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Air pollution has been reported to be an environmental risk factor for autism spectrum disorder. However, the
gut microbiome’s role as a potential mediator has not been investigated. We aimed to clarify whether particulate
matter with an aerodynamic diameter <10 pm (PM;) and nitrogen dioxide (NO2) exposure impact autistic traits
through the gut microbiome. Using 170 mother—child pairs, PM;o and NO, exposure levels during pregnancy
(1st, 2nd, and 3rd trimesters) and annual residential PM; levels at age 2, 4, and 6 years were estimated. Autistic
traits and gut microbiome were assessed at age 6 years. The associations of PM;( or NO, exposure, gut micro-
biome composition, and autistic traits were explored, and mediation analyses of statistically significant findings
were also conducted. Exposure to PM;( during the 1st trimester of pregnancy was associated with increased
autistic traits (10.6% change per interquartile range (IQR) increase, 95% confidence interval [CI]: 1.1, 21.0) and
with Proteobacteria relative abundance at age 6 years (66.9% change per IQR increase, 95% CI: 21.3, 129.8). First
trimester NO; exposure was associated with autistic traits (12.1% change, 95% CL: 0.1, 25.5) and Proteobacteria
relative abundance at age 6 years (48.1% change, 95% CI: —0.1, 119.6). Proteobacteria relative abundance was
related to autistic traits (4.4% change per 2-fold increase, 95% CI: 1.3, 7.5). Relations between PM;o or NOy
exposure during the 1st trimester and autistic traits at age 6 years were partially mediated by Proteobacteria
(proportion mediated 23.2%, p = 0.01 and 16.7%, p = 0.06; respectively). PMjo and possibly NO, exposure
during early pregnancy may affect autistic traits at age 6 years through the alteration of Proteobacteria
abundance.

1. Introduction

Autism spectrum disorder (ASD) affects one in 44 children in the
United States (Maenner et al., 2021), and is marked by deficits in social
communication, restricted interests, and repetitive behavior (American
Psychiatric Association, 2013). Autistic traits are detectable between 6
and 18 months (Barbaro and Dissanayake, 2009), indicating that critical

windows to genetic and environmental factors occur during prenatal
and early postnatal periods. Although the high heritability of ASD sug-
gests that genetics is a key factor (Tick et al., 2016), previous studies
have estimated that non-heritable factors account for >50% of the
neurobiology of ASD (Mayer et al., 2014).

Traffic-related air pollutants such as particulate matter (PM) and ni-
trogen dioxide (NO3) have been suggested as environmental risk factors

Abbreviations: ASD, autism spectrum disorder; PM, particulate matter; NO,, nitrogen dioxide; SCQ, social communication questionnaire; OTU, operational
taxonomic unit; DAG, directed acyclic graph; IQR, interquartile range; RDA, redundancy analysis.
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for ASD (Dutheil et al., 2021; Volk et al., 2013). While NO, is mainly
emitted from automobile exhaust and combustion of fossil fuels (Shang
et al., 2020), PM is a mixture of toxic substances with various particle
sizes and chemical properties, including sulfates, nitrates, ammonia,
black carbon, dust, polycyclic aromatic hydrocarbons, metallic carbon,
and volatile organic compounds (Zhang et al., 2021). Both air pollutants
show high annual exposure levels in South Korea and are under active
regulation by the Korean government. In 2019, the annual mean PM;
and NO-, levels (42 and 52.6 pg/; 'm®) in Seoul, the capital of South Korea,
were higher than in metropolitan cities such as Los Angeles (29 and 43.2
pg/m>), Tokyo (16 and 26.3 pg/m®) and London (18 and 32 pg/m®)
(airkorea.or.kr, http://www.epa.gov, http://www.kankyo.metro.tokyo.
jp, http://uk-air.defra.gov.uk). Although results on the association be-
tween traffic-related air pollution and ASD have been inconsistent, pre-
vious research has suggested that PM with an aerodynamic diameter <10
pm (PM;p) and NO; are related to an increased risk of ASD (Flores-Pajot
etal., 2016; Chen et al., 2018; Wang et al., 2021). However, research on
the mechanism underlying the association between air pollution and
autistic traits is scarce.

Many individuals with ASD report comorbid gastrointestinal symp-
toms—constipation, abdominal pain, diarrhea, gas, and vomiting
(Vuong and Hsiao, 2017)—as well as deficient gut epithelium integrity
and increased intestinal permeability (Emanuele et al., 2010). The gut
microbiota regulates central nervous system activities through various
pathways (Liu et al., 2019a), such as regulating the hypothal-
amic-pituitary-adrenal axis (Sudo, 2012) and producing short-chain
fatty acids (SCFA) that affect brain function (Ray, 2017). A previous
meta-analysis found dysbiotic microbial compositions in children with
ASD (Iglesias-Vazquez et al., 2020); however, a distinct microbial
signature for ASD has not been defined yet (Vuong and Hsiao, 2017).

Air pollution exposure can alter the composition of the gut micro-
biome (Bailey et al., 2020). Mucociliary clearage of inhaled air pollut-
ants in the lung and contaminated food/drinking water are major routes
that PM enters the gastrointestinal tract (Salim et al., 2014). PM can
either support or inhibit the growth of specific microbes, causing
alteration in the composition and function of the gut microbiota (Gao
et al., 2017; Korpela et al., 2019; Adams et al., 2015). Moreover, PM3 5
and PM; exposures showed negative associations with alpha diversity
indices and the relative abundance of most Firmicutes, Proteobacteria,
and Verrucomicrobia bacteria (Liu et al., 2019b). NO, was associated
with alternation in the gut microbiome profile in young adults, including
increased Firmicutes abundance at the phylum level and Coriobacter-
iaceae, Ruminococcaceae, and Adidobacteriaceae abundance at the family
level (Fouladi et al., 2020).

The microbiome is associated with both air pollution and autistic
traits; however, this complex relationship has not been investigated yet.
Furthermore, it can potentially mediate environmental risk factors in
ASD (Vuong and Hsiao, 2017). The microbiota has bi-directional re-
lationships with both genetics and environment; host genetics affect its
composition and function, while environmental factors, including age,
infections, diet, and xenobiotics, further shape the microbial profile
(Falony et al., 2016). Moreover, early-life alterations in the microbiota
can have long-term consequences for health and disease (Kumar et al.,
2014). This study aimed to examine whether pre- and postnatal PM;q
and NO; exposures impact autistic traits at 6 years of age through the
alteration of the gut microbiome among the children in an ongoing birth
cohort. It also aimed to explore the association of PM;¢ and NO3 expo-
sure (1st, 2nd, and 3rd trimesters of pregnancy; ages 2, 4, and 6 years)
with autistic traits at age 6 years, the relationship of PM;o and NOy
exposure with the gut microbiome composition at age 6 years, and the
association between microbiome profiles and autistic traits. Mediation
analyses of statistically significant findings were also conducted to
confirm the “air pollutant exposure-gut microbiome-autistic traits”
pathway.
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2. Methods and materials
2.1. Study design and participants

Data from an ongoing prospective cohort study—the Environment
and Development of Children (EDC) study—were used (Kim et al.,
2018). From the 726 pregnant women recruited from hospitals in Seoul,
the capital city of South Korea, and two nearby regions (Incheon and
Kyoung-gi) from August 2008 to July 2010, we collected information on
the mothers’ socio-demographical characteristics during the second
trimester of pregnancy (between 14 and 27 weeks of gestation). We then
contacted the mothers and enrolled 425 children of the mothers at age 2
and additionally 301 at age 4 at the Seoul National University Hospital,
Seoul, South Korea. Their children were followed up every 2 years; 425,
645, and 574 children at age 2, 4 and 6 years, respectively. At age 6, we
started to collect one fecal sample from each child in 2016 and analyzed
the gut microbiome of 173 randomly selected children, due to limited
budget, out of the 243 children who were not exposed to antibiotics at
the time of sample collection. After excluding those with missing air
pollution data or autistic trait scores, 170 of the children were included
in the prenatal exposure analyses. For postnatal exposure analyses, 132
children with information on air pollution exposure levels at all 3 ages
(age 2, 4, and 6 years) were included. The sample size for prenatal
exposure analyses and childhood exposure analyses for the Verrucomi-
crobia was 108 and 84, after excluding the participants with zero relative
abundance for Verrucomicrobia. For comparison, we explored the rela-
tion between air pollution and autistic traits in the main cohort after
excluding those with missing data (n = 568).

Informed consent was obtained from all guardians. The study pro-
tocol was reviewed by the Institutional Review Board of Seoul National
University Hospital (IRB No. 1201-010-392) and followed the principles
of the Declaration of Helsinki.

2.2. Estimation of PM;9 and NOg exposure levels

Air pollution exposure levels were extracted from air quality moni-
toring data recorded by 300 air quality monitoring systems of the
Ministry of Environment (Seoul, South Korea: https://www.airkorea.or.
kr). Air pollutant concentrations, including PM;( (in micrograms per
cubic meter pg/m?) and NO; (in pig/m?) were recorded by the hour. The
mean was calculated using 75% of the contributing values. Finally, 24-h
mean concentrations were calculated for each monitoring site. Accord-
ing to the participants’ addresses, individuals were linked to the air
pollution levels measured at the nearest monitoring station based on
Euclidean distance (between 100 m and 10 km) using ArcGIS (version
10.1; ESRI Inc., Redlands, CA, USA). Levels of PM;o and NO; exposure
during pregnancy (1st, 2nd, and 3rd trimester) and annual residential
levels at ages 2, 4, and 6 years were estimated.

2.3. Assessment of autistic traits

We used the parent-rated Social Communication Questionnaire
(SCQ) at age 6 years to quantify autistic traits. The SCQ is a 40-item
questionnaire that evaluates ASD symptoms like communication abili-
ties, social skills, and repetitive behaviors during the previous 3 months.
The first item asks about minimal verbal skills, and the sum of the
remaining 39 binary items (1: yes, 0: no) equals the total SCQ score
(Snow, 2013). Individuals with higher scores were considered more
autistic.

2.4. 16s rRNA sequencing

Fecal material of the participants was collected at age 6 years and
frozen at —80 °C until DNA extraction with a DNeasyPowerSoil Kit
(Qiagen, Hilden, Germany), according to the manufacturer’s in-
structions, and quantification using Quant-IT PicoGreen (Invitrogen,
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Waltham, MA, USA).

The sequencing libraries were processed using the Illumina 16S
Metagenomic Sequencing Library protocols to amplify the V3 and V4
regions (Supplemental Methods).

2.5. Operational taxonomic unit (OTU) analysis

We formed the original library and single long reads by assembling
paired-end sequences generated sequencing both directions of the li-
brary with FLASH (v1.2.11) (Magoc and Salzberg, 2011). (Supplemental
Methods). Quality control data was presented in Table S1.

The alpha diversity of the microbiome (Chao, Shannon, and Inverted
Simpson index) was calculated to evaluate species diversity and even-
ness using the “phyloseq” package of R version 4.0.2 (The Comprehen-
sive R Archive Network, Vienna, Austria; http://cran-r-project.org). We
excluded rare phyla, which were not commonly detected in the children,
such as Cyanobacteria, Fusobacteria, Syndergistetes, and Tenericutes
(detection rates were 2.3%, 13.7%, 0.6%, and 4.0%, respectively). In the
main anlaysis, we examined four phyla that were detected in all par-
ticipants (n = 170): Actinobacteria, Bacteriodetes, Proteobacteria, and
Firmicutes. In addition, we examined Verrucomicrobia that was detected
among 108 and 84 children in the prenatal exposure and postnatal
exposure analyses, respectively. The logo-transformed values of the
relative abundances were used to normalize the phylum distribution
(Fig. S1).

2.6. Definition of covariates

The list of potential covariates was created after review of previous
literature (Kim et al., 2021; Yi et al., 2021). The potential covariates
were maternal age at pregnancy (years), maternal education (< or >
college education), family income status (monthly family income < or >
$3500), diabetes mellitus (DM) during pregnancy (yes or no),
pre-pregnancy body mass index (BMI, kg/m?), child’s age (in months),
sex, multiple gestation birth (singleton or twin/triplet), child’s BMI,
birth order (< or > 2nd), delivery mode (vaginal delivery or cesarean
section), prematurity (< or > 37 weeks), low birth weight (< or > 2.5
kg), breastfeeding status (exclusive breastfeeding, mixed feeding, or
exclusive formula feeding), and season of birth (spring, summer,
autumn, or winter). Different covariates were selected for the prenatal
and postnatal air pollution analyses. We excluded potential mediators
for the prenatal analyses, which were DM during pregnancy, prematu-
rity, and low birth weight. Some potential covariates, including
breastfeeding, delivery mode, child’s BMI, and season of birth, could not
have confounded prenatal air pollutant exposure levels and were only
addressed in postnatal analyses. Based on exploratory analyses, poten-
tial covariates that were related to SCQ scores, air pollutant levels, or
relative abundances of phyla were found (Table S2, S3, S4, and S5). The
following final covariates were selected based on the definition of con-
founders: variables associated with both exposure and outcome, but are
not in the causal pathway between exposure and outcome (Hernan et al.,
2002). We depicted the relationships between variables by building a
data-driven directed acyclic graph (DAG; http://www.dagitty.net/)
based on the statistical associations between the involved variables and
potential covariates (Fig. S2): age, sex, multiple gestation births, and
family income for the prenatal models and age, sex, multiple gestation
births, family income, the season of birth, low birth weight, delivery
mode, and breastfeeding for the postnatal models.

2.7. Statistical analysis

Pearson correlation coefficients for the correlations between PMjq
and NO; levels during pregnancy and childhood were calculated. The
differences in PM;o and NOy over time were investigated using intraclass
correlation coefficients (ICCs; two-way mixed models, single rater, ab-
solute agreement option: ICC(3,1)).

International Journal of Hygiene and Environmental Health 246 (2022) 114047

We compared the characteristics of the main (n = 568) and subset
cohorts (n = 170) using independent t-tests (for continuous variables) or
chi-square tests (for categorical variables).

Due to the right-skewness of SCQ scores at age 6 years (Fig. S3), we
implemented Poisson regression for subsequent analyses. The associa-
tions between potential covariates and SCQ scores were explored with
univariate Poisson regression models. The association between cova-
riates and air pollutant exposure levels and between covariates and
phyla relative abundance were examined in linear regression models.

2.8. Association between air pollution and SCQ scores

The association between PM;y or NO; exposure in each exposure
period and SCQ scores at age 6 years was examined using multivariable
Poisson regression models in the main (n = 568) and subset (n = 170 for
prenatal, n = 132 for postnatal) cohorts. The statistically significant
associations were visualized using smoothing splines. As we assumed a
Poisson distribution of SCQ scores using a log-link function, the risk of
higher SCQ scores associated with an interquartile range (IQR) increase
in air pollution level was expressed as a percent change (%) using the
following formula: (e"(*IQR)-1)*100%, where  was an estimate from
the Poisson regression model, and IQR is interquartile range of air
pollution.

2.9. Associations between air pollution and microbiome profile

The association of air pollutants with alpha diversity indices was
explored using multivariable linear regression. Levels of PM;y and NO5
were included as explanatory variables in the redundancy analysis
(RDA) computed squared-root-transformed unweighted UniFrac dis-
tances, conducted by the “vegan” package of R. We estimated the sig-
nificance of variation in the microbiome data explained by explanatory
variables by the Monte Carlo permutation test (1000 permutations). We
used partial RDA models to determine the amount of variation in
microbiome community composition explained solely by PM;( or NO,
exposure after controlling for covariates. The associations between
exposure to air pollutants and the relative abundance of the four phyla
were also tested using multiple linear regression models. As the relative
abundance was log,-transformed, the risk of higher relative abundance
associated with an IQR increase in air pollution level was expressed as a
percent change (%) using the following formula: (2"(*IQR)-1)*100%,
where p was an estimate from the regression model, and IQR is inter-
quartile range of air pollution.

2.10. Association between microbiome profile and SCQ scores

The associations of the alpha diversity indices/relative abundance of
the phyla found statistically significant in the aforementioned analyses
and SCQ scores were examined using multivariable Poisson regression.

2.11. Mediation analyses

The “air pollution-microbiome-autistic traits” pathway was tested in
cases where all three pairs of associations among air pollution exposure,
microbiome, and SCQ scores were statistically significant. We tested the
indirect association between air pollution and autistic traits through
changes in the microbiome composition by using nonparametric esti-
mation model-based mediation analyses. A predetermined pathway was
established, in which air pollution influences a mediator (gut micro-
biome), which then affects autistic traits. No unmeasured confounding
or effect modification was anticipated among the included components.
The proportion mediation represents the average amount of indirect
association between air pollution and autistic traits via changes in the
microbiome composition relative to the average total association.

For comparison, mediation models were constructed for various time
windows of exposure (1st, 2nd, and 3rd trimester of pregnancy, age at 2,
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4, 6 years) to air pollutants (PM;o and NO,) and microbiota at phyla
levels (Actinobacteria, Bacteriodetes, Proteobacteria, Firmicutes, and Ver-
rucomicrobia). As the microbiome profile and SCQ scores were measured
cross-sectionally, the different direction of mediation effects (i.e., air
pollution—autistic traits—gut microbiome) was examined. The “media-
tion” package in R was used to precise p-values of the estimates of the
total, direct, and median effects using nonparametric bootstrapping with
20,000 simulations (Tingley et al., 2014).

All statistical analyses were performed using IBM SPSS Statistics for
Windows version 22 (IBM Corp., Armonk, N.Y., USA) and R version
4.0.2. Statistical significance was defined as p < 0.05 (two-tailed).

3. Results
3.1. General characteristics of the participants

The characteristics of the participants in the main (n = 568) and
subset (n = 170) cohorts were similar (Table 1). In the subset cohort, the

mean maternal age at pregnancy was 31.4 + 3.5 years. The majority of
mothers were college graduates (85.9%) and most children came from

higher-income families (71.8%). Regarding the children’s
Table 1
Characteristics of the participants in the main and subset cohort at age 6.
Characteristics ~ Variables Main Subset P-
cohort (n = cohort (n = value
568) 170)
Maternal Maternal age at 31.4 (3.6) 31.4 (3.5) 0.99
pregnancy, years, mean
(SD)
Maternal Education, N 0.48
(%)
< College education 92 (16.2) 24 (14.1)
> College graduate 476 (83.8) 146 (85.9)
Monthly household 0.63
income, N (%)
< $3500, N (%) 173 (30.5) 48 (28.2)
>$3500, N (%) 395 (69.5) 122 (71.8)
Smoking during
pregnancy, N (%)
Non-smoker 554 (100) 151 (100)
Smoker 0(0) 0 (0)
DM during pregnancy, 22 (3.9) 9(5.3) 0.42
yes, N (%)
Prepregnancy BMI, 20.9 (2.7) 20.8 (2.3) 0.63
mean (SD)
Child Sex, boys, N (%) 296 (52.1) 87 (51.2) 0.86
BMI, kg/mz, mean (SD) 15.8 (1.8) 15.6 (1.7) 0.19
Season of birth, N (%) 0.03
Spring 146 (25.7) 33 (19.4)
Summer 175 (30.8) 51 (30.0)
Autumn 163 (28.7) 45 (26.5)
Winter 84 (14.8) 41 (24.1)
Delivery mode, N (%) 0.36
Vaginal delivery 362 (63.7) 115 (67.6)
Cesarean section 206 (36.3) 55 (32.4)
Low birth weight, yes, 40 (7.0) 9(5.3) 0.42
N (%)
Prematurity, yes, N (%) 44 (7.7) 9(5.3) 0.28
Breastfeeding 0.37
Exclusive breastfeeding 172 (30.3) 58 (34.1)
Mixed feeding 374 (65.8) 109 (64.1)
Formula feeding 20 (3.5) 3(1.8)
Twin, yes, N (%) 50 (8.8) 15 (8.8) 0.99
Birth order, first child, 325 (57.2) 94 (55.3) 0.66
N (%)
SCQ score, age 6, mean 3.6 (2.7) 3.4 (2.9 0.42
(SD)

Abbreviations: SD, standard deviation; DM, diabetes mellitus; BMI, body mass
index; SCQ, social communication questionnaire.

P-value for difference of characteristics between main and subset cohort (chi-
square test or Fisher’s exact test for categorical variables and t-test for contin-
uous variables).
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characteristics, 51.2% were boys, 32.4% were born by cesarean section,
and 5.3% were born with a low birth weight or prematurely.

3.2. PM;j¢ and NO, exposure levels

The distribution of PM;¢ and NO-, levels at exposure periods is pre-
sented in Table S6. The mean levels of PM;( exposure were 55.5 + 10.3,
54.1 +11.7,53.8 +£12.8, 54.5 + 7.4, 46.0 + 4.7, 50.7 £ 5.6, and 49.2
+ 5.2 pg/m? during the 1st, 2nd, 3rd, and 1-3rd trimester of pregnancy,
and at age 2, 4, and 6 years, respectively. The mean exposure levels for
NO, were 63.2 + 9.5, 62.0 + 11.2,61.6 + 11.4,62.2 + 7.9, 58.3 + 7.7,
60.2 + 7.0, and 54.9 + 7.5 pg/mS, during the 1st, 2nd, 3rd, 1-3rd
trimester of pregnancy, and at age 2, 4, and 6 years, respectively. The
ICC for PM;( was 0.91 for the trimesters of pregnancy and 0.46 for age
2-6 years. The ICC for NO, was 0.38 for the trimesters of pregnancy and
0.38 for age 2-6 years. The correlation coefficients of both PM;¢ pairs
(0.3 and 0.41 for pregnancy, 0.65 and 0.55 for childhood) and NO-, (0.5
and 0.53 for pregnancy, 0.39 and 0.55 for childhood) for adjacent pe-
riods were small to moderate. There were moderate and weak correla-
tions between PM; and NOy measured in the same pregnancy trimesters
(range 0.48-0.60) and during childhood (range —0.14-0.06), respec-
tively (Fig. S4).

3.3. Association between PMjo and NO2 exposure and autistic traits

The association between PM;, and NO; exposure and SCQ scores at
age 6 years are shown in Table 2 for the subset cohort (n =170 and n =
108) and Table S7 for the main cohort (n = 568). In the subset cohort (n
=170), an IQR increase of PM;( exposure during the 1st trimester and at
ages 2 and 4 years was associated with increased SCQ scores at 6 years of
age (10.6% change, 95% confidence interval [CI]: 1.1, 21.0; 16.8%
change, 95% CI: 2.3, 33.3; 15.7% change, 95% CI: 1.9, 31.4, respec-
tively; Fig. S5). When the sample size was reduced to n = 108, only PM;(
exposure at age 4 was associated with SCQ scores at age 6 (19.1%
change, 95% CI: 1.4, 40.1), and NO2 exposure during the 1st trimester of
pregnancy was associated with increased SCQ scores at age 6 (18.3%
change, 95% CI: 4.4, 34.1). Similarly, in the main cohort, the exposure
windows that showed statistically significant associations between PM; o
exposure and SCQ scores were the 1st trimester, and the age 2 and 4
periods (9.4% change, 95% CI: 4.4, 14.5; 14.6% change, 95% CI: 6.3,
23.6; 17.4% change, 95% CI: 8.1, 27.6). The effect sizes of associations
were similar in the subset and main cohorts.

In the subset cohort, NO, exposure during the 1st trimester was
statistically significantly associated with increased SCQ scores at age 6
years (12.1% change per IQR increase, 95% CI: 0.1, 25.5). However, in
the main cohort, NO5 exposure was not related to increased SCQ scores
in any exposure windows. Rather, NO, exposure at ages 4 and 6 years
was negatively associated with SCQ scores at age 6 years (—8.8%
change, 95% CI: —13.6, —3.7; —6.6% change, 95% CI: —12.6, —0.1).

3.4. Association between PMjo or NO2 exposure and gut microbiome

The range of alpha diversity indices according to sex is shown in
Fig. S6. The distribution of the relative phyla abundance is presented in
Fig. S7, which shows that Bacteroides was the most dominant phylum,
followed by Firmicutes, Actinobacteria, and Proteobacteria and Verruco-
microbia. Considering alpha indices, only NOy exposure during the 3rd
trimester was associated with the Chao index at age 6 years (4.9 increase
per IQR increase, 95% CI: 0.14, 9.67; Table S8). In the RDA analysis,
PM; exposure during the 1st trimester showed a statistically significant
association with the composition variation of the gut microbiome at age
6 years (R2 = 1.6%, p = 0.03; R = 1.4%, p = 0.01 for the order and
family level, respectively; Fig. 1, Table S9).

When examining the phylum level, PM;, exposure during the 1st
trimester was associated with increased Proteobacteria abundance
(66.9% increase per IQR increase of PM;o, 95% CI: 21.3, 129.8). PM;o
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Table 2
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Associations between exposure to air pollution and SCQ scores at age 6, according to exposure windows.

Pollutant and Exposure

Crude” (n = 170)

Adjusted” (n = 170)

Crude” (n = 108)

Adjusted” (n = 108)

windows (% change [95% CI])°  p- (% change [95% CI])°  p- (% change [95% CI])°  p- (% change [95% CI])°  p-
value value value value
PMio
1st trimester’ 11.9 (2.4, 22.1) 0.01 10.6 (1.1, 21.0) 0.03 4.6 (-6.5,17.0) 0.40 5.8 (-5.6, 18.5) 0.37
2nd trimester” 3.0 (-7.4, 14.6) 0.59 —-1.5(-12.2,10.6) 0.73 —5.7 (-17.2,7.3) 0.40 —11.1 (—22.8, 2.4) 0.11
3rd trimester? 6.3(-7.2,21.9) 0.31 4.2 (-9.1,19.4) 0.47 0.8 (—15.9, 20.8) 0.93 —2.0 (-18.6,17.9) 0.83
1st-3rd trimesters® 11.1 (1.7, 21.4) 0.02 8.4 (-1.3,19.1) 0.09 2.5(-8.2,14.3) 0.65 0.1 (-11.0, 12.6) 0.98
Age 2¢ 16.0 (3.5, 30.1) 0.01 16.8 (2.3, 33.3) 0.03 19.7 (3.7, 38.2) 0.01 13.9 (-79.2, 524.3) 0.14
Age 4¢ 18.3 (5.0, 33.2) <0.01 15.7 (1.9, 31.4) 0.02 27.2 (9.5, 47.9) <0.01 19.1 (1.4, 40.1) 0.03
Age 6 4.2 (-10.5, 21.5) 0.62 7.8 (—8.3, 26.6) 0.38 7.6 (-11.7, 31.0) 0.46 0.8 (—18.0, 24.0) 0.93
NO,
1st trimester” 15.0 (2.9, 28.5) 0.01 12.1 (0.1, 25.5) 0.04 19.6 (5.8, 35.3) <0.01 18.3 (4.4, 34.1) 0.01
2nd trimester’ 6.2 (—15.4, 33.3) 0.60 —3.2(-14.9,10.1) 0.57 6.1 (7.6, 21.8) 0.43 —1.5(-15.2,14.5) 0.87
3rd trimester? 17.2 (-5.5, 5.4) 0.15 4.8 (-6.7,17.7) 0.40 17.8 (—2.8, 42.9) 0.11 10.8 (—9.0, 34.9) 0.29
1st-3rd trimesters® 26.9 (1.9, 58.0) 0.03 3.1 (—4.5, 22.3) 0.20 15.7 (3.7, 29.1) 0.01 12.0 (—0.2, 25.8) 0.06
Age 2¢ 11.2 (—4.7, 29.6) 0.18 4.9 (—4.2,14.9) 0.27 10.4 (—1.4, 23.6) 0.09 11.1 (—2.3, 26.4) 0.11
Age 4¢ —17.2 (-29.6, -2.6) 0.02 —7.6 (-15.6,1.1) 0.10 —17.9 (-26.9, -7.8) <0.01 —10.4 (—21.4, 2.2) 0.10
Age 6° 3.1 (-15.0, 25.1) 0.75 2.6 (-7.9,14.3) 0.59 —4.9 (-16.1, 7.8) 0.44 —0.8 (—12.9,13.0) 0.90

Abbreviations: PM;, particulate matter with an aerodynamic diameter <10 pm; NO,, nitrogen dioxide; SCQ, social communication questionnaire; CI, confidence

interval; IQR, interquartile range.

Adjusted for child’s age, sex, twin, family income, season of birth, low birthweight, delivery mode and breastfeeding for exposure windows during childhood.

@ Adjusted for age and sex.

b Adjusted for child’s age, sex, twin, family income for exposure windows during pregnancy.

¢ Per IQR increase; Statistically significant results shown in bold.

4 sample size: n = 170 for pregnancy exposure (1st — 3rd trimesters), n = 132 for childhood exposure (age 2-6).
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Fig. 1. RDA analysis on the association between PM;( exposure in the 1st trimester of pregnancy and distribution of gut microbiome (order level and family level),
(a) A 3.2% of the total variance was explained by the model. The first and second axes explained 1.7% and 0.9% of the variance, (b) A 3.5% of the total variance was
explained by the model. The first and second axes explained 1.8% and 0.9% of the variance., Abbreviations: RDA, redundancy analysis; PM;, particulate matter with

an aerodynamic diameter <10 pm; NO,, nitrogen dioxide.

exposure at age 2 years was also related to an increase in Proteobacteria
relative abundance (74.1% change, 95% CI: 6.0, 188.6; Table 3). The
association between NOy exposure during the 1st trimester and Proteo-
bacteria relative abundance was marginally statistically significant
(48.1% change, 95% CI: —0.1, 119.6). NO5 exposure at age 2 years was
associated with a decrease in Proteobacteria relative abundance (—29.2%
change, 95% CI: —47.2, —5.0). NO, exposure at age 2 was associated
with increased Bacteroidetes relative abundance at age 6 (21.6% increase
per IQR increase of NOy, 95% CI: 4.1, 42.0). PM; exposure during the
1st trimester was associated with decreased Verrucomicrobia abundance
(45.4% decrease per IQR increase of PM;(, 95% CI: —67.5, —8.4).

3.5. Association between gut microbiome and autistic traits

The relative abundance of Proteobacteria was statistically signifi-
cantly associated with SCQ scores (4.4% change per 2-fold increase in
relative abundance, 95% CI: 1.3, 7.5) in the prenatal model (n = 170).
However, there was no statistically significant relationship between
Proteobacteria relative abundance and SCQ scores in the postnatal
exposure group (n = 132; Table 4).
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Table 3
Associations between exposure to air pollution and relative abundance at the phylum level, by exposure windows.
Exposure Bacteroidetes” Actinobacteria” Proteobacteria” Firmicutes® Verrucomicrobia”
windows ((% change [95% p- (% change [95% p- (% change [95% p- (% change [95% p- (% change [95% p-
c’ value c’ value cp® value c® value c® value
PMio
1st trimester* —13.7 (—29.2, 0.15 —1.5(-20.4, 0.88 66.9 (21.3, <0.01 3.2(-4.4,11.3) 0.45 —45.4 (-67.5, 0.02
5.2) 21.8) 129.8) -8.4)
2nd trimester® —15.0 (—43.5, 0.22 22.6 (-7.3,62.2) 0.16 25.1 (-17.7, 0.29 2.1 (-9.5,15.1) 0.73 —32.1 (-64.2, 0.24
10.1) 90.3) 28.6)
3rd trimester* 8.9 (—19.8, 47.9) 0.60 4.4 (—25.3, 45.8) 0.81 —10.7 (—45.9, 0.63 —2.8(-13.0,8.7) 0.59 —9.5 (—60.7, 0.80
47.3) 108.8)
1-3 trimesters* —8.6 (—26.6, 0.41 7.6 (—14.6, 35.5) 0.55 38.5 (—1.5, 94.8) 0.06 0.6 (—7.9, 9.8) 0.89 —34.4 (-61.3, 0.12
13.9) 11.3)
Age 2* —11.7 (-33.1, 0.39 2.2 (-27.7, 44.3) 0.91 74.1 (6.0, 188.6) 0.03 2.6 (—8.8,15.5) 0.69 —30.0 (—69.3, 0.40
16.6) 59.8)
Age 4* 3.1 (-20.3, 33.4) 0.83 —14.5, (-37.8, 0.33 58.5 (—0.6, 0.06 0.1 (-10.6,12.1) 0.99 —13.6 (—60.2, 0.72
17.4) 152.6) 87.2)
Age 6* 16.1 (-16.3,61.1) 0.37 1.2 (—32.6, 51.8) 0.96 31.8 (—27.5, 0.36 —3.4 (-16.6, 0.64 —15.9 (—68.5, 0.73
139.6) 11.9) 124.4)
NO,
1st trimester* —14.5 (-33.9, 0.21 —17.5(-37.3, 0.17 48.1 (—0.1, 0.05 5.8 (—4.3,16.9) 0.28 15.0 (—40.0, 0.68
10.5) 8.5) 119.6) 120.4)
2nd trimester* —16.6 (—37.6, 0.24 —3.4(-29.3, 0.84 —-1.1 (-38.1, 0.97 8.3(-3.1, 21.0) 0.21 7.1 (—49.8, 0.86
11.4) 32.0) 57.9) 128.4)
3rd trimester* 11.4(-13.6,43.7) 0.41 —15.9 (-36.1, 0.21 —22.0 (—49.0, 0.24 -1.1 (-11.0, 0.85 16.3 (—41.0, 0.66
10.8) 19.1) 10.0) 129.2)
1-3 trimesters* —10.2 (—31.6, 0.43 —16.9 (—38.5, 0.23 3.9 (-32.9, 60.9) 0.85 6.3 (—4.3,18.2) 0.29 16.6 (—42.6, 0.67
17.8) 12.4) 136.9)
Age 2* 21.6 (4.1, 42.0) 0.02 —6.8 (—24.0, 0.49 —29.2 (-47.2, 0.02 —0.8 (-7.8,6.7) 0.83 —4.5 (—42.4, 0.86
14.2) -5.0) 58.4)
Age 4* 11.6 (—7.6, 34.7) 0.24 —0.9 (-21.5, 0.92 —13.2(-38.3, 0.41 7.1 (-1.2,16.1) 0.11 40.3 (—21.0, 0.25
25.1) 22.0) 149.0)
Age 6* 18.6 (—3.6, 46.0) 0.11 —11.6 (-31.5, 0.33 —15.2 (—41.4, 0.38 0.6 (—8.3,10.3) 0.87 20.7 (—35.3, 0.56
13.9) 22.7) 125.3)

*Sample size: n = 170 for pregnancy exposure, n = 132 for childhood exposure (age 2-6) for Bacteroidetes, Actinobacteria, Proteobacteria and Firmicutes.

n = 108 for pregnancy exposure, n = 84 for childhood exposure (age 2-6) for Verrucomicrobia.

Abbreviations: PM, particulate matter with an aerodynamic diameter <10 pm; NO», nitrogen dioxide; CI, confidence interval; IQR, interquartile range.

Adjusted for child’s age, sex, twin, family income, season of birth, low birthweight, delivery mode and breastfeeding for exposure windows during childhood.
2 Adjusted for child’s age, sex, twin, family income for exposure windows during pregnancy.

b Per IQR increase; Statistically significant results shown in bold.

Table 4
Associations between gut microbiome and SCQ scores at age 6.
Microbiome Crude” Adjusted”
(% change [95%  p- (% change [95%  p-
cIn© value cIp© value
Proteobacteria (n = 4.7 1.7, 7.9) <0.01 4.4 (1.3,7.5) <0.01
170)
Proteobacteria (n = 4.3 (0.9, 7.8) 0.01 2.6 (—26.6, 0.13

132) 43.5)

Abbreviations: SCQ, social communication questionnaire; CI, confidence inter-
val.
Adjusted for child’s age, sex, twin, family income, season of birth, low birth-
weight, delivery mode and breastfeeding for n = 132 sample.

# Adjusted for age and sex.

b Adjusted for child’s age, sex, twin, family income for exposure windows for
n = 170 sample.

¢ Per 1-unit increase for Bacteroidetes, per 2-fold increase for Proteobacteria;
Statistically significant results shown in bold.

3.6. Mediation effect of microbiome on the association between air
pollution and autistic traits

In the mediation analysis of Proteobacteria relative abundance for the
association between PM;( exposure during the 1st trimester and SCQ
scores at age 6 years, both the indirect and direct effects were statisti-
cally significant, indicating that the association between PM;( exposure
during the 1st trimester and autistic traits was partially mediated by
changes in Proteobacteria relative abundance (mediation proportion:

25.1%, p = 0.01). The mediation analysis also showed that a marginally
significant proportion of the association between NO; exposure during
the 1st trimester and autistic traits is attributed to changes in Proteo-
bacteria relative abundance (proportion mediated: 16.5%, p = 0.06;
Fig. 2 and Table 5).

3.7. Comparison with other mediation models

There were no other mediation models wherein the indirect, direct,
and total effects were all statistically significant, nor were there models
wherein the mediated proportion was statistically significant
(Table S10). No other time window of air pollution exposure showed
significant mediation. The indirect effect of Proteobacteria abundance on
the association between PM;( exposure at age 2 years and SCQ scores at
age 6 years was marginally significant (proportion mediated: 13.5%, p
= 0.07). Proteobacteria abundance also marginally mediated the asso-
ciation between PM;( exposure at age 4 years and SCQ scores at age 6
years (proportion mediated: 15.3%, p = 0.06). In other models, the in-
direct effect of Proteobacteria abundance on the association between NO4
at age 2 years and SCQ at age 6 years was statistically significant (—4.9%
change per IQR increase, 95% CI: —9.5, —0.001); however, the associ-
ation showed a negative direction, in contrast to the direct effect (15.7%
change, 95% CI: 5.8, 26.5). Therefore, the total effect was not statisti-
cally significant (10.1% change, 95% CI: —4.5, 27.0).

When the mediation effects of autistic traits on the association be-
tween air pollution (PM;o or NOy) levels during the 1st trimester of
pregnancy and Proteobacteria abundance were examined, the indirect
effect was no longer statistically significant, and the proportions
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(a)

Proteobacteria

Indirect effect:
6.1% change* (1.2, 11.2)
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(b)

Proteobacteria

Indirect effect:
3.8% change* (-0.005, 7.8)

PM,,during 1st Mediated Proportion: 25.1%
trimester of —>

pregnancy Direct effect: 16.8% change* (0.8, 35.2)

Autistic traits

NO, during 15t Mediated Proportion: 16.5%
trimester of >

pregnancy Direct effect: 17.2% change* (2.8, 33.7)

Autistic traits

Fig. 2. Mediation analysis of the association between air pollution and autistic traits through gut microbiome changes, (a) Mediation of Proteobacteria relative
abundance on the association between PM; during thelst trimester and autistic traits, (b) Mediation of Proteobacteria relative abundance on the association between
NO,, during thelst trimester and autistic traits, *: % change per interquartile range, Abbreviations: PM;, particulate matter with an aerodynamic diameter <10 pm;

NO,, nitrogen dioxide.

Table 5
Mediating role of proteobacteria on the association between air pollution and SCQ scores.
Path Indirect effect Direct effect Total effect Mediated proportion p-
(%) value
% change [95% p- % change [95% p- % change [95% p-
cIp? value cI])? value cI))? value
1st trimester PM;( — proteo — 6.1 (1.2,11.2) <0.01 16.8 (0.8, 35.2) 0.04 23.8 (10.6, 38.7) <0.01 25.1 0.01
SCQ
1st trimester NO, — proteo — SCQ 3.8 (—0.005, 7.8) 0.05 17.2 (2.8, 33.7) 0.03 21.7 (9.4, 35.3) 0.01 16.5 0.06

Abbreviations: SCQ, social communication questionnaire; CI, confidence interval; PM;, particulate matter with an aerodynamic diameter <10 pm; NO,, nitrogen

dioxide; IQR, interquartile range, statistically significant results shown in bold.

Sample size: n = 170 and n = 132 for the 1st trimester and age 2 analyses, respectively.

2 Per IQR-increase in air pollutant exposure.

mediated were 3.1% and 11.0%, respectively (p-values > 0.05;
Table S11).

4. Discussion

To our knowledge, this study is the first to investigate the mediating
role of the microbiome in the association between environmental toxins
and autistic traits. Interestingly, the microbiota profile, specifically
Proteobacteria at the phylum level, showed 25.1% and 16.5% mediation
effects on the associations between both 1st trimester PM;o and NO,
exposure, respectively, and autistic traits in children. These findings
suggest a plausible mechanism underlying the relation between air
pollution and ASD and add evidence to the existing literature on the
gut-brain axis suggested in ASD.

Despite the proposed role of the microbiome as a mediator of genetic
and environmental risk factors, research has been scarce, specifically on
ASD. The majority of earlier evidence comes from animal studies that
indirectly investigated the effect of the microbiome. For example, oral
treatment of B. fragilis or B. thetalotaomicron to the offspring of the ro-
dent model of maternal immune activation, a model that resembles
infection during pregnancy, improved the gut microbial composition
and permeability while reducing ASD-related behavior (Hsiao et al.,
2013; Kentner et al., 2019). Similarly, modeling maternal exposure to
valproic acid, an anticonvulsant drug associated with an increased risk
for ASD (C.G. de Theije et al., 2014), resulting in offspring with altered
gut microbiota composition, neuro-inflammation, and ASD-associated
behavioral abnormalities (C.G.M. de Theije et al., 2014). Meanwhile,
two human studies have investigated the mediating role of the micro-
biome linking air pollution with liver function or glucose levels (Yi et al.,
2021; Alderete et al., 2018); however, this study is the first study to have
autistic traits as the outcome variable.

Prenatal (1st trimester of pregnancy) and postnatal (at age 2 and 4
years) exposure to air pollutants was associated with autistic traits at age
6 years, suggesting long-lasting effects. According to the Developmental
Origins of Health and Disease, exposure to environmental agents results

in long-lasting human physiology and behavior alterations (Barker,
2007). These long-term effects may be partly due to the developing
epigenetic code (Suter et al., 2010, 2013) and microbiome (Chu et al.,
2016; Chu and Aagaard, 2016), since the gut microbiome can be
transferred across the placenta during fetal development (Braniste et al.,
2014; Jasarevic et al., 2016), leading to varied effects in the offspring.
Moreover, alterations in the maternal microbiome due to environmental
risk exposure can be passed on, since mammals acquire their initial
microbiome via birthing. The microbiota may convey lasting effects on
health and disease through the epigenetic modification of the host
genome (Kumar et al., 2014; Cortese et al., 2016). Moreover, epigenetic
changes caused by microbiota can influence host transcriptional pat-
terns. For example, fatty acid butyrate—a SCFA produced by the
microbiome—can inhibit the action of histone deacetylase inhibitor, and
result in disruption in cell cycle progression, gene silencing, differenti-
ation, and genotoxic reactions (Waldecker et al., 2008). As this study did
not include methylation data, further studies that incorporate both
methylome and microbiome data could provide an integrated
multi-omics description on the pathway linking air pollution and autistic
traits.

The 1st trimester of pregnancy as well as ages 2 and 4 years were
susceptible exposure periods to the neurotoxic effects of PMjo. These
exposure periods have been suggested to be susceptible to environ-
mental risk factors in previous studies. Brain development most rapidly
occurs during series of time-sensitive periods when neuroplasticity is
heightened (Ismail et al., 2017; Meredith, 2015). The early fetal period
is marked by prominent neurogenesis, the 2nd trimester of pregnancy
and first 2 years of early life is characterized by synaptogenesis (John-
ston et al., 2009), while ages 2 to 10 is the period when synaptic pruning
rapidly occurs (Huttenlocher and Dabholkar, 1997). The susceptible
periods of air pollution exposure related to autistic traits overlap with
the critical periods of neurodevelopment, which also coincide with the
developmental periods of the gut microbiome. Gut microbiome changes
appear to occur most dynamically during the first 3 years of life (Yat-
sunenko et al.,, 2012; Derrien et al., 2019). Therefore, it can be
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speculated that the microbiome would be more prone to environmen-
tally toxic materials up to age 3, when changes are more rapid. However,
only microbiome data at age 6 years were obtained, and thus, it is un-
clear in which period our participants’ microbiome was most suscepti-
ble. Considering the relative stability of the gut microbiome after the age
of 3 years, the microbiome profile at age 6 years might reflect that of an
earlier stage. However, recent studies have also found differences in the
gut microbiome of 7-12-year-olds compared to adults, suggesting that
complete maturation of the gut microbiome may take longer than pre-
viously suggested (Zhong et al., 2019). Thus, further studies using
microbiome data from periods of early life are warranted to confirm this
study’s hypothesis.

Proterobacteria abundance was associated with both PM;¢ and NO,
exposure during the 1st trimester of pregnancy. Exposure to mixed
vehicle emissions increased the abundance of lung Proterobacteria in
mice (Daniel et al., 2021). Exposure to PMys was associated with
increased Proterobacteria abundance in buccal mucosa microbacteria
(Wu et al.,, 2021). A previous study involving adult patients with
schizophrenia found that NO, exposure and PM; in the preceding year
explained 3.7% and 7.5% of the gut microbiome composition, respec-
tively (Yi et al., 2021). Another study reported that NO5 explained 4.4%
of the variance in gut microbiome composition in overweight to obese
adults (Fouladi et al., 2020). In our study, 1st trimester PM;o and NO,
explained 1.6% and 0.7% of the gut microbiome at age 6 years,
respectively, which is a smaller effect size compared to previous studies.
However, direct comparison between these studies is not recommended
since this study investigated children’s microbiota profiles, whereas
previous studies targeted adult populations. Moreover, the distribution
and concentration of air pollutants from different countries or regions
may vary.

Proterobacteria abundance was cross-sectionally associated with
autistic traits at age 6 years. Although previous studies on microbiota
differences in patients with ASD have been highly heterogeneous, most
studies found that the overall microbiota composition of ASD cases
differs from that of controls (Bundgaard-Nielsen et al., 2020). However,
there were no specific bacteria consistently associated with ASD diag-
nosis or severity. Nevertheless, Proteobacteria abundance was found to
be elevated in individuals with ASD compared with controls (Finegold
et al., 2010; Williams et al., 2011). Proteobacteria is associated with host
inflammation (Shin et al., 2015) and produces a potent toxic factor
lipopolysaccharide (Liu et al., 2019a); exposure to this factor can reduce
glutathione in the brain (Zhu et al., 2007; Chauhan and Chauhan, 2006),
suggesting possible neurotoxic effects.

Among the Organization for Economic Cooperation and Develop-
ment member countries, South Korea ranked first in terms of mean
population exposure to PMj 5 in 2019 (Lee et al., 2018), as most cities in
South Korea were urbanized (Shin et al., 2022). The new air quality
guideline by the World Health Organization (WHO) recommends that
the annual mean PM; value should not exceed 15 pg/m> and that the
annual standard NO, concentration should not exceed 10 pg/m® (World
Health Organization, 2021). The air quality guideline by the Ministry of
Environment in South Korea has set higher limit levels: 50 pg/m® for the
annual PM;( value and 0.03 ppm (56.4 pg/ m®) for the annual NO, value
(Kumbhakar et al., 2021). As the mean concentrations of these pollut-
ants in the present study were similar to the recommended values
mentioned in the South Korea guideline and higher than those
mentioned in the WHO guideline and neurotoxicity of air pollutants was
observed at these values, we suggest a stricter policy to regulate air
pollution levels.

This study has some limitations. We used data from a community-
based cohort and none had undergone formal testing for ASD.
Although the SCQ has a valid and reliable questionnaire (Corsello et al.,
2007), its primary purpose is screening for ASD. Therefore, further
studies using diagnostic interviews are needed to expand the results to
clinical populations. As the relationship between the gut microbiome
and autistic traits was cross-sectional, causal relations are not definite,
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and reverse causation is possible. We did not provide refined informa-
tion such as genera or species, due to the lower detection rates compared
to the phlya and substantial reduction in sample size.. Moreover, the
small sample size limits the results’ statistical power, and further
replication in a larger population is warranted. We did not adjust for
multiple testing and rather focused on the trend of the results; thus, the
findings of this study should be interpreted cautiously. Although various
covariates were accounted for, some confounding factors, including diet
diversity and other endocrine-disrupting chemicals, were not considered
(Yap et al., 2021). Furthermore, other individual data that may affect
exposure to air pollution, such as indoor air pollution, physical activity,
time spent outdoors, and occupational status, were lacking (Lim et al.,
2021). Air pollutant exposure was obtained through data from moni-
toring stations and exposure misclassification cannot be ruled out.
Moreover, we did not consider changes in exposure levels over time
among individuals when we investigated exposure windows. This
problem may not influence our study results significantly as we
compared exposure levels within a 3-year period (e.g., exposure years in
2015-2017 for children at age 6), where exposure levels may not change
significantly in the three years. Furthermore, we did not consider other
air pollutants such as ultrafine particles, which may have greater ca-
pacity to reach the gut and brain (Akimoto, 2003; Oberdorster et al.,
1994), due to lacking data. In addition, other air pollutants, including
carbon monoxide, ozone and PM; 5, were not included in the analyses as
these pollutants were not associated with autistic scores in the study
(Fig. 58). Lastly, the majority of participants resided in urban areas, and
most were from highly educated and high income families; thus the
results may not be generalizable to populations in rural regions.

Despite these limitations, this study was strengthened by its longi-
tudinal design and repetitive assessment of PMjg, NO, exposure and
autistic traits. We identified multiple susceptible periods in early life and
explored the mediating role of the gut microbiome in bridging envi-
ronmental toxins and neurodevelopmental outcomes.

5. Conclusions

Air pollution during the 1st trimester of pregnancy may affect
autistic traits at age 6 years through the alteration of Proteobacteria
abundance. Future studies with larger sample sizes and microbiome
samples at earlier ages are warranted. Moreover, research on whether
correction of gut microbial dysbiosis could reduce the impact of PM;q
exposure on autistic traits is needed.
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