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Generalities

Basic concepts and techniques in the formulation of Finite-Difference (FD herafter):
The most fundamental statement of conservation principles, like e.g. mass, energy,
momentum, et., applies to a fixed quantity of matter;
From that, it is possible to develop conservation statements applicable to both a fixed region
in space and at a point, in the limit of a vanishing volume;
The conservation statement applicable to a point appears as a Partial Differential Equation
(PDE) and the statement for a fixed region in space as an equation involving integrals;
In the finite difference - FD - formulation, the continuous problem domain is discretized, so
that the dependent variables are considered to exist only at discrete points:

The FD method is based on the properties of Taylor (Maclaurin) expansions and on the definition of
derivatives.
The PDE form of the conservation principle is converted to an algebraic equation by approximating
derivatives as differences.

In the finite volume - FV - methodology, the continuous problem domain is divided up into
regions called control volumes (CV):

The dependent variables are considered to exists at a specified location within the volumes or on the
boundaries of the volumes;
The integrals in the conservation statement are approximated algebraically.

For both methods - FD and FV - a problem involving calculus has been transformed into an
algebraic problem.
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Definition and notation

In order to establish a finite difference procedure for solving a PDE, we need to replace the
continuous problem domain with a finite difference grid or mesh:

As an example, suppose we wish to solve a PDE for which ϕ(x, y) is the dependent variable
in the 2D (two-dimensional) square domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
We establish a grid on the domain by replacing ϕ(x, y) by ϕ(i∆x, j∆y), as illustrated in the
figure.

x (i)

y (j)

∆y

∆x

ϕi−2,j ϕi−1,j ϕi,j ϕi+1,j ϕi+2,j

ϕi,j−2

ϕi,j−1

ϕi,j+1

ϕi,j+2

Points on the grid can be easily located according to the values of i and j, so difference
equations are usually written in terms of the general point (i, j) and its neighbors.
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Definition and notation - cont.
Thus, if we think of ϕi,j as ϕ(x0, y0), then:

ϕi+1,j = ϕ(x0 +∆x, y0)

ϕi−1,j = ϕ(x0 −∆x, y0)

ϕi,j+1 = ϕ(x0, y0 +∆y)
ϕi,j−1 = ϕ(x0, y0 −∆y)
ϕi+2,j = ϕ((x0 + 2∆x, y0)

. . . . . .

For 3D problems we would have:
ϕi+1,j,k = ϕ(x0 +∆x, y0, z0)

ϕi,j+1,k = ϕ(x0, y0 +∆y, z0)

ϕi,j,k+1 = ϕ(x0, y0, z0 +∆z)
. . . . . .

ϕi,j,kϕi−1,j,k ϕi+1,j,k

ϕi,j+1,k

ϕi,j−1,k

ϕi,j,k−1

ϕi,j,k+1

For marching problems, e.g. time-dependent problems, the variation of the marching coordinate is
usually indicated by a superscript, such as ϕn+1

i,j , rather than a subscript.
Many different finite-difference formulations are possible for any given PDE (Partial Differential
Equation), according to:

Accuracy
Economy (computational costs)
Simplicity (implementation/programming).
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Definition of derivative

Definition of derivative
∂ϕ

∂x
= lim

∆x→0

ϕ(x0 +∆x, y0)− ϕ(x0, y0)

∆x
(1)

Here, if ϕ is continuous, it is expected that [ϕ(x0 +∆x, y0)− ϕ(x0, y0)]/∆x will be a reasonable
approximation to ∂ϕ/∂x for a sufficiently small, but finite, ∆x.

x

ϕ

x0 x0 +∆x

ϕ(x0)

ϕ(x0 +∆x)

∆x

Mean-value theorem: the difference
representation is exact for some point within the
∆x interval.

Developing a Taylor series expansion:

ϕ(x0 +∆x, y0) = ϕ(x0, y0) +

(
∂ϕ

∂x

)
0
∆x +

(
∂2ϕ

∂x2

)
0

(∆x)2

2!
+

(
∂3ϕ

∂x3

)
0

(∆x)3

3!

+ . . .+

(
∂n−1ϕ

∂xn−1

)
0

(∆x)n−1

(n − 1)!
+

(
∂nϕ

∂xn

)
ξ

(∆x)n

(n)!
x0 ≤ ξ ≤ (x0 +∆x)

(2)

where the last term can be identified as the remainder, and the subscript 0 indicates (x0, y0).
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Forward difference
We can now form the forward difference by rearranging the previous equation (2):(

∂ϕ

∂x

)
(x0,y0)

=
ϕ(x0 +∆x, y0)− ϕ(x0, y0)

∆x
−
(
∂2ϕ

∂x2

)
0

(∆x)
2!

−
(
∂3ϕ

∂x3

)
0

(∆x)2

3!
− . . . (3)

Switching to the index notation: (
∂ϕ

∂x

)
i,j

=
ϕi+1,j − ϕi,j

∆x
+ T.E (4)

Truncation Error
The difference between the partial derivative and its finite difference representation is the
truncation error, or TE for short.

We can characterize the limiting behavior of the T.E. by using the order of (O) notation:(
∂ϕ

∂x

)
i,j

=
ϕi+1,j − ϕi,j

∆x
+ O(∆x)

When the T.E. is written as O(∆x), it means that

∥T .E.∥ ≤ K∥∆x∥

for ∆x → 0 (sufficiently small ∆x), and K is a positive real constant.
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Truncation error

In practical terms, the order of the T.E. is found to be ∆x raised to the largest power that is
common to all terms of the T.E.
More general definition of the O notation:

When we say f(x) = O [ϕ(x)], we mean that there exists a positive constant K , independent of x,
such that:

|f(x)| ≤ K |ϕ(x)| ∀ x ∈ S
where f and ϕ are real or complex functions defined in S. For finite difference applications, we restrict
S by x → 0, i.e. sufficiently small x.

Note that O(∆x) does not say anything about the size of the T.E., but rather how it behaves
as ∆x tends towards zero.
If another finite difference expression had a T .E. = O((∆x)2), we might expect, or hope, that
the T.E. of this second representation would be smaller than the previous one for a convenient
∆x, but we could only be sure that this would be true if we refined the mesh sufficiently:

Sufficiently is a quantity that is extremely difficult to estimate, since it is very case-dependent.

| February 27, 2025 10 / 87



The Finite Difference Method, E. Nobile | Finite Differences

A remark on Taylor expansions
The Taylor expansion, eq. (2), has several important implications:

The left-hand side (lhs) is the value of the function ϕ at an arbitrary distance ∆x from point x0,
with no restriction on ∆x.
In the right-hand side (rhs), all quantities are evaluated at point x0: it means that we can know
the value of the function at arbitrary distance from point x0, if we know all the derivatives at
this single point x0.
In practical terms, it is possible to evaluate the function at a point x0 +∆x, with a given
accuracy, from the knowledge of a finite number of derivatives at point x0.
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Backward and central difference

An infinite number of difference representations can be found for (∂ϕ/∂x)i,j .
For example we can expand backward:

ϕ(x0 −∆x, y0) = ϕ(x0, y0)−
(
∂ϕ

∂x

)
0
∆x +

(
∂2ϕ

∂x2

)
0

(∆x)2

2!

−
(
∂3ϕ

∂x3

)
0

(∆x)3

3!
+ O((∆x)4)

(5)

and obtain the backward difference representation:(
∂ϕ

∂x

)
i,j

=
ϕi,j − ϕi−1,j

∆x
+ O(∆x) (6)
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Backward and central difference - cont.

We can subtract eq. (5) from eq. (2):

ϕ(x0 +∆x, y0)− ϕ(x0 −∆x, y0) =����ϕ(x0, y0) −����ϕ(x0, y0) +

(
∂ϕ

∂x

)
0
∆x +

(
∂ϕ

∂x

)
0
∆x

+

���
���(

∂2ϕ

∂x2

)
0

(∆x)2

2!
−
���

���(
∂2ϕ

∂x2

)
0

(∆x)2

2!
+

(
∂3ϕ

∂x3

)
0

(∆x)3

3!
+

(
∂3ϕ

∂x3

)
0

(∆x)3

3!
+ . . .

(7)

Rearranging we obtain the central difference representation:(
∂ϕ

∂x

)
(x0,y0)

=
ϕ(x0 +∆x, y0)− ϕ(x0 −∆x, y0)

2∆x
+ O((∆x)2)

and in index notation: (
∂ϕ

∂x

)
i,j

=
ϕi+1,j − ϕi−1,j

2∆x
+ O((∆x)2) (8)

Since the T.E. of a first order FD formula is proportional to the second derivative, as seen from
eq. (3), it results that a first order FD approximation is exact for a linear function.
Similarly, a second order formula has its T.E. proportional to the third derivative - see eq. (7) -
and therefore it is exact for a quadratic function.
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Second derivative

We can also add equations (5) and (2) and rearrange to obtain an approximation to the
second derivative:

ϕ(x0 +∆x, y0) + ϕ(x0 −∆x, y0) = ϕ(x0, y0) + ϕ(x0, y0) +
���

��(
∂ϕ

∂x

)
0
∆x −

���
��(

∂ϕ

∂x

)
0
∆x

+

(
∂2ϕ

∂x2

)
0

(∆x)2

2!
+

(
∂2ϕ

∂x2

)
0

(∆x)2

2!
+

�
���

��(
∂3ϕ

∂x3

)
0

(∆x)3

3!
−
�

���
��(

∂3ϕ

∂x3

)
0

(∆x)3

3!
+ O((∆x)4)

Rearranging and in index notation:(
∂2ϕ

∂x2

)
i,j

=
ϕi+1,j − 2ϕi,j + ϕi−1,j

(∆x)2 + O((∆x)2) (9)

It should be emphasized that these are only a few examples of the possible ways in which first
and second derivatives can be approximated.
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Forward and Backward difference operators

First forward-difference of ϕi,j with respect to x at point i, j, ∆x :

∆xϕi,j = ϕi+1,j − ϕi,j (10)

and thus (
∂ϕ

∂x

)
i,j

=
∆xϕi,j
∆x

+ O(∆x)

Similarly:

∆yϕi,j = ϕi,j+1 − ϕi,j(
∂ϕ

∂y

)
i,j

=
∆yϕi,j
∆y

+ O(∆y)

First backward-difference of ϕi,j with respect to x at point i, j, ∇x :

∇xϕi,j = ϕi,j − ϕi−1,j (11)

It follows (
∂ϕ

∂x

)
i,j

=
∇xϕi,j
∆x

+ O(∆x)
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Central difference, averaging and identity operators

Central difference operators δ, δ and δ2:

δxϕi,j = ϕi+1,j − ϕi−1,j

δxϕi,j = ϕi+1/2,j − ϕi−1/2,j

δ2
xϕi,j = δx(δxϕi,j) = δx(ϕi+1/2,j − ϕi−1/2,j)

= (ϕi+1,j − ϕi,j)− (ϕi,j − ϕi−1,j)

= ϕi+1,j − 2ϕi,j + ϕi−1,j

(12)
(13)

(14)

Averaging operator µ:

µxϕi,j =
ϕi+1/2,j + ϕi−1/2,j

2
(15)

Identity operator I:
Iϕi,j = ϕi,j (16)
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Shift and derivative operators

Shift operator E:
E+1

x ϕi,j = Exϕi,j = ϕi+1,j

E−1
x ϕi,j = ϕi−1,j

Eyϕi,j = ϕi,j+1

(17)

(18)
(19)

where the superscript, if it is equal to +1, is usually omitted.
It also follows that:

E+2
x ϕi,j = ϕi+2,j

E+1/2
x ϕi,j = ϕi+1/2,j

E+n
x ϕi,j = ϕi+n,j

Derivative operator D:

Dxϕi,j =

(
∂ϕ

∂x

)
i,j

(20)

All these operators satisfy the commutative, associative and distributive laws satisfied by real or
complex numbers.
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Finite Difference operators relations
We say that two operators are equal when both produce the same result when applied to any
function for which both operations are defined.
With this understanding, it follows immediately that:

∆x = (Ex − I) (21a)

∇x = (I − E−1
x ) (21b)

δx = E1/2
x − E−1/2

x (21c)
Other useful relations are of the form:

∆x = E1/2
x δx = Ex∇x (22a)

δx = E1/2
x ∇x = E−1/2

x ∆x (22b)

∇x = E−1/2
x δx = E−1

x ∆x (22c)

∇x∆x = ∆x∇x = ∆x −∇x = δ2
x (22d)

µx =
1
2
(E1/2

x + E−1/2
x ) (22e)

Any of the difference operators taken to a given power n, is interpreted as n repeated actions
of this operator, e.g.:

∆2
x = ∆x∆x = E2

x − 2Ex + 1 (23a)

∆3
x = (Ex − I)3 = E3

x − 3E2
x + 3Ex − 1 (23b)
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Finite Difference operators relations - cont.

Let’s prove eq. (22a)

Ex∇xϕi,j = Ex(ϕi,j − ϕi−1,j)

= ϕi+1,j − ϕi,j

= ∆xϕi,j

E1/2
x δxϕi,j = E1/2

x (ϕi+1/2,j − ϕi−1/2,j)

= ϕi+1,j − ϕi,j

= ∆xϕi,j
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Finite Difference operators relations - cont.

Let’s prove eq. (22d)

∇x∆xϕi,j = ∇x(ϕi+1,j − ϕi,j)

= ϕi+1,j − ϕi,j − ϕi,j + ϕi−1,j

= ϕi+1,j − 2ϕi,j + ϕi−1,j

= δ2
xϕi,j

∆x∇xϕi,j = ∆x(ϕi,j − ϕi−1,j)

= ϕi+1,j − ϕi,j − ϕi,j + ϕi−1,j

= δ2
xϕi,j

(∆x −∇x)ϕi,j = ϕi+1,j − ϕi,j − ϕi,j + ϕi−1,j

= δ2
xϕi,j
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Finite Difference operators relations - cont.

Difference representations can be indicated by using combinations of E and I as, for example:

∆xϕi,j = (Ex − I)ϕi,j = ϕi+1,j − ϕi,j

The specific operators defined for certain common central differences are convenient,
although two of them can be expressed in terms of first difference operators:

δxϕi,j = ∆xϕi,j +∇xϕi,j

= ϕi+1,j − ϕi,j + ϕi,j − ϕi−1,j (24)
= ϕi+1,j − ϕi−1,j

δ2
xϕi,j = ∆xϕi,j −∇xϕi,j

= ϕi+1,j − ϕi,j − ϕi,j + ϕi−1,j (25)
= ϕi+1,j − 2ϕi,j + ϕi−1,j

δ2
xϕi,j = ∆x∇xϕi,j

= ∇xϕi+1,j −∇xϕi,j

= ϕi+1,j − ϕi,j − ϕi,j + ϕi−1,j (26)
= ϕi+1,j − 2ϕi,j + ϕi−1,j
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Finite Difference operators relations - cont.

Using the newly defined operators, the central difference representation for the first partial
derivative can be written as:(

∂ϕ

∂x

)
i,j

=
ϕi+1,j − ϕi−1,j

2∆x
+ O[(∆x)2] =

δxϕi,j
2∆x

+ O[(∆x)2] (27)

The central difference representation for the second partial derivative can be written as:(
∂2ϕ

∂x2

)
i,j

=
ϕi+1,j − 2ϕi,j + ϕi−1,j

(∆x)2 + O[(∆x)2] =
δ2

xϕi,j
(∆x)2 + O[(∆x)2] (28)

Higher order forward and backward difference operators are defined recursively as:

∆n
xϕi,j = ∆x(∆

n−1
x ϕi,j) (29)

∇n
xϕi,j = ∇x(∇n−1

x ϕi,j) (30)
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Finite Difference operators relations - cont.

Forward second-order derivative approximation:

∆2
xϕi,j

(∆x)2 =
∆x(ϕi+1,j − ϕi,j)

(∆x)2

=
ϕi+2,j − 2ϕi+1,j + ϕi,j

(∆x)2

=

(
∂2ϕ

∂x2

)
i,j

+ O(∆x)
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Finite Difference operators relations - cont.

Backward third-order derivative approximation:

∇3
xϕi,j

(∆x)3 =
∇x(∇2

xϕi,j)

(∆x)3

=
∇x∇x(ϕi,j − ϕi−1,j)

(∆x)3

=
∇x(ϕi,j − 2ϕi−1,j + ϕi−2,j)

(∆x)3

=
ϕi,j − 3ϕi−1,j + 3ϕi−2,j − ϕi−3,j

(∆x)3

=

(
∂3ϕ

∂x3

)
i,j

+ O(∆x)
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Finite Difference operators relations - cont.

In general, it can be shown that forward- and backward-difference approximations to
derivative of any order can be obtained from:(

∂nϕ

∂xn

)
i,j

=
∆n

xϕi,j
(∆x)n + O(∆x) (31)(

∂nϕ

∂xn

)
i,j

=
∇n

xϕi,j
(∆x)n + O(∆x) (32)

Central difference representations of derivatives greater than second-order can be expressed
in terms of ∆x , ∇x and δ, and will be illustrated in some detail in sect. 8.
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Simple 1st order derivative

Most of the PDEs arising in fluid mechanics and heat transfer involve only 1st and 2nd order
partial derivatives and, generally, it is convenient, for practical purposes, to represent these
derivatives using function values at only two or three grid points.
With these limitations, the most frequently used first-derivative approximations on a grid for
which ∆x = const., are(

∂ϕ

∂x

)
i,j

=
ϕi+1,j − ϕi,j

∆x
+ O(∆x) (33)(

∂ϕ

∂x

)
i,j

=
ϕi,j − ϕi−1,j

∆x
+ O(∆x) (34)(

∂ϕ

∂x

)
i,j

=
ϕi+1,j − ϕi−1,j

2∆x
+ O((∆x)2) (35)(

∂ϕ

∂x

)
i,j

=
−3ϕi,j + 4ϕi+1,j − ϕi+2,j

2∆x
+ O((∆x)2) (36)(

∂ϕ

∂x

)
i,j

=
3ϕi,j − 4ϕi−1,j + ϕi−2,j

2∆x
+ O((∆x)2) (37)

| February 27, 2025 28 / 87



The Finite Difference Method, E. Nobile | Frequent Finite Difference approximations

Simple 2nd order derivative

The most common three-point second-derivative approximations on a grid for which ∆x =
const., are (

∂2ϕ

∂x2

)
i,j

=
ϕi,j − 2ϕi+1,j + ϕi+2,j

(∆x)2 + O(∆x) (38)

(
∂2ϕ

∂x2

)
i,j

=
ϕi,j − 2ϕi−1,j + ϕi−2,j

(∆x)2 + O(∆x) (39)

(
∂2ϕ

∂x2

)
i,j

=
ϕi+1,j − 2ϕi,j + ϕi−1,j

(∆x)2 + O((∆x)2) (40)
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Derivatives with more than three grid points - First order derivative

Some difference approximations for first order derivatives that involve more than three grid
points, on a grid for which ∆x = const., are given here(

∂ϕ

∂x

)
i,j

=
−ϕi+2,j + 8ϕi+1,j − 8ϕi−1,j + ϕi−2,j

12∆x
+ O((∆x)4) (41)(

∂ϕ

∂x

)
i,j

=
3ϕi+1,j + 10ϕi,j − 18ϕi−1,j + 6ϕi−2,j − ϕi−3,j

12∆x
+ O((∆x)3) (42)(

∂ϕ

∂x

)
i,j

=
25ϕi,j − 48ϕi−1,j + 36ϕi−2,j − 16ϕi−3,j + 3ϕi−4,j

12∆x
+ O((∆x)3) (43)
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Derivatives with more than three grid points - Second order derivative

Some difference approximations for second order derivatives that involve more than three grid
points, on a grid for which ∆x = const., are given here(

∂2ϕ

∂x2

)
i,j

=
−ϕi+2,j + 16ϕi+1,j − 30ϕi,j + 16ϕi−1,j − ϕi−2,j

12(∆x)2 + O((∆x)4) (44)

(
∂2ϕ

∂x2

)
i,j

=
2ϕi,j − 5ϕi+1,j + 4ϕi+2,j − ϕi+3,j

(∆x)2 + O((∆x)2) (45)

(
∂2ϕ

∂x2

)
i,j

=
2ϕi,j − 5ϕi−1,j + 4ϕi−2,j − ϕi−3,j

(∆x)2 + O((∆x)2) (46)

(
∂2ϕ

∂x2

)
i,j

=
35ϕi,j − 104ϕi−1,j + 114ϕi−2,j − 56ϕi−3,j + 11ϕi−4,j

12(∆x)2 + O((∆x)3) (47)

(
∂2ϕ

∂x2

)
i,j

=
11ϕi+1,j − 20ϕi,j + 6ϕi−1,j + 4ϕi−2,j − ϕi−3,j

12(∆x)2 + O((∆x)3) (48)

(
∂2ϕ

∂x2

)
i,j

=
45ϕi,j − 154ϕi−1,j + 214ϕi−2,j − 156ϕi−3,j + 61ϕi−4,j − 10ϕi−5,j

12(∆x)2 + O((∆x)4) (49)
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Compact FD - Introduction

In the standard FD approach considered so far, the e.g. first derivative (∂ϕ/∂x)i,j depends
explicitly on the function values at nodes near i.
In the spectral methods the values of (∂ϕ/∂x)i,j depends on all the nodal values.
The Padé or compact finite difference schemes mimic this global dependence and are derived
by writing approximations such as

β

(
∂ϕ

∂x

)
i−2,j

+ α

(
∂ϕ

∂x

)
i−1,j

+

(
∂ϕ

∂x

)
i,j

+ α

(
∂ϕ

∂x

)
i+1,j

+ β

(
∂ϕ

∂x

)
i+2,j

= c
ϕi+3,j − ϕi−3,j

6∆x
+ b

ϕi+2,j − ϕi−2,j
4∆x

+ a
ϕi+1,j − ϕi−1,j

2∆x

(50)

In this case it is not possible to compute explicitly (∂ϕ/∂x)i,j like in the standard schemes,
since it depends also on the values of (∂ϕ/∂x) in the near nodes.
The relation between the coefficients a, b, c and α, β are derived by matching the Taylor
series coefficients of various orders. The first unmatched coefficient determines the formal
truncation error of the approximation (50).
It can be proved that, according to the terms used in the series, it is possible to obtain an
accuracy up to O((∆x)10) and a resolution (see later) closed to that of spectral schemes.
An expression analogous to (50) can be written for the second derivative.
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Compact 4th order FD schemes

Considering, for example, 4th order schemes, it can be proved that the computational
molecule can be reduced by setting, in eq.(50), the following values of the coefficients

β = 0, c = 0, a =
2
3
(α+ 2), b =

1
3
(4α− 1) (51)

As α → 0 this family merges into the already seen 4th order central difference scheme (41).
For α = 1

4 the classical Padé scheme is recovered, while for α = 1
3 the leading truncation

error coefficient vanishes and the scheme is thus formally 6th order accurate. Its coefficients
are

β = 0, c = 0, α =
1
3
, a =

14
9
, b =

1
9

(52)

and therefore eq. (50) becomes

1
3

(
∂ϕ

∂x

)
i−1,j

+

(
∂ϕ

∂x

)
i,j

+
1
3

(
∂ϕ

∂x

)
i+1,j

=
1
9
ϕi+2,j − ϕi−2,j

4∆x
+

14
9

ϕi+1,j − ϕi−1,j
2∆x

(53)

The application of (53) for each node, can be solved together as a linear tridiagonal system of
equations for the unknown derivative values.
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Pros and cons of Compact FD schemes

The use of compact FD provides a number of advantages compared to traditional (i.e. explicit) FD
schemes:

They require a computational molecule smaller than the corresponding traditional FD scheme
with the same order of accuracy.
Compared to the traditional FD approximations, compact FD schemes provide a better
representation of the shorter length scales. This feature brings them closer to the spectral
methods, while the freedom in choosing the mesh geometry and the boundary conditions is
maintained.
Their resolution characteristic - rather than their formal order of accuracy - make them an
ideal candidate for the DNS (Direct Numerical Simulation) and LES (Large Eddy Simulation)
of turbulent flows, where the interest is to capture the smallest possible turbulent structures
for a given grid.

There are, however, some disadvantages:
They increase the computational cost, since they require the solution of banded - tridiagonal or
pentadiagonal - linear system of equations in order to evaluate the first (or second) derivative.
The derivation of similar high-order Compact FD expressions for the boundary nodes is not
straightforward.
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1D heat conduction equation
Let’s consider first the unsteady one-dimensional (1D) heat conduction equation, where α = k/ρc

∂T
∂ϑ

= α
∂2T
∂x2 (54)

Using a forward-difference representation for the time derivative (ϑ = n∆ϑ) and the simplest
central-difference for the second derivative, we can approximate the heat conduction equation by:

Tn+1
i − Tn

i
∆ϑ

=
α

(∆x)2

(
Tn

i+1 − 2Tn
i + Tn

i−1

)
(55)

x

ϑ

i − 1 i i + 1
n − 1

n

n + 1

However, we already found that TE (Truncation Errors) were associated with the forward and
central-difference representations used in eq. (55)

∂T
∂ϑ

− α
∂2T
∂x2︸ ︷︷ ︸

PDE

=
Tn+1

i − Tn
i

∆ϑ
−

α

(∆x)2

(
Tn

i+1 − 2Tn
i + Tn

i−1

)
︸ ︷︷ ︸

FDE

+

−(∂2T
∂ϑ2

)
n,i

∆ϑ

2
+ α

(
∂4T
∂x4

)
n,i

(∆x)2

12
+ . . .


︸ ︷︷ ︸

TE

(56)

where PDE is the partial differential equation and FDE is the finite-difference equation.
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1D heat conduction equation - cont.

The TEs associated with all derivatives in any one PDE should be obtained by Taylor
expansion about the same point (n, i in the previous example of the unsteady 1D heat
conduction).
The difference representation given by eq. (55) will be referred to as the simple explicit
scheme for the heat conduction equation1:

For an explicit scheme, only one unknown appears in the difference equation, in a manner that
permits an economical evaluation in terms of known quantities.
An implicit scheme, which would lead to three unknowns in each equation, would results if the 2nd
derivative was approximated by T at the (n + 1) time level. This, in turn, requires the solution of a
sparse (tridiagonal in this case) system of linear equations at each time-step.

The TE is defined as
TE = PDE − FDE

which, in this case, if of O[∆ϑ, (∆x)2].

1A detailed examination of several temporal integration schemes will be given during the presentation of the Finite Volume
method.
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Round-Off Error

Round-Off error: difference between the calculated approximation of a number and its exact
mathematical value. It is due to the use of a finite number of digits in the arithmetic
operations.

In FD (and Finite Volume and Finite Element methods as well) they may became very important
because of the large number of dependent repetitive operations that are usually involved. Sometimes
the magnitude of the Round-Off error is proportional to the number of grid points: in this case, refining
the grid may decrease the TE but increase the Round-Off error (use of double-precision
representation).

Discretization error: caused by replacing the continuous problem with a discrete one, and is
defined as the difference between the exact solution of the PDE (Round-Off error free) and
the exact solution of the FDE (Round-Off error free). It is caused by the TE plus any error
introduced by the treatment of boundary conditions.
The difference between the exact solution of the PDE and the computer solution of the FDE is
equal to the sum of the discretization error and and Round-Off error (associated with the finite
difference calculation).
It will be seen that, in general, we have also to consider other type of errors:

Modelling error: associated with the use of simplified mathematical models of complex phenomena
like, i.e., turbulence, combustion, multiphase et.
Convergence error: associated to the use of iterative methods for the solution of the non-linear set of
PDEs which usually arise in CFD.
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Steady 2D heat conduction

Another example: let’s consider the 2D steady heat conduction equation without sources

∇2T =
∂2T
∂x2 +

∂2T
∂y2 = 0 (57)

We already found - eq. (9) - that

∂2T
∂x2 =

Ti+1,j − 2Ti,j + Ti−1,j
(∆x)2 + O((∆x)2) (58a)

∂2T
∂y2 =

Ti,j+1 − 2Ti,j + Ti,j−1
(∆y)2 + O((∆y)2) (58b)

Replacing eqs.(58) in (57)

∂2T
∂x2 +

∂2T
∂y2︸ ︷︷ ︸

PDE

=
Ti+1,j − 2Ti,j + Ti−1,j

(∆x)2 +
Ti,j+1 − 2Ti,j + Ti,j−1

(∆y)2︸ ︷︷ ︸
FDE

+O
[
(∆x)2, (∆y)2

]
︸ ︷︷ ︸

TE

(59)
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Steady 2D heat conduction - cont.

The previous FDE (59) can be re-arranged as[
2(∆x)2 + 2(∆y)2

]
Ti,j − (∆y)2Ti+1,j − (∆y)2Ti−1,j − (∆x)2Ti,j+1 − (∆x)2Ti,j−1 = 0 (60)

and, in the particular case ∆x ≡ ∆y, eq. (60) can be simplified in the following one

4Ti,j − Ti+1,j − Ti−1,j − Ti,j+1 − Ti,j−1 = 0 (61)

or
Ti,j =

1
4
[
Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1

]
(62)

and finally in compact form

Ti,j =
1
4
∑
nb

Tnb (63)

where nb means neighbors.
It is interesting to observe, from eq. (62), that, for uniform and constant grid spacing, the
temperature value of a node must be equal to the average value of its 4 neighboring nodes in
2D (2 and 6 in 1D and 3D, respectively).
Tridiagonal (1D), pentadiagonal (2D) and eptadiagonal (3D) systems of equations.
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Steady 2D heat conduction - cont.

Another possibility would be to use a 4th order approximation of the second-order derivative, i.e.
eq. (44), resulting in

∂2T
∂x2 +

∂2T
∂y2︸ ︷︷ ︸

PDE

=

−Ti+2,j + 16Ti+1,j − 30Ti,j + 16Ti−1,j − Ti−2,j

12 (∆x)2 +

−Ti,j+2 + 16Ti,j+1 − 30Ti,j + 16Ti,j−1 − Ti,j−2

12 (∆y)2︸ ︷︷ ︸
FDE

+ O
[
(∆x)4, (∆y)4

]
︸ ︷︷ ︸

TE

(64)
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Steady 2D heat conduction - cont.

Clearly, in order to maintain the same order of accuracy throughout all the domain, expressions of
2nd derivative of the same order have to be used at the boundary, using i.e. eqs. (46) and (49) for
O((∆x)2, (∆y)2) and O((∆x)4, (∆y)4), respectively.
Again, in the particular case ∆x ≡ ∆y, eq (64) can be written as

60Ti,j − 16Ti+1,j − 16Ti−1,j − 16Ti,j+1 − 16Ti,j−1+

Ti+2,j + Ti−2,j + Ti,j+2 + Ti,j−2 = 0
(65)

Equations (64) and (65) leads to a symmetrical, bounded (ennea-diagonal) system of linear
equations.
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Overview of boundary conditions

In order to attain closure to the system of discrete equations, additional equations are required,
and these came from the boundary conditions.
Although boundary conditions encountered in engineering can take a myriad of forms, the vast
majority of them can be classified under three canonical types:

1 Dirichlet, e.g. fixed value of the variable.
2 Neumann, e.g. fixed value of the first derivative (flux).
3 Robin or convective, e.g. a linear combination of the values of the variable and the values of

its derivative on the boundary of the domain.
We reserve the term boundary condition for conditions applied to to spatial operators, and initial
condition for conditions applied to temporal operators.

| February 27, 2025 44 / 87



The Finite Difference Method, E. Nobile | Difference representation of Partial Differential Equations | Application of boundary conditions to 1D unsteady
conduction

Boundary conditions for 1D unsteady conduction

We select, as an example, the 1D unsteady heat conduction in a plane wall.
In this case the heat conduction equation, assuming for simplicity constant thermophysical
properties, is

∂T
∂ϑ

= α
∂2T
∂x2 (66)

where α = k/ρc [m2/s] is the thermal diffusivity, k [W/kg K] is the thermal conductivity, ρ [kg/m3] is
the density and c [J/kg K] is the specific heat.

For simplicity, only symmetric boundary
conditions, respect to the wall axis, are
considered, although the general case of
different boundary conditions at the wall
ends do not pose any significant problem.
We discretize the wall using N equispaced
nodes.

. . .
i = 1 2 3 4 N − 3 N − 2 N − 1 N

T1 T2 T3 T4 TN−3 TN−2 TN−1 TN
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Boundary conditions for 1D unsteady conduction - cont.

Using a backward-difference representation for the time derivative (ϑ = n∆ϑ), and the simplest
2nd order central-difference for the second derivative, we can approximate the heat conduction
equation by

Tn+1
i − Tn

i
∆ϑ

=
α

(∆x)2

(
Tn+1

i+1 − 2Tn+1
i + Tn+1

i−1

)
(67)

which can be written as

−
α

∆x2 Tn+1
i−1 +

( 1
∆ϑ

+
2α
∆x2

)
Tn+1

i −
α

∆x2 Tn+1
i+1 =

Tn
i

∆ϑ
(68)

The equation (68) should be written for all nodes i = 1 . . .N and will result in a banded - frequently
tridiagonal - system of equations.
We will now consider the three cases of Dirichlet, Neumann and Robin (convective) boundary
conditions and how they are implemented.
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Dirichlet boundary condition

With the Finite Difference method, this boundary
condition is straightforward to apply, since the
nodes are placed exactly on the boundary.
If we assume that Dirichlet boundary conditions
are applied at both ends of the wall, we have

T1 = Tn+1
W (69)

TN = Tn+1
W (70)

where TW is the value of the imposed
temperature at both wall ends.

The two equations (69) and (70), together with
(N − 2) equations (68), constitute a linear
system of N equations, that can be easily solved
to obtain the N unknowns T1, T2, . . ., TN .
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Neumann Boundary condition

For this type of boundary condition, the value of
the gradient of temperature normal to the
boundary, ∂T/∂n, is prescribed on the boundary.
For 1D problems, the Neumann boundary
condition may be written as

∂T
∂x

∣∣∣∣
x=L

=
qW
k

=
∂T
∂x

∣∣∣∣
i=1

(71)

∂T
∂x

∣∣∣∣
x=−L

=
−qW

k
=

∂T
∂x

∣∣∣∣
i=N

(72)

where qW [W/m2] is the prescribed value of the
heat flux. Therefore, the Neumann boundary
condition is referred, for heat transfer problems,
as heat flux boundary condition.

Equations (71) and (72) can be discretized using
different FD schemes for the first derivative.
Since we adopted a 2nd order scheme to
discretize the equation, we consider next only 1st
and 2nd order schemes.
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Neumann Boundary condition - cont.

1 Using a 1st order expression for ∂T/∂x we have

Tn+1
2 − Tn+1

1
∆x

= +
qW

k
Tn+1

N − Tn+1
N−1

∆x
= −

qW

k

and expanding
k
∆x

Tn+1
1 −

k
∆x

Tn+1
2 = −qW (73)

k
∆x

Tn+1
N −

k
∆x

Tn+1
N−1 = −qW (74)

2 Using a second order scheme

−3Tn+1
1 + 4Tn+1

2 − Tn+1
3

2 ∆x
= +

qW

k
3Tn+1

N − 4Tn+1
N−1 + Tn+1

N−2

2 ∆x
= −

qW

k
which can be written as

3k
2 ∆x

Tn+1
1 −

2k
∆x

Tn+1
2 +

k
2 ∆x

Tn+1
3 = −qW (75)

3k
2 ∆x

Tn+1
N −

2k
∆x

Tn+1
N−1 +

k
2 ∆x

Tn+1
N−2 = −qW (76)
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Robin (convective) boundary condition

We assume that convective heat transfer - in
this case cooling - occurs at both ends.
From an energy balance at the wall surfaces

h (T1 − T∞) − k
∂T
∂x

∣∣∣∣
i=1

= 0 (77)

h (TN − T∞) + k
∂T
∂x

∣∣∣∣
i=N

= 0 (78)

where h [W/m2 K] is the convective heat
transfer coefficient and T∞ is the external fluid
temperature.
These equations can be discretized, as seen for
the Neumann BC, using different formulations
for ∂T/∂x.
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Robin (convective) boundary condition - cont.
1 First order expression for ∂T/∂x.

h
(

Tn+1
1 − T∞

)
− k

Tn+1
2 − Tn+1

1
∆x

= 0

h
(

Tn+1
N − T∞

)
+ k

Tn+1
N − Tn+1

N−1

∆x
= 0

which can be expressed as (
h +

k
∆x

)
Tn+1

1 −
k
∆x

Tn+1
2 = hT∞ (79)(

h +
k
∆x

)
Tn+1

N −
k
∆x

Tn+1
N−1 = hT∞ (80)

2 Second order expression for ∂T/∂x.

h
(

Tn+1
1 − T∞

)
− k

−3Tn+1
1 + 4Tn+1

2 − Tn+1
3

2 ∆x
= 0

h
(

Tn+1
N − T∞

)
+ k

3Tn+1
N − 4Tn+1

N−1 + Tn+1
N−2

2 ∆x
= 0

which, again, can be expressed in a form convenient for the numerical solution(
h +

3k
2 ∆x

)
Tn+1

1 −
2k
∆x

Tn+1
2 +

k
2 ∆x

Tn+1
3 = hT∞ (81)(

h +
3k

2 ∆x

)
Tn+1

N −
2k
∆x

Tn+1
N−1 +

k
2 ∆x

Tn+1
N−2 = hT∞ (82)
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Matrix structure

Here we represent the matrix structure for the different boundary conditions and for 1st and 2nd
order schemes (N=11).

Dirichlet boundary
conditions.

First order Neumann or
Convective boundary

conditions.

Second order Neumann or
Convective boundary

conditions.
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Available procedures

As we start with a given PDE and a Finite-Difference mesh, several procedures are available
to developing FDEs:

1 Taylor-series expansions
2 Polynomial fitting
3 Difference operators
4 Integral method (or micro-integral method).

It is sometimes possible to obtain exactly the same FD representation by using all four
methods.
In general we will lean most heavily on method 1., using method 2. in treating boundary
conditions.
Method 3 is very general and it will be described in a separate section.
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Taylor-series expansions
Formal approach with Taylor-series expansions, satisfying specified constraints, to develop
difference expressions.

Suppose we want to develop a difference approximation for (∂ϕ/∂x)i,j having a TE of
O[(∆x)2] using at most values ϕi−2,j , ϕi−1,j and ϕi,j .
With these constraints and objectives:

1 Write Taylor-series expansions for ϕi−2,j and ϕi−1,j , expanding about point (i, j).
2 Attempt to solve for (∂ϕ/∂x)i,j from the resulting equations in such a way to obtain a TE of O[(∆x)2].

ϕi−2,j = ϕi,j +

(
∂ϕ

∂x

)
i,j
(−2∆x) +

(
∂2ϕ

∂x2

)
i,j

(2∆x)2

2!
+

(
∂3ϕ

∂x3

)
i,j

(−2∆x)3

3!
+ · · · (83)

ϕi−1,j = ϕi,j +

(
∂ϕ

∂x

)
i,j
(−∆x) +

(
∂2ϕ

∂x2

)
i,j

(∆x)2

2!
+

(
∂3ϕ

∂x3

)
i,j

(−∆x)3

3!
+ · · · (84)

It is often possible to determine the required form of the difference representation by
inspection or simple substitution. Proceeding by substitution, we rearrange eq. (83) to put
(∂ϕ/∂x)i,j on the left-hand side:(

∂ϕ

∂x

)
i,j

=
ϕi,j

2∆x
−

ϕi−2,j
2∆x

+

(
∂2ϕ

∂x2

)
i,j
∆x + O[(∆x)2]
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Taylor-series expansions - cont.

As is, the representation is O(∆x) because of the term (∂2ϕ/∂x2)i,j∆x.
We can then substitute for (∂2ϕ/∂x2)i,j in the previous equation, using eq. (84), to obtain the
desired result. From eq. (84):(

∂2ϕ

∂x2

)
i,j
∆x =

2(ϕi−1,j − ϕi,j)

∆x
+ 2

(
∂ϕ

∂x

)
i,j

−
(
∂3ϕ

∂x3

)
i,j

(−∆x)2

3!
+ · · ·

which, substituted in the previous expression of (∂ϕ/∂x)i,j :(
∂ϕ

∂x

)
i,j

=
ϕi,j

2∆x
−

ϕi−2,j
2∆x

+
2ϕi−1,j
∆x

−
2ϕi,j
∆x

+ 2
(
∂ϕ

∂x

)
i,j

+ O[(∆x)2]

and rearranging we finally obtain:(
∂ϕ

∂x

)
i,j

=
ϕi−2,j − 4ϕi−1,j + 3ϕi,j

2∆x
+ O[(∆x)2] (85)
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Taylor-series expansions - cont.
In a more formal way:

1 Multiply eq. (83) by “a” and eq. (84) by “b”.
2 Add the two resulting equations:

aϕi−2,j + bϕi−1,j − (a + b)ϕi,j

=

(
∂ϕ

∂x

)
i,j
[−2a − b]∆x +

(
∂2ϕ

∂x2

)
i,j

[4a + b]
2!

(∆x)2 + O[(∆x)3]

3 Impose that the coefficient of (∂ϕ/∂x)i,j is equal to 1

−2a − b = 1

4 Impose that the coefficient of (∂2ϕ/∂x2)i,j is equal to zero, in order to have a TE of O[(∆x)2]

2a + b/2 = 0

5 Solve for a and b
a = 1/2; b = −2

and therefore, from the previous expressions, we obtain again(
∂ϕ

∂x

)
i,j

=
ϕi−2,j − 4ϕi−1,j + 3ϕi,j

2∆x
+ O[(∆x)2]

| February 27, 2025 57 / 87



The Finite Difference Method, E. Nobile | Methods for obtaining Finite Difference equations | Taylor series

Taylor-series expansions - cont.

Some considerations

We observe that it was in fact necessary, in this example, to include the terms involving
(∂3ϕ/∂x3)i,j in the Taylor-series expansions - see eqns. (83) and (84) - in order to determine
whether or not these terms would cancel in the algebraic operations and reduce the TE even
further to O[(∆x)2]. Fortuitous cancellation of terms occurs frequently enough to warrant
close attention to this point.
It is sometimes necessary to carry out the inverse of the previous process. That is, suppose
that we had obtained, by some other means, the approximation represented by eq. (37), and
we wanted to investigate the consistency and TE of such an expression. For this, the use
Taylor-series expansions would be invaluable, and the recommended procedure would be to
substitute the Taylor-series expressions from eqns. (83) and (84) for ϕi−2,j and ϕi−1,j into the
difference representation to obtain an expression of the form (∂ϕ/∂x)i,j + TE on the
right-hand side. In this way the TE has been identified, and if lim∆x→0(TE) = 0, the
difference representation is consistent.
Our main interest is in correctly approximating an entire PDE at an arbitrary point in the
problem domain. For this reason, we must be careful to use the same expansion point in
approximating all derivatives in the PDE by the Taylor-series method. If this is done, than the
TE for the entire equation can be obtained by adding the TE for each derivative.
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Case of non-uniform grid

In this case we use the following notation

i, j − 1

i, j

∆y−

i, j + 1
∆y+

where

∆y+ = yi,j+1 − yi,j and ∆y− = yi,j − yi,j−1

We recall that, for equal spacing, the CD
(Central Difference) representation for the
first derivative was equivalent to the
arithmetic average of a forward and
backward representation, that is, for
∆y+ = ∆y− = ∆y (eqs. (24) and (27)):(

∂ϕ

∂y

)
i,j

=
δyϕi,j
2∆y

=
∆yϕi,j +∇yϕi,j

2∆y
+ O[(∆y)2]

Is the 2nd order accuracy preserved also for unequal spacing using a geometrical weighted
average ? (

∂ϕ

∂y

)
i,j

?
=

∆yϕi,j
∆y+

(
∆y−

∆y+ +∆y−

)
+

∇yϕi,j
∆y−

(
∆y+

∆y+ +∆y−

)
(86)

We can verify it by use of Taylor-series expansion about point (i, j).

| February 27, 2025 59 / 87



The Finite Difference Method, E. Nobile | Methods for obtaining Finite Difference equations | Taylor series

Case of non-uniform grid - cont.

Letting ∆y+/∆y− = α, one obtains

ϕi,j+1 = ϕi,j +

(
∂ϕ

∂y

)
i,j
α∆y− +

(
∂2ϕ

∂y2

)
i,j

(α∆y−)2

2!

+

(
∂3ϕ

∂y3

)
i,j

(α∆y−)3

3!
+

(
∂4ϕ

∂y4

)
i,j

(α∆y−)4

4!
+ . . .

(87)

ϕi,j−1 = ϕi,j +

(
∂ϕ

∂y

)
i,j
(−∆y−) +

(
∂2ϕ

∂y2

)
i,j

(−∆y−)2

2!

+

(
∂3ϕ

∂y3

)
i,j

(−∆y−)3

3!
+

(
∂4ϕ

∂y4

)
i,j

(−∆y−)4

4!
+ . . .

(88)

As already done before, we will multiply eq.(87) by a, and eq.(88) by b, add the results and solve
for (∂ϕ/∂y)i,j .
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Case of non-uniform grid - cont.

Requiring that the coefficient of (∂ϕ/∂y)i,j∆y− be equal to 1 after the addition gives

aα− b = 1

In order to have a TE of O[(∆y)2] or better, the coefficient of (∂2ϕ/∂y2)i,j must be zero after the
addition, which requires that

α2a + b = 0

A solution to these two algebraic equations can be obtained readily as
a =

1
α(α+ 1)

b = −
α

α+ 1

The final result can be written as(
∂ϕ

∂y

)
i,j

=
ϕi,j+1 + (α2 − 1)ϕi,j − α2ϕi,j−1

α(α+ 1)∆y−
(89)

Equation (89) can be rearranged further in the form given by eq. (86).
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Polynomial fitting - Laplace equation
This technique can be used to develop the entire finite-difference representation for a PDE.
However, the technique is perhaps most commonly employed in the treatment of boundary
conditions or in gathering information from the solution in the neighborhood of the boundary.
In the following we consider some specific examples.
Consider again the 2D steady heat conduction (Laplace equation)

∇2T =
∂2T
∂x2 +

∂2T
∂y2 = 0

We suppose that both the x and y dependency of temperature can be expressed by a 2nd
degree polynomial. In particular, holding y = y0 fixed, we assume that temperatures at
various x locations in the neighborhood of point (i, j) can be determined from

T(x, y0) = a + bx + cx2

where (x, y)i,j = (x0, y0) and, for convenience, we let x = 0 at point (i, j), and ∆x = const.
Clearly (

∂T
∂x

)
i,j

= b(
∂2T
∂x2

)
i,j

= 2c
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Polynomial fitting - Laplace equation - cont.

The coefficients a, b and c can be evaluated in terms of temperatures at specific grid points
and ∆x. The choice of neighboring grid points used in the evaluation determines the
geometric arrangement of the difference molecule, that is, whether the resulting derivative
approximations are central, forward or backward differences.
Here we will choose points (i − 1, j), (i, j) and (i + 1, j) and obtain:

Ti,j = a (90a)

Ti+1,j = a + b∆x + c(∆x)2 (90b)

Ti−1,j = a − b∆x + c(∆x)2 (90c)

from which, subtracting (90c) from (90b):

b =

(
∂T
∂x

)
i,j

=
Ti+1,j − Ti−1,j

2∆x

while summing (90b) and (90c):

c =
1
2

(
∂2T
∂x2

)
i,j

=
Ti+1,j − 2Ti,j + Ti−1,j

2 (∆x)2
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Polynomial fitting - Laplace equation - cont.

Thus (
∂2T
∂x2

)
i,j

=
Ti+1,j − 2Ti,j + Ti−1,j

2 (∆x)2 (91)

The TE of expression (91) can be determined by substituting Taylor-series expansions about
point (i, j) for Ti+1,j and Ti−1,j into eq. (91).
The TE is found to be of O((∆x)2).
A finite-difference approximation for (∂2T/∂y2)i,j can be found in a similar manner.
We notice that arbitrary decisions need to be made in the process of polynomial fitting, which
will influence the form and TE of the result: in particular, these decisions influence which of
the neighboring points will appear in the difference expression.
We also observe that there is nothing unique about the polynomial fitting procedure that
guarantees that the difference approximation for the PDE is the best in any sense or that the
numerical scheme is stable when used for marching problems.
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Estimation of the heat flux at the wall

Suppose that we have solved the finite-difference form of the energy equation for the
temperature distribution near a solid boundary and we need to estimate the heat flux at that
location.
From Fourier’s law

qw = −k
(
∂T
∂y

)
y=0

thus we need to approximate (∂T/∂y)y=0 by a difference representation that uses the
temperature obtained from the FD solution of the energy equation.
One way to proceed is to assume that the temperature distribution near the boundary is a
polynomial, and to fit such a polynomial, that is, straight line, parabola, 3rd degree polynomial
et. to the FD solution that has been determined at discrete points.
By requiring that the polynomial matches the FD solution for T at certain discrete points, the
unknown coefficients in the polynomial can be determined.
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Estimation of the heat flux at the wall - cont.

Example 1

Assume that the temperature distribution near the boundary is again a 2nd degree polynomial of
the form T = a + by + cy2, then, referring to the following figure, we note that (∂T/∂y)y=0 = b.

1

2

3

4

5

6

∆y = const.

y

Furthermore, for ∆y = const, we can write:

T1 = a

T2 = a + b∆y + c(∆y)2

T3 = a + b(2∆y) + c(2∆y)2

The resulting solutions for a, b, and c are:

a = T1

b =
−3T1 + 4T2 − T3

2∆y

c =
T1 − 2T2 + T3

2(∆y)2

This and other algebraic problems have been solved by the MATLAB® Symbolic toolbox.
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Estimation of the heat flux at the wall - cont.
Thus, we can evaluate the wall heat flux by the approximation

qw = −k
(
∂T
∂y

)
y=0

∼= −kb =
k

2∆y
(3T1 − 4T2 + T3)

What is the TE of this approximation for (∂T/∂y)y=0 ?

This may be found by expressing T2 and T3 in terms of Taylor-series expansions about the
boundary point and substituting these evaluations into the difference expression of
(∂T/∂y)y=0.
Alternatively, we can identify the 2nd degree polynomial as a truncated Taylor-series
expansion about y = 0.
Second degree polynomial:

T = a + by + cy2

Taylor series:

T = T(0)︸ ︷︷ ︸
a

+

(
∂T
∂y

)
y=0︸ ︷︷ ︸

b

y +

(
∂2T
∂y2

)
y=0︸ ︷︷ ︸

2c

y2

2!
+

(
∂3T
∂y3

)
y=0

y3

3!︸ ︷︷ ︸
TE

+ . . .
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Estimation of the heat flux at the wall - cont.

Thus the approximation
T ∼= a + by + cy2

is equivalent to utilizing the first three terms of a Taylor-series expansion with the resulting TE
in the expression for T being O[(∆y)3].
Solving the Taylor series for an expression for (∂T/∂y)y=0 involves division by ∆y, which
reduces the TE in the expression for (∂T/∂y)y=0 to O[(∆y)2]
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Estimation of the heat flux at the wall - cont.

Example 2

Assume now that that the temperature distribution near the boundary is a 4th degree polynomial:

T = a + by + cy2 + dy3 + ey4

Then we have again (
∂T
∂y

)
y=0

= b

and, for ∆y = const, we can write

T1 = a

T2 = a + b∆y + c(∆y)2 + d(∆y)3 + e(∆y)4

T3 = a + b 2∆y + c(2∆y)2 + d(2∆y)3 + e(2∆y)4

T4 = a + b 3∆y + c(3∆y)2 + d(3∆y)3 + e(3∆y)4

T5 = a + b 4∆y + c(4∆y)2 + d(4∆y)3 + e(4∆y)4
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Estimation of the heat flux at the wall - cont.

Solving for a, b, c, d and e by means of MATLAB® Symbolic toolbox, one obtains:

a = T1

b =
−25T1 + 48T2 − 36T3 + 16T4 − 3T5

12∆y

c =
35T1 − 104T2 + 114T3 − 56T4 + 11T5

24(∆y)2

d =
−5T1 + 18T2 − 24T3 + 14T4 − 3T5

12(∆y)3

e =
T1 − 4T2 + 6T3 − 4T4 + T5

24(∆y)4

Then, as before:

qw = −k
(
∂T
∂y

)
y=0

∼= −kb =
k

12∆y
(25T1 − 48T2 + 36T3 − 16T4 + 3T5)
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Estimation of boundary value

Suppose that now, for the energy equation, the wall heat flux is specified as a boundary
condition.
We may then want to use polynomial fitting to obtain an expression for the boundary
temperature that is called for in the FD equation for internal points.
In other words, if qw = −k(∂T/∂y)y=0 is given, how can we evaluate T at y = 0, that is, T1 in
terms of qw/k and T2, T3, etc. ?
Assume that

T = a + by + cy2 + dy3

near the wall, and that (∂T/∂y)y=0 = b = −qw/k (given).
Our objective is to evaluate T1, which in this case equals a. Referring to the previous figure,
we can write:

T2 = a −
qw
k

∆y + c(∆y)2 + d(∆y)3

T3 = a −
qw
k

2∆y + c(2∆y)2 + d(2∆y)3

T4 = a −
qw
k

3∆y + c(3∆y)2 + d(3∆y)3
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Estimation of boundary value - cont.

Solving for a, c and d in terms of T2, T3, T4, qw/k and ∆y (by means, in this case, of
MATLAB® Symbolic toolbox):

a =
1

11 k
(18T2 k − 9T3 k + 2T4 k + 6qw ∆y)

c = −
1

22 k (∆y)2 (19T2 k − 26T3 k + 7T4 k − 12qw ∆y)

d =
1

22 k (∆y)3 (5T2 k − 8T3 k + 3T4 k − 2qw ∆y)

The derived result T1 follows directly from T1 = a and is given by:

T1 =
1

11 k
(18T2 k − 9T3 k + 2T4 k + 6qw ∆y) + O[(∆y)4] (92)

The TE in eq.(92) can be found by substituting Taylor-series expansions about the boundary
point for the temperatures on the right-hand side, or by identifying the polynomial as a
truncated series by inspection.
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Expressions for wall value of derivative

Expressions for wall values of the first derivative of a function in terms of values of the function,
with the assumption that ∆y = const.(

∂T
∂y

)
i,j

=
Ti,j+1 − Ti,j

∆y
+ O[∆y] (93)(

∂T
∂y

)
i,j

=
1

2∆y
(
−3Ti,j + 4Ti,j+1 − Ti,j+2

)
+ O[(∆y)2] (94)(

∂T
∂y

)
i,j

=
1

6∆y
(
−11Ti,j + 18Ti,j+1 − 9Ti,j+2 + 2Ti,j+3

)
+ O[(∆y)3] (95)(

∂T
∂y

)
i,j

=
1

12∆y
(
−25Ti,j + 48Ti,j+1 − 36Ti,j+2 + 16Ti,j+3 − 3Ti,j+4

)
+ O[(∆y)4] (96)
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Expressions for wall value of a function

Expressions for wall values of a function in terms of the values of the function and its first derivative
at the wall, with the assumption that ∆y = const.

Ti,j = Ti,j+1 −∆y
(
∂T
∂y

)
i,j

+ O[(∆y)2] (97)

Ti,j =
1
3

[
4Ti,j+1 − Ti,j+2 − 2∆y

(
∂T
∂y

)
i,j

]
+ O[(∆y)3] (98)

Ti,j =
1
11

[
18Ti,j+1 − 9Ti,j+2 + 2Ti,j+3 − 6∆y

(
∂T
∂y

)
i,j

]
+ O[(∆y)4] (99)

Ti,j =
1
25

[
48Ti,j+1 − 36Ti,j+2 + 16Ti,j+3 − 3Ti,j+4 − 12∆y

(
∂T
∂y

)
i,j

]
+ O[(∆y)5] (100)

| February 27, 2025 74 / 87

The Finite Difference Method, E. Nobile | Generation of difference formulas by Difference operators

Generalities

In section 3, where we defined the Finite Difference operators, we have introduced some
simple recursive formulas for first-order accurate forward- and backward-difference
approximations to derivative of any order.
In the following we will see a general methodology for the generation of arbitrary FD formulas
with prescribed order.
They are also based on the Finite Difference operators defined in sect. (3).
For the derivation of these and other FD formulas, it is convenient to use a symbolic
manipulator, like the MATLAB Symbolic Math ToolboxTM and its associated function/tools:
taylor, taylortool et.
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Relation between D and E operators

The important point, for generating Finite difference formulas, lies in the relation between the Shift
operator, eq. (17), and the Derivative operator, eq. (20).
This relation is obtained from the Taylor expansion2

ϕ(x +∆x) = ϕ(x) +
(
∂ϕ

∂x

)
0
∆x +

(
∂2ϕ

∂x2

)
0

(∆x)2

2!
+

(
∂3ϕ

∂x3

)
0

(∆x)3

3!
+ . . . (101)

and in operator form

Eϕ(x) = ϕ(x)
(

1 +∆xD +
(∆xD)2

2!
+

(∆xD)3

3!
+ . . .

)
(102)

Remembering that

ex =
∞∑

n=0

xn

n!
= 1 +

x
1!

+
x2

2!
+

x3

3!
+ . . .+

xn

n!
+ . . .

the relation (102) can be written as
Eϕ(x) = ϕ(x) e∆xD (103)

2In the following and subsequent equations, unless necessary, we will either omit the indices, or use just a single index for
brevity.
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Relation between D and E operators - cont.

The relation (103) can be expressed symbolically as

E = e∆xD (104)

This relation should be interpreted as giving identical results when acting on the exponential
function eax and on any polynomial of degree n.
For a polynomial of degree n, the expansion on the r.h.s. has only n terms and therefore all
the expressions presented in the following are exact up to n terms.
Equation (104) can be used in the inverse way, leading to

∆x D = lnE (105)
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Forward differences

The formulas for forward differences are obtained by taking into account the relation (21a),
e.g.

∆x = (Ex − I)

This leads to
∆x D = lnE = ln(1 +∆x)

= ∆x −
∆2

x
2

+
∆3

x
3

−
∆4

x
4

+ . . .

=
∞∑

n=1
(−1)n+1 ∆

n
x

n

(106)

(107)

The order of accuracy increases with the number of terms kept in the r.h.s. of eq. (107), and
the first neglected term gives the T.E..
Keeping the first term only, leads to the first order formula (4) and a T.E. equal to
(∂2ϕ/∂x2)∆x/2:

Dϕi =
1
∆x

(ϕi+1 − ϕi)
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Forward differences - cont.

If the first two terms of (107) are considered, we obtain

Dϕi =
1
∆x

(
∆x −

∆2
x

2

)
ϕi =

1
∆x

(ϕi+1 − ϕi)−
∆x

2∆x
(ϕi+1 − ϕi)

=
1

2∆x
(−3ϕi + 4ϕi+1 − ϕi+2)

i.e. the second order formula (36) with the truncation error ∆x2/3 (∂3ϕ/∂x3).
Therefore, the relation (107) leads to various FD formulas for the first derivative with
increasing order of accuracy.
Since the forward difference operator can be written as ∆x = ∆x (∂/∂x) + O(∆x2), it follows
that the first neglected operator ∆n

x is of order n, showing that the associated T.E. is
O(∆xn−1).
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Backward differences

Backward difference formulas can be obtained, with increasing order of accuracy, by
application of eq. (21b), e.g.

∇x = (I − E−1
x )

which leads to
∆x D = lnE = − ln(1 −∇x)

= ∇x +
∇2

x
2

+
∇3

x
3

+
∇4

x
4

+
∇5

x
5

+ . . .

=
∞∑

n=1

∇n
x

n

(108)

(109)

Again, keeping the first term only, leads to the first order formula (6) and a T.E. equal to
(∂2ϕ/∂x2)∆x/2

Dϕi =
1
∆x

(
ϕi − ϕi−1

)
Keeping the first two terms we obtain

Dϕi =
1

2∆x
(
3ϕi − 4ϕi−1 + ϕi−2

)
i.e. the second order formula (37) with the truncation error ∆x2/3 (∂3ϕ/∂x3).

| February 27, 2025 81 / 87

The Finite Difference Method, E. Nobile | Generation of difference formulas by Difference operators | Difference formulas for First Derivatives

Central differences
Central differences are obtained from eq. (21c), i.e.

δxϕi = ϕi+1/2 − ϕi−1/2 =
(

E1/2
x − E−1/2

x

)
ϕi

Remembering that

sinh x = x +
x3

3!
+

x5

5!
+ . . . =

∞∑
n=0

x2n+1

(2n + 1)!
(110)

it follows that
δx = e∆xD/2 − e−∆xD/2 = 2 sinh

(
∆xD

2

)
(111)

The Taylor expansion of arsinhϕ (e.g. sinh−1)ϕ is

arsinh x =
∞∑

n=0

(−1)n (2n)!
4n(n!)2(2n + 1)

x2n+1 (112)

therefore, inversion of equation (111) leads to
∆x D = 2 arsinh δx/2

= 2
[
δx
2

−
1

2 · 3

(
δx
2

)3
+

1 · 3
2 · 4 · 5

(
δx
2

)5
−

1 · 3 · 5
2 · 4 · 6 · 7

(
δx
2

)7
+ . . .

]

= δx −
δ3

x
24

+
3 δ5

x
640

−
5 δ7

x
7168

+ . . .

(113)
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Central differences - cont.

Equation (113) generates a family of central difference schemes of first order derivatives
(∂ϕ/∂x)i based on values of ϕ at half-integer grid point locations, and are not reported here.
To derive expressions involving only integer grid points, we could apply the same procedure
to the operator δx

δx =
(

E+1
x − E−1

x

)
=
(

e∆xD − e∆xD
)
= 2 sinh(∆xD) (114)

and therefore
∆x D = arsinh δx/2

=
δx
2

−
1

2 · 3

(
δx
2

)3

+
1 · 3

2 · 4 · 5

(
δx
2

)5

+ . . .

=
δx
2

−
δx

3

48
+

3 δx
5

1280
+ . . .

(115)

This formula, however, is of little help, since the second term leads to a fourth order scheme
for (∂ϕ/∂x)i involving the four points i − 3, i − 1, i + 1 and i + 3, rather than i − 2, i − 1, i + 1
and i + 2.
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Central differences - cont.

A better approach, in order to obtain a general formula for central difference representation of
(∂ϕ/∂x)i , is to start from the identity (22e)

µx =
1
2
(E1/2

x + E−1/2
x )

It follows
µ2

x =
1
4

(
E+1

x + E−1
x + 2 E1/2

x E−1/2
x

)
= 1 +

δ2
x
4

(116)

and then, using e.g. function taylor of the MATLAB Symbolic Math ToolboxTM

1 = µx

(
1 +

δ2
x
4

)−1/2

= µx

(
1 −

δ2
x
8

+
3δ4

x
128

−
5δ6

x
1024

+
35δ8

x
32768

+ . . .

)
(117)

Observing that

µxδxϕi =
δx
2
ϕi

we can now multiply equation (117) by equation (113)
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Central differences - cont.

The result is

∆x D =
δx
2

(
1 −

δ2
x
6

+
δ4

x
30

−
δ6

x
140

+
689 δ8

x
1720320

+ . . .

)
(118)

We can now recover the second order accurate central difference scheme of the first
derivative, eq. (8) with a T.E. equal to (∂3ϕ/∂x3)∆x2/6, by keeping only the first term of
eq.(118)

Dϕi =
δx

2∆x
ϕi

=
ϕi+1 − ϕi−1

2∆x
(119)

Keeping the first two terms of (118), will result in the 4th order accurate central difference
scheme, eq. (41)

Dϕi =
1

2∆x
δx

(
1 −

δ2
x
6

)
ϕi

=
−ϕi+2 + 8ϕi+1 − 8ϕi−1 + ϕi−2

12∆x
(120)

with a T.E equal to (∂5ϕ/∂x5)∆x4/30.
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Higher order derivatives

Higher order derivatives can be obtained, with the same approach seen for the first derivative,
using the FD operators.
In CFD the major interest is in second order derivatives.
For completeness, however, we show some general formulas for n-th order derivatives.
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Forward differences

From equation (106)(
∂nϕ

∂xn

)
i
= Dnϕi =

1
∆xn [ln (1 +∆x)]

n ϕi

=
∆n

x
∆xn

[
1 −

n
2
∆x +

n(3n + 5)
24

∆2
x −

n(n + 2)(n + 3)
48

∆3
x + . . .

]
ϕi (121)

It is easy to see that:
For n = 1 (first order derivative) and keeping only the first term of (121), we recover equation (4),
while keeping the first two terms, we obtain the formula (36).
For n = 2 (second order derivative), we obtain eq.(38) if we keep only the first term, and equation (45)
if the first two terms are considered.
For arbitrary n (nth order derivative), by keeping just the first term of eq.(121) we recover eq.(31).
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Backward differences

From equation (108)(
∂nϕ

∂xn

)
i
= Dnϕi = −

1
∆xn [ln (1 −∇x)]

n ϕi

= −
∇n

x
∆xn

[
1 +

n
2
∇x +

n(3n + 5)
24

∇2
x +

n(n + 2)(n + 3)
48

∇3
x + . . .

]
ϕi (122)

Also in this case, one can see that:
For n = 1 (first order derivative) and keeping just the first term of (122), we obtain equation(6), while
keeping also the second term we recover equation (37).
For n = 2 (second order derivative) and keeping only the first term, it is easy to see that we obtain eq.
(39), and we recover eq. (46) by adding also the second term of the formula (122).
For arbitrary n (nth order derivative), by keeping only the first term of eq.(122) we recover eq.(32).
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Central differences

Central differences for n even can be obtained from equation (113)

(
∂nϕ

∂xn

)
i
= Dnϕi =

( 2
∆x

arsinh δx/2
)n

ϕi

=
1

∆xn

[
δx −

δ3
x

24
+

3
640

δ5
x −

5
7168

δ7
x + . . .

]n

ϕi

=
1

∆xn δ
n
x

[
1 −

n
24

δ2
x +

n
5760

(22 + 5n) δ4
x

−
n
45

(5
7
+

n − 1
5

+
(n − 1)(n − 2)

81

)
δ6

x + . . .

]
ϕi (123)

In this case
For n = 2 (second derivative) and keeping only the first term of formula (123), lead to the well-known
three-point expression (9).
For n = 2 but keeping also the second term, it is easy to verify that we recover equation (44).

| February 27, 2025 89 / 87

The Finite Difference Method, E. Nobile | Generation of difference formulas by Difference operators | Difference formulas for Higher Order Derivatives

Central differences - cont.

In case of n odd (uneven), a general formula can be obtained from eq. (117)

(
∂nϕ

∂xn

)
i
= Dnϕi =

µx[
1 + δ2

x/4
]1/2

( 2
∆x

arsinh δx/2
)n

ϕi

=
µx
∆xn δ

n
x

[
1 −

n + 3
24

δ2
x +

(5n + 27)(n + 5)
5760

δ4
x + . . .

]
ϕi (124)

For this case
For n = 1 (first derivative), eq. (8) is obtained from the previous formula keeping only the first term.
For n = 1 but keeping also the second term of formula (124), we recover eq. (41).
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