p
2

=−ω−ω+ −+

no particle            =0

0y2
dt
yd

1
2
o2

1
2

=ω+

mL
T22 2

o =ω
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Seismology I - Oscillators...

Special case N=2

0yy2
dt
yd

2
2
o1

2
o2

1
2

=ω−ω+

0yy2
dt
yd

1
2
o2

2
o2

2
2

=ω−ω+

These are similar to the equations for coupled pendula but 
here we have the simplification that ωo = ωc
We get two normal modes of oscillation

Lower mode    ω = ωo Upper mode ω = √3ωo
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Seismology I - Oscillators...

Monoatomic 1D lattice
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