Enrico Nobile

Dipartimento di Ingegneria e Architettura Università degli Studi di Trieste

Corso di Termofluidodinamica Computazionale

Homework No. 1 AA 2019/2020

Proposed problem

A plane fin of uniform cross-section, as shown in figure 1, is made with a uniform, isotropic material with a thermal conductivity k = 50 W/(m K); it has a thickness t, a length L and its width w is large in comparison with its thickness. In this case the fin is cooled by both convection and radiation:

- The convective heat transfer coefficient is $h = 50 \text{ W/(m}^2 \text{ K})$ and the surrounding fluid temperature is T_{∞} .
- The radiation heat transfer can be accounted for assuming that the fin surface is graydiffuse, with a global emissivity $\epsilon = 0.7$, that the fluid is not participating nor emitting, and that the temperature of the surroundings is T_s .

The base of the fin is maintained at a temperature $T_b = 400$ °C, while the tip of the fin can be assumed perfectly insulated.

Figure 1: Straight fin with uniform cross-section.

Assuming a ID temperature distribution, i.e. $T \approx T(x)$, compute, with the Finite Volume method (FV), the heat flux per unit width of the fin q'_{num} [W/m], using a number N of FVs equal to N=10, 20, 40,and 80.

Consider the three following cases:

- 1. In this first case the fin has a length L=20 mm and a thickness t=1 mm, the fluid temperature and the surroundings temperature are the same, i.e. $T_{\infty} \equiv T_s = -273.15$ °C = 0 K. In this way, it is possible to verify the result by comparison with the simplified analytical expression given in [1], not reported here for brevity, which gives $q'_{appr} = 1186.0$ [W/m].
- 2. For the second case, repeat the calculation but assume T_{∞} = 25 °C and T_s = 15 °C.
- 3. For the third case, consider a fin with a different geometry (lower aspect-ratio): L=20 mm and thickness t=10 mm. All other data are the same as in the second case.

2 REFERENCES

TIP # 1

Due to radiation heat transfer the problem is *non-linear*, and therefore it requires an iterative approach with a proper linearization. In this case it can be done by observing that the heat transfer by radiation can be expressed in a form similar to that of convection heat transfer:

$$q'_{rad} = \epsilon \sigma A_f \left(T_f^4 - T_s^4 \right)$$
$$= A_f h_r \left(T_f - T_s \right)$$

where T_f is the (local) temperature of the fin, $\sigma = 5.670367 \times 10^{-8} \text{ W/(m}^2 \text{ K}^4)$ is the Stefan-Boltzmann constant and

$$h_r = \epsilon \sigma \left(T_f^2 + T_s^2 \right) \left(T_f + T_s \right)$$

is the radiation heat transfer coefficient. Since h_r depends on T_f , an iterative procedure, with a check of convergence, should be applied.

In this way, the total heat transfer can be expressed as

$$q'_{tot} = q'_{conv} + q'_{rad} = A_f [h (T_f - T_\infty) + h_r (T_f - T_s)]$$

Needless to say, proper attention must be paid, in this case, to the unit of measure of temperature.

TIP # 2

In order to verify, at least partially, the correctness of the script, a possible solution is to switch off the radiation heat transfer contribution, and compare the numerical result with the analytical solution [2] valid for longitudinal fins of uniform cross-section with insulated tip:

$$q_f' = \sqrt{2hkt} \tanh(mL) (T_b - T_\infty)$$

with

$$m = \sqrt{2h/kt}$$

References

- [1] Y. Huang, X.-F. Li, Exact and approximate solutions of convective-radiative fins with temperature-dependent thermal conductivity using integral equation method, *Int. J. Heat Mass Transfer*, **150**, 119303, 2020.
- [2] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, *Fundamentals of Heat and Mass Transfer*, 6th Ed., Wiley, (2007).