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What is a wave?

Small perturbations of a ~ Linear restoring ~ Harmonic
stable equilibrium point - force Oscillation
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Oscillatory Motion

The motion of an object can be predicted if the
external forces acting upon it are known.

A special type of motion occurs when the force on the
object is proportional to the displacement of the object
from equilibrium.

If this force always acts the equilibrium
position a back and forth motion will results about the
equilibrium position.

This is known as or motion.
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Familiar examples of periodic motion
1. Pendulum

2. Vibrations of a stringed instrument

3. Mass on a spring

Other examples include

1. Molecules in a solid
2. Air molecules in a sound wave

3. Alternating electric current
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Simple Harmonic Motion

If an object oscillates between two positions for an
indefinite length of time with no loss of mechanical
energy the motion is said to be simple harmonic motion.

Example: Mass on a spring.

2@2@@2@@@2@@@@2@@@@2@@ Equilibrium
@D@@D@D@»@D@D@D@@D@D@@@D i Spring
| comp jzssed
D@@D@@D@@D@@D@D@i@@@@@@ Sprin
i stretched
Fixed point X=0
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Spring exerts a force on the mass to restore it to its original position.

Fo-x or F=-kx (Hooke's Law)

where k is a +ve constant, the spring constant
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A mass under a restoring force

From Newton's 2nd Law F = ma
d®x
where a=—
dt
2
therefore ~kx =m d—:
dt
d®x k
or .2 - T X
dt m

This is the condition for simple harmonic motion
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d°x Kk
dt®* m
An object moves with simple harmonic motion (SHM)

when the acceleration of the object is proportional to
its displacement and in the opposite direction.

X

Some definitions:
The time taken to make one complete oscillation is the

The =1/T in s!lor Hertz

The distance from equilibrium to maximum displacement is
the
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Consider the following:

X 4

time

The general equation for the curve traced out by the pen
iIs x = A cos (ot +d)

where (ot + 0) is the phase of the motion

and 0§ is the phase constant
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We can show that the expression x = A cos (ot + )
d°x  k

is a solution of 2w by dif ferentiating wrt time
X = A cos(wt+90)
vV = :—: = —Aw sin(wt +96)
a = :—: - —~Aw? cos(wt +d)
or a-=-0°x
Compare this to a = -(k/m)x
k

x = A cos (ot +98) isasolutionif ©=_|—
m
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We can determine the amplitude of the oscillation (A)
and the phase constant (8) from the initial position x,

and the initial velocity v,

if x=Acos(wt+0)then x, =Acos(d)

if v=-Awsin(wt+98) then v, =-Awsin(d)

The system repeats the oscillation every T seconds

therefore X(t) = x(++T)
and Acos(wt +8) = Acos(o(t + T) + d)
= Acos(wt +0+wT)

The function will repeat when oT = 2%
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We can relate w, f and the spring constant k using the
following expressions.

1 0
f_T_Zn
f_l_l 5

T 2x\m

w is known as the angular frequency and has units of rad.s™
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undergoing SHM

y X =Acos(wt)
NI e
AN NN
v v =-wAsin(wt)
AN
a a =-w°Acos(wt)

SN SN/

/
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Energy in Simple Harmonic Motion

In SHM the total energy (E) of a system is constant but the
kinetic energy (K) and the potential energy (U) vary wrt.

Consider a mass a distance x from equilibrium and acted upon
by a restoring force Equilibrium

Kinetic Energy Ty
K=%mv2 | B ! YV VYV VV\ / \J \ m

V = _A(DSIH((DT t 6) Potential Energy

K = 4LmA%w’ sin®(ot + ) U = % kx?
Substitute w?=k/m X=A COS((DT + 6)

K = LKA® sin®(wt +9) U = % kA® cos® (ot + )
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Kinetic

Energy

Potential

Energy
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Total Energy

Total energy E = K

+ U
=@\2 Sinz(m@ +@2 cosz(mg

= 1L kA? (Sinz(ooT +8) + cos® (ot + 6);

but (Sinz(oo‘r +0)+ cosz(w’r + 6))= 1

E = L kA?

In SHM the total energy of the system is proportional
to the square of the amplitude of the motion
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Graphical representation

U = 14 kA® cos’ (ot + )

11. 42
Etulal = 51‘4—

Average energy = 3E

P .‘1__2kA2 sin“(ot + 8)
—A A

At maximum displacement K=0 - E
At equilibrium  U=0 and v=v,, .. E=
At all times E = K+ U is constant
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Lennard-Jones potential
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Minimum occurs at
r=ry=0.74 nm
Uu(r), eV 5
0
\:/__—
-5 |
_10 | |
0 0.2 0.4 0.6 0.8 1 12 1.4
r, nMm

Interatomic
distance

Seismology I - Oscillators...

18



The Simple Pendulum

A simple pendulum consists of
a string of length L and a bob
of mass m.

When the mass is displaced
and released from an initial
angle ¢ with the vertical it
will swing back and forth with

a period T.

We are going to derive an

expression for T.
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Forces on mass: /2 N\
mg (downwards) -
tension (upwards)

|

When mass is at an angle ¢ to i
the vertical these forces have !
be resolved. i
3

Tangentially: S ;
weight = mg sin ¢ (tfowards 0) L Y
tension = T cos 90 =0 R
mg
E Erang = = m95|n(|) +ve
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. ¢(rads) s
Usmg > =H

we find s=L¢

From Newton's 2nd Law (N2)

3 Fiang = —mMgsing
= ma
dt?
d%¢

=mL——
dt?
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{ @?I
b \\_/_

-mgsing =mL— (AN 7\
gsing 412 | l 5
¢ g .. >
T gL T\ X
For small®  sing ~ ¢ E .
d° | pe
—i) _ g(l) :
dt L |
. s
: - 2 9 R T
ie SHM with o = 3 i \
0 . Mg Cos g
This has the solution

b = ¢, cos (wt + d)
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Period of the motion

T=2n=2n\F
W 9

ie the longer the pendulum the greater the
period

Note: T does not depend upon amplitude of
oscillation

even if a clock pendulum changes amplitude
it will still keep time
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Period of the motion 06, Tipler Fig 14-16

T = Z_J'C — ZEJE .04
W 9 TITo 1 o3

This is only true for ¢ < 10° Lo

Generally

oy (1 olel G
T- T (1+(;>_ sinz(qz))_+ (;} (i/_ sin4(“2’>_+ .....
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If the initial angular displacement is significantly large the small angle
approximation is no longer valid

The error between the simple harmonic solution and the actual solution
becomes apparent almost immediately, and grows as time progresses.

Dark blue pendulum is the simple
approximation, T - en _ ZR\F
9

W

light blue pendulum shows the numerical
solution of the nonlinear differential
equation of motion.

T= T (1+(1\ ( )_ ( )_( )_sm (qz))_+ ..... %
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What is a wave?

Small perturbations of a ~ Linear restoring ~ Harmonic
stable equilibrium point - force Oscillation

Potential energy
1
$
1
i
+ 11
\

- Repulsive Potential « 1/rM E U= 15kA cos” (ot + 8)

\
\

El\’(dl - %]\‘—‘l

\ Total Potential

+ K = 4kA® sin®(ot + )

’ Attractive Coulombic
5 Potential o« 1/r
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What is a wave? - 2

Small perturbations of a ~ Linear restoring ~ Harmonic
stable equilibrium point - force ~ Oscillation
Coupling of the disturbances can

harmonic oscillators - propagate
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Coupled systems

Simplest example: Two identical
pendula A and B connected by a

light unstretched spring. B A
(a) Move A to one side, while N
holding B fixed, then release. 0 0

A will oscillate with gradually

decreasing amplitude. " A
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(b) Move A and B to same side
by equal amounts then release.

The distance between A and B
is constant and equal to the
relaxed length of the spring, 0 0
and the spring exerts no force
on either mass.

Each pendulum is essentially
free and oscillating with its

9
nhatural frequency - i i i
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If x, and x5 are the

displacements of A and B resp.

The equations of motion are

X4 =C cos(w,t)
Xg = ¢ cos(w,t)

ie both masses vibrate at the

same frequency and with the
same amplitude.

This is one  NORMAL MODE
of a coupled system
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Move A and B to opposite sides
by equal amounts then release.

The spring is first stretched
then a half cycle later it will be
compressed.

The motions of A and B will be
mirror images.

This is the second NORMAL
MODE of the system
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Consider the situation where

both masses are free to move
and both are displaced a small B
distance x A AN

The spring is streftched by 2x —
and exerts a restoring force of 0 0

2kx on the masses

2
cj)g\+rnm%xA-+2kxA==O
dt

Equation of motion for mass A m

dZXA

2 2 2
dt2 + (wg +2w¢ )Xa =0 where o¢ = %
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iIf \/(mg + ng) = then W = J(Q + Zk)

This has the solution X,=Dcoswt
Motion of B is the mirror image of A Xg = -D cos o't

Each pendulum oscillates with SHM.

The coupling spring has increased the restoring force and
therefore increased the frequency of oscillation.

A and B are always 1800 (xx) out of phase.
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What is a wave? - 2

| =

Small perturbations of a ~ Linear restoring ~ Harmonic
stable equilibrium point - force Oscillation

the disturbances can
- propagate, superpose and
stand

Coupling of
harmonic oscillators

VA YA WO A

Normal modes of the system
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Consider a flexible elastic string to which is attached N
identical particles, each mass m, equally spaced a distance L
apart.

The ends of the string are fixed a distance L from mass 1
and mass N. The initial tension in the string is T.

Consider small transverse
displacements of the
masses
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Suppose particle 1 is displaced to y;,
particle 2 toy, etc

Length of string between

particles 1 and 2

=coso,=L/L
ie L' =L /cosa,

Y2

for small o cos a ~ (1 - oclz /2) i

2Yl

L'~L(1+a,2/2) ietheincrease inlength=L (cy2 / 2)

for small angles this increase is small and can be ignored
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for small displacements y (compared to L)

Resultant Force on p -Tsina,, + Tsina

P P
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L ((IP_IZ/Z) L (OLPZ/Z)
Op-1 ] \%p
- Yp-1 ] Yp
sino., ; = Yo~ Zp‘l ~ Yo Yoo for small o
L(A+a;,/2) L
sina,, = Yol —ZYp ~ YeaT Y for small a
L(1+a3/2) L
( ) )

Yp_yP—l +T/Yp+1_Yp
N A G

Force on particle F, = -T
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F -_T YP_Yp—l + T yP+1_YP

dZYp - _T Yp - Yp—l + T Yp+1 - Yp\

Substitute T/mL = wo2

dZYp 2 2
PRt (Yp = Yp1) + 05 (Ypu1 = ¥p)
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2
d Yo
dt®

202 Yy = 0 (Yt + Ypa) - O

We can write a similar expression for all N particles

Therefore we have a set of N (coupled) differential
equations one for each value of p from p=1 to p=N.

N.B. at fixedends: y,=0 and yy.;=0
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Special case N=1

d2
Generally dTYZP + 2(1)(2) Yp — oocz, (yP+1 — Yp-1) -0
d2Y1 2 2
2 + 2wg Yy — W, (Yz —Yo)=0 for N =1
dt P <
no particle =0
2
(jj,:;l t 2005 y; =0

This is transverse harmonic
motion with angular frequency

2T
2wt = ——
Mo T mL
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Special case N=2

d2

" r20y )y, =0
2

i,ryf +2w5 Y, —wly; =0

These are similar to the equations for coupled pendula but
here we have the simplification that wg = w¢

We get two normal modes of oscillation

Lower mode o = wg Upper mode o = v3wg

T N\
N
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Monoatomic 1D lattice

Interatomic potential

Now we consider a monatomic 1-D lattice in the x-direction. The lattice atoms are very
close to eqilibrium. Let us examine a single i-th atom and find the r; potential as a function
of displacement from equilibrium, U(r,).

W () A
& L & L & & L
(ith atom) ,
equilibrium position 1 ;’f
—
We expand this potential into a Taylor’s series: ol "”
dU 1 2( d°U 1 s d°U
uir)=U(r)+(r.-r)| — | +=(r—r, Uil T
(I) (0) (I O)(dr,]r 2(1 0) (drIZJr 6(1 0) (d’?3jr

The first term of this expansion is just the equilibrium binding energy (= const). The second
term is the slope of the potential at its minimum (= 0). The fourth and higher terms become
increasingly smaller. We are therefore left with the third term as the only significant change
in the potential energy for a small displacement u = r-r,. This has the form

AU =%Cu? (C=d?Uidr?atr,=r,)
representing the harmonic approximation, since it is the same as the energy stored in a
spring, or the potential energy of a harmonic oscillator. Our simple model of the dynamic

crystal structure should therefore be a “ball and spring” model, with the lengths of the
springs equivalent to the equilibrium separations of the ion cores.
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Monatomic 1D lattice

Let us examine the simplest periodic system within the context of harmonic approximation
(F = dU/du = Cu) - a one-dimensional crystal lattice, which is a sequence of masses m

connected with springs of force constant C and separation a.

The collective motion of these springs will Mass M

correspond to solutions of a wave equation. Hy—1 Uy ty+1

Note: by construction we can see that 3 types —.JHMWMW
of wave motion are possible,

2 transverse, 1 longitudinal (or compressional) il & nrl T
How does the system appear with a longitudinal wave?:

The force exerted on the n-th atom in the
lattice is given by

Fn = Fn+1,n — Fn-1,n = C[(un+1 — un) — (un - un-1)]' lgn1 an é_gnﬂ é_gnn
Applying Newton’s second law to the motion : s | = ;
of the n-th atom we obtain 42, -1 1

M tzn =F,=-CQu,-u,,—-u,,)

Note that we neglected hereby the interaction of the n-th atom with all but its nearest neighbors.
A similar equation should be written for each atom in the lattice, resulting in N coupled differential
equations, which should be solved simultaneously (N - total number of atoms in the lattice). In
addition the boundary conditions applied to end atoms in the lattice should be taken into account.
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