
International Journal of Hygiene and Environmental Health 246 (2022) 114047

Available online 7 October 2022
1438-4639/© 2022 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The mediating role of the gut microbiome in the association between 
ambient air pollution and autistic traits 

Johanna Inhyang Kim a,1, Bung-Nyung Kim b,1, Young Ah Lee c, Choong Ho Shin c, 
Yun-Chul Hong d,e,f, Youn-Hee Lim d,g,* 

a Department of Psychiatry, Hanyang University Medical Center, Seoul, South Korea 
b Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea 
c Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea 
d Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea 
e Environmental Health Center, Seoul National University College of Medicine, Seoul, South Korea 
f Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, South Korea 
g Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark   

A R T I C L E  I N F O   

Keywords: 
Air pollution 
Autistic traits 
Child development 
Cohort study 
Microbiome 

A B S T R A C T   

Air pollution has been reported to be an environmental risk factor for autism spectrum disorder. However, the 
gut microbiome’s role as a potential mediator has not been investigated. We aimed to clarify whether particulate 
matter with an aerodynamic diameter ≤10 μm (PM10) and nitrogen dioxide (NO2) exposure impact autistic traits 
through the gut microbiome. Using 170 mother–child pairs, PM10 and NO2 exposure levels during pregnancy 
(1st, 2nd, and 3rd trimesters) and annual residential PM10 levels at age 2, 4, and 6 years were estimated. Autistic 
traits and gut microbiome were assessed at age 6 years. The associations of PM10 or NO2 exposure, gut micro-
biome composition, and autistic traits were explored, and mediation analyses of statistically significant findings 
were also conducted. Exposure to PM10 during the 1st trimester of pregnancy was associated with increased 
autistic traits (10.6% change per interquartile range (IQR) increase, 95% confidence interval [CI]: 1.1, 21.0) and 
with Proteobacteria relative abundance at age 6 years (66.9% change per IQR increase, 95% CI: 21.3, 129.8). First 
trimester NO2 exposure was associated with autistic traits (12.1% change, 95% CI: 0.1, 25.5) and Proteobacteria 
relative abundance at age 6 years (48.1% change, 95% CI: − 0.1, 119.6). Proteobacteria relative abundance was 
related to autistic traits (4.4% change per 2-fold increase, 95% CI: 1.3, 7.5). Relations between PM10 or NO2 
exposure during the 1st trimester and autistic traits at age 6 years were partially mediated by Proteobacteria 
(proportion mediated 23.2%, p = 0.01 and 16.7%, p = 0.06; respectively). PM10 and possibly NO2 exposure 
during early pregnancy may affect autistic traits at age 6 years through the alteration of Proteobacteria 
abundance.   

1. Introduction 

Autism spectrum disorder (ASD) affects one in 44 children in the 
United States (Maenner et al., 2021), and is marked by deficits in social 
communication, restricted interests, and repetitive behavior (American 
Psychiatric Association, 2013). Autistic traits are detectable between 6 
and 18 months (Barbaro and Dissanayake, 2009), indicating that critical 

windows to genetic and environmental factors occur during prenatal 
and early postnatal periods. Although the high heritability of ASD sug-
gests that genetics is a key factor (Tick et al., 2016), previous studies 
have estimated that non-heritable factors account for >50% of the 
neurobiology of ASD (Mayer et al., 2014). 

Traffic-related air pollutants such as particulate matter (PM) and ni-
trogen dioxide (NO2) have been suggested as environmental risk factors 
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for ASD (Dutheil et al., 2021; Volk et al., 2013). While NO2 is mainly 
emitted from automobile exhaust and combustion of fossil fuels (Shang 
et al., 2020), PM is a mixture of toxic substances with various particle 
sizes and chemical properties, including sulfates, nitrates, ammonia, 
black carbon, dust, polycyclic aromatic hydrocarbons, metallic carbon, 
and volatile organic compounds (Zhang et al., 2021). Both air pollutants 
show high annual exposure levels in South Korea and are under active 
regulation by the Korean government. In 2019, the annual mean PM10 
and NO2 levels (42 and 52.6 μg/m3) in Seoul, the capital of South Korea, 
were higher than in metropolitan cities such as Los Angeles (29 and 43.2 
μg/m3), Tokyo (16 and 26.3 μg/m3) and London (18 and 32 μg/m3) 
(airkorea.or.kr, http://www.epa.gov, http://www.kankyo.metro.tokyo. 
jp, http://uk-air.defra.gov.uk). Although results on the association be-
tween traffic-related air pollution and ASD have been inconsistent, pre-
vious research has suggested that PM with an aerodynamic diameter ≤10 
μm (PM10) and NO2 are related to an increased risk of ASD (Flores-Pajot 
et al., 2016; Chen et al., 2018; Wang et al., 2021). However, research on 
the mechanism underlying the association between air pollution and 
autistic traits is scarce. 

Many individuals with ASD report comorbid gastrointestinal symp-
toms—constipation, abdominal pain, diarrhea, gas, and vomiting 
(Vuong and Hsiao, 2017)—as well as deficient gut epithelium integrity 
and increased intestinal permeability (Emanuele et al., 2010). The gut 
microbiota regulates central nervous system activities through various 
pathways (Liu et al., 2019a), such as regulating the hypothal-
amic–pituitary–adrenal axis (Sudo, 2012) and producing short-chain 
fatty acids (SCFA) that affect brain function (Ray, 2017). A previous 
meta-analysis found dysbiotic microbial compositions in children with 
ASD (Iglesias-Vázquez et al., 2020); however, a distinct microbial 
signature for ASD has not been defined yet (Vuong and Hsiao, 2017). 

Air pollution exposure can alter the composition of the gut micro-
biome (Bailey et al., 2020). Mucociliary clearage of inhaled air pollut-
ants in the lung and contaminated food/drinking water are major routes 
that PM enters the gastrointestinal tract (Salim et al., 2014). PM can 
either support or inhibit the growth of specific microbes, causing 
alteration in the composition and function of the gut microbiota (Gao 
et al., 2017; Korpela et al., 2019; Adams et al., 2015). Moreover, PM2.5 
and PM1 exposures showed negative associations with alpha diversity 
indices and the relative abundance of most Firmicutes, Proteobacteria, 
and Verrucomicrobia bacteria (Liu et al., 2019b). NO2 was associated 
with alternation in the gut microbiome profile in young adults, including 
increased Firmicutes abundance at the phylum level and Coriobacter-
iaceae, Ruminococcaceae, and Adidobacteriaceae abundance at the family 
level (Fouladi et al., 2020). 

The microbiome is associated with both air pollution and autistic 
traits; however, this complex relationship has not been investigated yet. 
Furthermore, it can potentially mediate environmental risk factors in 
ASD (Vuong and Hsiao, 2017). The microbiota has bi-directional re-
lationships with both genetics and environment; host genetics affect its 
composition and function, while environmental factors, including age, 
infections, diet, and xenobiotics, further shape the microbial profile 
(Falony et al., 2016). Moreover, early-life alterations in the microbiota 
can have long-term consequences for health and disease (Kumar et al., 
2014). This study aimed to examine whether pre- and postnatal PM10 
and NO2 exposures impact autistic traits at 6 years of age through the 
alteration of the gut microbiome among the children in an ongoing birth 
cohort. It also aimed to explore the association of PM10 and NO2 expo-
sure (1st, 2nd, and 3rd trimesters of pregnancy; ages 2, 4, and 6 years) 
with autistic traits at age 6 years, the relationship of PM10 and NO2 
exposure with the gut microbiome composition at age 6 years, and the 
association between microbiome profiles and autistic traits. Mediation 
analyses of statistically significant findings were also conducted to 
confirm the “air pollutant exposure–gut microbiome–autistic traits” 
pathway. 

2. Methods and materials 

2.1. Study design and participants 

Data from an ongoing prospective cohort study—the Environment 
and Development of Children (EDC) study—were used (Kim et al., 
2018). From the 726 pregnant women recruited from hospitals in Seoul, 
the capital city of South Korea, and two nearby regions (Incheon and 
Kyoung-gi) from August 2008 to July 2010, we collected information on 
the mothers’ socio-demographical characteristics during the second 
trimester of pregnancy (between 14 and 27 weeks of gestation). We then 
contacted the mothers and enrolled 425 children of the mothers at age 2 
and additionally 301 at age 4 at the Seoul National University Hospital, 
Seoul, South Korea. Their children were followed up every 2 years; 425, 
645, and 574 children at age 2, 4 and 6 years, respectively. At age 6, we 
started to collect one fecal sample from each child in 2016 and analyzed 
the gut microbiome of 173 randomly selected children, due to limited 
budget, out of the 243 children who were not exposed to antibiotics at 
the time of sample collection. After excluding those with missing air 
pollution data or autistic trait scores, 170 of the children were included 
in the prenatal exposure analyses. For postnatal exposure analyses, 132 
children with information on air pollution exposure levels at all 3 ages 
(age 2, 4, and 6 years) were included. The sample size for prenatal 
exposure analyses and childhood exposure analyses for the Verrucomi-
crobia was 108 and 84, after excluding the participants with zero relative 
abundance for Verrucomicrobia. For comparison, we explored the rela-
tion between air pollution and autistic traits in the main cohort after 
excluding those with missing data (n = 568). 

Informed consent was obtained from all guardians. The study pro-
tocol was reviewed by the Institutional Review Board of Seoul National 
University Hospital (IRB No. 1201-010-392) and followed the principles 
of the Declaration of Helsinki. 

2.2. Estimation of PM10 and NO2 exposure levels 

Air pollution exposure levels were extracted from air quality moni-
toring data recorded by 300 air quality monitoring systems of the 
Ministry of Environment (Seoul, South Korea: https://www.airkorea.or. 
kr). Air pollutant concentrations, including PM10 (in micrograms per 
cubic meter μg/m3) and NO2 (in μg/m3) were recorded by the hour. The 
mean was calculated using 75% of the contributing values. Finally, 24-h 
mean concentrations were calculated for each monitoring site. Accord-
ing to the participants’ addresses, individuals were linked to the air 
pollution levels measured at the nearest monitoring station based on 
Euclidean distance (between 100 m and 10 km) using ArcGIS (version 
10.1; ESRI Inc., Redlands, CA, USA). Levels of PM10 and NO2 exposure 
during pregnancy (1st, 2nd, and 3rd trimester) and annual residential 
levels at ages 2, 4, and 6 years were estimated. 

2.3. Assessment of autistic traits 

We used the parent-rated Social Communication Questionnaire 
(SCQ) at age 6 years to quantify autistic traits. The SCQ is a 40-item 
questionnaire that evaluates ASD symptoms like communication abili-
ties, social skills, and repetitive behaviors during the previous 3 months. 
The first item asks about minimal verbal skills, and the sum of the 
remaining 39 binary items (1: yes, 0: no) equals the total SCQ score 
(Snow, 2013). Individuals with higher scores were considered more 
autistic. 

2.4. 16s rRNA sequencing 

Fecal material of the participants was collected at age 6 years and 
frozen at − 80 ◦C until DNA extraction with a DNeasyPowerSoil Kit 
(Qiagen, Hilden, Germany), according to the manufacturer’s in-
structions, and quantification using Quant-IT PicoGreen (Invitrogen, 
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Waltham, MA, USA). 
The sequencing libraries were processed using the Illumina 16S 

Metagenomic Sequencing Library protocols to amplify the V3 and V4 
regions (Supplemental Methods). 

2.5. Operational taxonomic unit (OTU) analysis 

We formed the original library and single long reads by assembling 
paired-end sequences generated sequencing both directions of the li-
brary with FLASH (v1.2.11) (Magoč and Salzberg, 2011). (Supplemental 
Methods). Quality control data was presented in Table S1. 

The alpha diversity of the microbiome (Chao, Shannon, and Inverted 
Simpson index) was calculated to evaluate species diversity and even-
ness using the “phyloseq” package of R version 4.0.2 (The Comprehen-
sive R Archive Network, Vienna, Austria; http://cran-r-project.org). We 
excluded rare phyla, which were not commonly detected in the children, 
such as Cyanobacteria, Fusobacteria, Syndergistetes, and Tenericutes 
(detection rates were 2.3%, 13.7%, 0.6%, and 4.0%, respectively). In the 
main anlaysis, we examined four phyla that were detected in all par-
ticipants (n = 170): Actinobacteria, Bacteriodetes, Proteobacteria, and 
Firmicutes. In addition, we examined Verrucomicrobia that was detected 
among 108 and 84 children in the prenatal exposure and postnatal 
exposure analyses, respectively. The log2-transformed values of the 
relative abundances were used to normalize the phylum distribution 
(Fig. S1). 

2.6. Definition of covariates 

The list of potential covariates was created after review of previous 
literature (Kim et al., 2021; Yi et al., 2021). The potential covariates 
were maternal age at pregnancy (years), maternal education (< or ≥
college education), family income status (monthly family income < or ≥
$3500), diabetes mellitus (DM) during pregnancy (yes or no), 
pre-pregnancy body mass index (BMI, kg/m2), child’s age (in months), 
sex, multiple gestation birth (singleton or twin/triplet), child’s BMI, 
birth order (< or ≥ 2nd), delivery mode (vaginal delivery or cesarean 
section), prematurity (< or ≥ 37 weeks), low birth weight (< or ≥ 2.5 
kg), breastfeeding status (exclusive breastfeeding, mixed feeding, or 
exclusive formula feeding), and season of birth (spring, summer, 
autumn, or winter). Different covariates were selected for the prenatal 
and postnatal air pollution analyses. We excluded potential mediators 
for the prenatal analyses, which were DM during pregnancy, prematu-
rity, and low birth weight. Some potential covariates, including 
breastfeeding, delivery mode, child’s BMI, and season of birth, could not 
have confounded prenatal air pollutant exposure levels and were only 
addressed in postnatal analyses. Based on exploratory analyses, poten-
tial covariates that were related to SCQ scores, air pollutant levels, or 
relative abundances of phyla were found (Table S2, S3, S4, and S5). The 
following final covariates were selected based on the definition of con-
founders: variables associated with both exposure and outcome, but are 
not in the causal pathway between exposure and outcome (Hernán et al., 
2002). We depicted the relationships between variables by building a 
data-driven directed acyclic graph (DAG; http://www.dagitty.net/) 
based on the statistical associations between the involved variables and 
potential covariates (Fig. S2): age, sex, multiple gestation births, and 
family income for the prenatal models and age, sex, multiple gestation 
births, family income, the season of birth, low birth weight, delivery 
mode, and breastfeeding for the postnatal models. 

2.7. Statistical analysis 

Pearson correlation coefficients for the correlations between PM10 
and NO2 levels during pregnancy and childhood were calculated. The 
differences in PM10 and NO2 over time were investigated using intraclass 
correlation coefficients (ICCs; two-way mixed models, single rater, ab-
solute agreement option: ICC(3,1)). 

We compared the characteristics of the main (n = 568) and subset 
cohorts (n = 170) using independent t-tests (for continuous variables) or 
chi-square tests (for categorical variables). 

Due to the right-skewness of SCQ scores at age 6 years (Fig. S3), we 
implemented Poisson regression for subsequent analyses. The associa-
tions between potential covariates and SCQ scores were explored with 
univariate Poisson regression models. The association between cova-
riates and air pollutant exposure levels and between covariates and 
phyla relative abundance were examined in linear regression models. 

2.8. Association between air pollution and SCQ scores 

The association between PM10 or NO2 exposure in each exposure 
period and SCQ scores at age 6 years was examined using multivariable 
Poisson regression models in the main (n = 568) and subset (n = 170 for 
prenatal, n = 132 for postnatal) cohorts. The statistically significant 
associations were visualized using smoothing splines. As we assumed a 
Poisson distribution of SCQ scores using a log-link function, the risk of 
higher SCQ scores associated with an interquartile range (IQR) increase 
in air pollution level was expressed as a percent change (%) using the 
following formula: (e^(β*IQR)-1)*100%, where β was an estimate from 
the Poisson regression model, and IQR is interquartile range of air 
pollution. 

2.9. Associations between air pollution and microbiome profile 

The association of air pollutants with alpha diversity indices was 
explored using multivariable linear regression. Levels of PM10 and NO2 
were included as explanatory variables in the redundancy analysis 
(RDA) computed squared-root-transformed unweighted UniFrac dis-
tances, conducted by the “vegan” package of R. We estimated the sig-
nificance of variation in the microbiome data explained by explanatory 
variables by the Monte Carlo permutation test (1000 permutations). We 
used partial RDA models to determine the amount of variation in 
microbiome community composition explained solely by PM10 or NO2 
exposure after controlling for covariates. The associations between 
exposure to air pollutants and the relative abundance of the four phyla 
were also tested using multiple linear regression models. As the relative 
abundance was log2-transformed, the risk of higher relative abundance 
associated with an IQR increase in air pollution level was expressed as a 
percent change (%) using the following formula: (2^(β*IQR)-1)*100%, 
where β was an estimate from the regression model, and IQR is inter-
quartile range of air pollution. 

2.10. Association between microbiome profile and SCQ scores 

The associations of the alpha diversity indices/relative abundance of 
the phyla found statistically significant in the aforementioned analyses 
and SCQ scores were examined using multivariable Poisson regression. 

2.11. Mediation analyses 

The “air pollution–microbiome–autistic traits” pathway was tested in 
cases where all three pairs of associations among air pollution exposure, 
microbiome, and SCQ scores were statistically significant. We tested the 
indirect association between air pollution and autistic traits through 
changes in the microbiome composition by using nonparametric esti-
mation model-based mediation analyses. A predetermined pathway was 
established, in which air pollution influences a mediator (gut micro-
biome), which then affects autistic traits. No unmeasured confounding 
or effect modification was anticipated among the included components. 
The proportion mediation represents the average amount of indirect 
association between air pollution and autistic traits via changes in the 
microbiome composition relative to the average total association. 

For comparison, mediation models were constructed for various time 
windows of exposure (1st, 2nd, and 3rd trimester of pregnancy, age at 2, 
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4, 6 years) to air pollutants (PM10 and NO2) and microbiota at phyla 
levels (Actinobacteria, Bacteriodetes, Proteobacteria, Firmicutes, and Ver-
rucomicrobia). As the microbiome profile and SCQ scores were measured 
cross-sectionally, the different direction of mediation effects (i.e., air 
pollution–autistic traits–gut microbiome) was examined. The “media-
tion” package in R was used to precise p-values of the estimates of the 
total, direct, and median effects using nonparametric bootstrapping with 
20,000 simulations (Tingley et al., 2014). 

All statistical analyses were performed using IBM SPSS Statistics for 
Windows version 22 (IBM Corp., Armonk, N.Y., USA) and R version 
4.0.2. Statistical significance was defined as p < 0.05 (two-tailed). 

3. Results 

3.1. General characteristics of the participants 

The characteristics of the participants in the main (n = 568) and 
subset (n = 170) cohorts were similar (Table 1). In the subset cohort, the 
mean maternal age at pregnancy was 31.4 ± 3.5 years. The majority of 
mothers were college graduates (85.9%) and most children came from 
higher-income families (71.8%). Regarding the children’s 

characteristics, 51.2% were boys, 32.4% were born by cesarean section, 
and 5.3% were born with a low birth weight or prematurely. 

3.2. PM10 and NO2 exposure levels 

The distribution of PM10 and NO2 levels at exposure periods is pre-
sented in Table S6. The mean levels of PM10 exposure were 55.5 ± 10.3, 
54.1 ± 11.7, 53.8 ± 12.8, 54.5 ± 7.4, 46.0 ± 4.7, 50.7 ± 5.6, and 49.2 
± 5.2 μg/m3 during the 1st, 2nd, 3rd, and 1–3rd trimester of pregnancy, 
and at age 2, 4, and 6 years, respectively. The mean exposure levels for 
NO2 were 63.2 ± 9.5, 62.0 ± 11.2, 61.6 ± 11.4, 62.2 ± 7.9, 58.3 ± 7.7, 
60.2 ± 7.0, and 54.9 ± 7.5 μg/m3, during the 1st, 2nd, 3rd, 1–3rd 
trimester of pregnancy, and at age 2, 4, and 6 years, respectively. The 
ICC for PM10 was 0.91 for the trimesters of pregnancy and 0.46 for age 
2–6 years. The ICC for NO2 was 0.38 for the trimesters of pregnancy and 
0.38 for age 2–6 years. The correlation coefficients of both PM10 pairs 
(0.3 and 0.41 for pregnancy, 0.65 and 0.55 for childhood) and NO2 (0.5 
and 0.53 for pregnancy, 0.39 and 0.55 for childhood) for adjacent pe-
riods were small to moderate. There were moderate and weak correla-
tions between PM10 and NO2 measured in the same pregnancy trimesters 
(range 0.48–0.60) and during childhood (range − 0.14–0.06), respec-
tively (Fig. S4). 

3.3. Association between PM10 and NO2 exposure and autistic traits 

The association between PM10 and NO2 exposure and SCQ scores at 
age 6 years are shown in Table 2 for the subset cohort (n = 170 and n =
108) and Table S7 for the main cohort (n = 568). In the subset cohort (n 
= 170), an IQR increase of PM10 exposure during the 1st trimester and at 
ages 2 and 4 years was associated with increased SCQ scores at 6 years of 
age (10.6% change, 95% confidence interval [CI]: 1.1, 21.0; 16.8% 
change, 95% CI: 2.3, 33.3; 15.7% change, 95% CI: 1.9, 31.4, respec-
tively; Fig. S5). When the sample size was reduced to n = 108, only PM10 
exposure at age 4 was associated with SCQ scores at age 6 (19.1% 
change, 95% CI: 1.4, 40.1), and NO2 exposure during the 1st trimester of 
pregnancy was associated with increased SCQ scores at age 6 (18.3% 
change, 95% CI: 4.4, 34.1). Similarly, in the main cohort, the exposure 
windows that showed statistically significant associations between PM10 
exposure and SCQ scores were the 1st trimester, and the age 2 and 4 
periods (9.4% change, 95% CI: 4.4, 14.5; 14.6% change, 95% CI: 6.3, 
23.6; 17.4% change, 95% CI: 8.1, 27.6). The effect sizes of associations 
were similar in the subset and main cohorts. 

In the subset cohort, NO2 exposure during the 1st trimester was 
statistically significantly associated with increased SCQ scores at age 6 
years (12.1% change per IQR increase, 95% CI: 0.1, 25.5). However, in 
the main cohort, NO2 exposure was not related to increased SCQ scores 
in any exposure windows. Rather, NO2 exposure at ages 4 and 6 years 
was negatively associated with SCQ scores at age 6 years (− 8.8% 
change, 95% CI: − 13.6, − 3.7; − 6.6% change, 95% CI: − 12.6, − 0.1). 

3.4. Association between PM10 or NO2 exposure and gut microbiome 

The range of alpha diversity indices according to sex is shown in 
Fig. S6. The distribution of the relative phyla abundance is presented in 
Fig. S7, which shows that Bacteroides was the most dominant phylum, 
followed by Firmicutes, Actinobacteria, and Proteobacteria and Verruco-
microbia. Considering alpha indices, only NO2 exposure during the 3rd 
trimester was associated with the Chao index at age 6 years (4.9 increase 
per IQR increase, 95% CI: 0.14, 9.67; Table S8). In the RDA analysis, 
PM10 exposure during the 1st trimester showed a statistically significant 
association with the composition variation of the gut microbiome at age 
6 years (R2 = 1.6%, p = 0.03; R2 = 1.4%, p = 0.01 for the order and 
family level, respectively; Fig. 1, Table S9). 

When examining the phylum level, PM10 exposure during the 1st 
trimester was associated with increased Proteobacteria abundance 
(66.9% increase per IQR increase of PM10, 95% CI: 21.3, 129.8). PM10 

Table 1 
Characteristics of the participants in the main and subset cohort at age 6.  

Characteristics Variables Main 
cohort (n =
568) 

Subset 
cohort (n =
170) 

P- 
value 

Maternal Maternal age at 
pregnancy, years, mean 
(SD) 

31.4 (3.6) 31.4 (3.5) 0.99  

Maternal Education, N 
(%)   

0.48  

< College education 92 (16.2) 24 (14.1)   
≥ College graduate 476 (83.8) 146 (85.9)   
Monthly household 
income, N (%)   

0.63  

< $3500, N (%) 173 (30.5) 48 (28.2)   
≥$3500, N (%) 395 (69.5) 122 (71.8)   
Smoking during 
pregnancy, N (%)     
Non-smoker 554 (100) 151 (100)   
Smoker 0 (0) 0 (0)   
DM during pregnancy, 
yes, N (%) 

22 (3.9) 9 (5.3) 0.42  

Prepregnancy BMI, 
mean (SD) 

20.9 (2.7) 20.8 (2.3) 0.63 

Child Sex, boys, N (%) 296 (52.1) 87 (51.2) 0.86  
BMI, kg/m2, mean (SD) 15.8 (1.8) 15.6 (1.7) 0.19  
Season of birth, N (%)   0.03  
Spring 146 (25.7) 33 (19.4)   
Summer 175 (30.8) 51 (30.0)   
Autumn 163 (28.7) 45 (26.5)   
Winter 84 (14.8) 41 (24.1)   
Delivery mode, N (%)   0.36  
Vaginal delivery 362 (63.7) 115 (67.6)   
Cesarean section 206 (36.3) 55 (32.4)   
Low birth weight, yes, 
N (%) 

40 (7.0) 9 (5.3) 0.42  

Prematurity, yes, N (%) 44 (7.7) 9 (5.3) 0.28  
Breastfeeding   0.37  
Exclusive breastfeeding 172 (30.3) 58 (34.1)   
Mixed feeding 374 (65.8) 109 (64.1)   
Formula feeding 20 (3.5) 3 (1.8)   
Twin, yes, N (%) 50 (8.8) 15 (8.8) 0.99  
Birth order, first child, 
N (%) 

325 (57.2) 94 (55.3) 0.66  

SCQ score, age 6, mean 
(SD) 

3.6 (2.7) 3.4 (2.9) 0.42 

Abbreviations: SD, standard deviation; DM, diabetes mellitus; BMI, body mass 
index; SCQ, social communication questionnaire. 
P-value for difference of characteristics between main and subset cohort (chi- 
square test or Fisher’s exact test for categorical variables and t-test for contin-
uous variables). 
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exposure at age 2 years was also related to an increase in Proteobacteria 
relative abundance (74.1% change, 95% CI: 6.0, 188.6; Table 3). The 
association between NO2 exposure during the 1st trimester and Proteo-
bacteria relative abundance was marginally statistically significant 
(48.1% change, 95% CI: − 0.1, 119.6). NO2 exposure at age 2 years was 
associated with a decrease in Proteobacteria relative abundance (− 29.2% 
change, 95% CI: − 47.2, − 5.0). NO2 exposure at age 2 was associated 
with increased Bacteroidetes relative abundance at age 6 (21.6% increase 
per IQR increase of NO2, 95% CI: 4.1, 42.0). PM10 exposure during the 
1st trimester was associated with decreased Verrucomicrobia abundance 
(45.4% decrease per IQR increase of PM10, 95% CI: − 67.5, − 8.4). 

3.5. Association between gut microbiome and autistic traits 

The relative abundance of Proteobacteria was statistically signifi-
cantly associated with SCQ scores (4.4% change per 2-fold increase in 
relative abundance, 95% CI: 1.3, 7.5) in the prenatal model (n = 170). 
However, there was no statistically significant relationship between 
Proteobacteria relative abundance and SCQ scores in the postnatal 
exposure group (n = 132; Table 4). 

Table 2 
Associations between exposure to air pollution and SCQ scores at age 6, according to exposure windows.  

Pollutant and Exposure 
windows 

Crudea (n = 170) Adjustedb (n = 170) Crudea (n = 108) Adjustedb (n = 108) 

(% change [95% CI])c p- 
value 

(% change [95% CI])c p- 
value 

(% change [95% CI])c p- 
value 

(% change [95% CI])c p- 
value 

PM10 

1st trimesterd 11.9 (2.4, 22.1) 0.01 10.6 (1.1, 21.0) 0.03 4.6 (− 6.5, 17.0) 0.40 5.8 (− 5.6, 18.5) 0.37 
2nd trimesterd 3.0 (− 7.4, 14.6) 0.59 − 1.5 (− 12.2, 10.6) 0.73 − 5.7 (− 17.2, 7.3) 0.40 − 11.1 (− 22.8, 2.4) 0.11 
3rd trimesterd 6.3 (− 7.2, 21.9) 0.31 4.2 (− 9.1, 19.4) 0.47 0.8 (− 15.9, 20.8) 0.93 − 2.0 (− 18.6, 17.9) 0.83 
1st-3rd trimestersd 11.1 (1.7, 21.4) 0.02 8.4 (− 1.3, 19.1) 0.09 2.5 (− 8.2, 14.3) 0.65 0.1 (− 11.0, 12.6) 0.98 
Age 2d 16.0 (3.5, 30.1) 0.01 16.8 (2.3, 33.3) 0.03 19.7 (3.7, 38.2) 0.01 13.9 (− 79.2, 524.3) 0.14 
Age 4d 18.3 (5.0, 33.2) <0.01 15.7 (1.9, 31.4) 0.02 27.2 (9.5, 47.9) <0.01 19.1 (1.4, 40.1) 0.03 
Age 6d 4.2 (− 10.5, 21.5) 0.62 7.8 (− 8.3, 26.6) 0.38 7.6 (− 11.7, 31.0) 0.46 0.8 (− 18.0, 24.0) 0.93 
NO2 

1st trimesterd 15.0 (2.9, 28.5) 0.01 12.1 (0.1, 25.5) 0.04 19.6 (5.8, 35.3) <0.01 18.3 (4.4, 34.1) 0.01 
2nd trimesterd 6.2 (− 15.4, 33.3) 0.60 − 3.2 (− 14.9, 10.1) 0.57 6.1 (− 7.6, 21.8) 0.43 − 1.5 (− 15.2, 14.5) 0.87 
3rd trimesterd 17.2 (− 5.5, 5.4) 0.15 4.8 (− 6.7, 17.7) 0.40 17.8 (− 2.8, 42.9) 0.11 10.8 (− 9.0, 34.9) 0.29 
1st-3rd trimestersd 26.9 (1.9, 58.0) 0.03 3.1 (− 4.5, 22.3) 0.20 15.7 (3.7, 29.1) 0.01 12.0 (− 0.2, 25.8) 0.06 
Age 2d 11.2 (− 4.7, 29.6) 0.18 4.9 (− 4.2, 14.9) 0.27 10.4 (− 1.4, 23.6) 0.09 11.1 (− 2.3, 26.4) 0.11 
Age 4d ¡17.2 (-29.6, -2.6) 0.02 − 7.6 (− 15.6, 1.1) 0.10 ¡17.9 (-26.9, -7.8) <0.01 − 10.4 (− 21.4, 2.2) 0.10 
Age 6d 3.1 (− 15.0, 25.1) 0.75 2.6 (− 7.9, 14.3) 0.59 − 4.9 (− 16.1, 7.8) 0.44 − 0.8 (− 12.9, 13.0) 0.90 

Abbreviations: PM10, particulate matter with an aerodynamic diameter ≤10 μm; NO2, nitrogen dioxide; SCQ, social communication questionnaire; CI, confidence 
interval; IQR, interquartile range. 
Adjusted for child’s age, sex, twin, family income, season of birth, low birthweight, delivery mode and breastfeeding for exposure windows during childhood. 

a Adjusted for age and sex. 
b Adjusted for child’s age, sex, twin, family income for exposure windows during pregnancy. 
c Per IQR increase; Statistically significant results shown in bold. 
d Sample size: n = 170 for pregnancy exposure (1st – 3rd trimesters), n = 132 for childhood exposure (age 2–6). 

Fig. 1. RDA analysis on the association between PM10 exposure in the 1st trimester of pregnancy and distribution of gut microbiome (order level and family level), 
(a) A 3.2% of the total variance was explained by the model. The first and second axes explained 1.7% and 0.9% of the variance, (b) A 3.5% of the total variance was 
explained by the model. The first and second axes explained 1.8% and 0.9% of the variance., Abbreviations: RDA, redundancy analysis; PM10, particulate matter with 
an aerodynamic diameter ≤10 μm; NO2, nitrogen dioxide. 
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3.6. Mediation effect of microbiome on the association between air 
pollution and autistic traits 

In the mediation analysis of Proteobacteria relative abundance for the 
association between PM10 exposure during the 1st trimester and SCQ 
scores at age 6 years, both the indirect and direct effects were statisti-
cally significant, indicating that the association between PM10 exposure 
during the 1st trimester and autistic traits was partially mediated by 
changes in Proteobacteria relative abundance (mediation proportion: 

25.1%, p = 0.01). The mediation analysis also showed that a marginally 
significant proportion of the association between NO2 exposure during 
the 1st trimester and autistic traits is attributed to changes in Proteo-
bacteria relative abundance (proportion mediated: 16.5%, p = 0.06; 
Fig. 2 and Table 5). 

3.7. Comparison with other mediation models 

There were no other mediation models wherein the indirect, direct, 
and total effects were all statistically significant, nor were there models 
wherein the mediated proportion was statistically significant 
(Table S10). No other time window of air pollution exposure showed 
significant mediation. The indirect effect of Proteobacteria abundance on 
the association between PM10 exposure at age 2 years and SCQ scores at 
age 6 years was marginally significant (proportion mediated: 13.5%, p 
= 0.07). Proteobacteria abundance also marginally mediated the asso-
ciation between PM10 exposure at age 4 years and SCQ scores at age 6 
years (proportion mediated: 15.3%, p = 0.06). In other models, the in-
direct effect of Proteobacteria abundance on the association between NO2 
at age 2 years and SCQ at age 6 years was statistically significant (− 4.9% 
change per IQR increase, 95% CI: − 9.5, − 0.001); however, the associ-
ation showed a negative direction, in contrast to the direct effect (15.7% 
change, 95% CI: 5.8, 26.5). Therefore, the total effect was not statisti-
cally significant (10.1% change, 95% CI: − 4.5, 27.0). 

When the mediation effects of autistic traits on the association be-
tween air pollution (PM10 or NO2) levels during the 1st trimester of 
pregnancy and Proteobacteria abundance were examined, the indirect 
effect was no longer statistically significant, and the proportions 

Table 3 
Associations between exposure to air pollution and relative abundance at the phylum level, by exposure windows.  

Exposure 
windows 

Bacteroidetesa Actinobacteriaa Proteobacteriaa Firmicutesa Verrucomicrobiaa 

((% change [95% 
CI])b 

p- 
value 

(% change [95% 
CI])b 

p- 
value 

(% change [95% 
CI])b 

p- 
value 

(% change [95% 
CI])b 

p- 
value 

(% change [95% 
CI])b 

p- 
value 

PM10 

1st trimester* − 13.7 (− 29.2, 
5.2) 

0.15 − 1.5 (− 20.4, 
21.8) 

0.88 66.9 (21.3, 
129.8) 

<0.01 3.2 (− 4.4, 11.3) 0.45 ¡45.4 (-67.5, 
-8.4) 

0.02 

2nd trimester* − 15.0 (− 43.5, 
10.1) 

0.22 22.6 (− 7.3, 62.2) 0.16 25.1 (− 17.7, 
90.3) 

0.29 2.1 (− 9.5, 15.1) 0.73 − 32.1 (− 64.2, 
28.6) 

0.24 

3rd trimester* 8.9 (− 19.8, 47.9) 0.60 4.4 (− 25.3, 45.8) 0.81 − 10.7 (− 45.9, 
47.3) 

0.63 − 2.8 (− 13.0, 8.7) 0.59 − 9.5 (− 60.7, 
108.8) 

0.80 

1-3 trimesters* − 8.6 (− 26.6, 
13.9) 

0.41 7.6 (− 14.6, 35.5) 0.55 38.5 (− 1.5, 94.8) 0.06 0.6 (− 7.9, 9.8) 0.89 − 34.4 (− 61.3, 
11.3) 

0.12 

Age 2* − 11.7 (− 33.1, 
16.6) 

0.39 2.2 (− 27.7, 44.3) 0.91 74.1 (6.0, 188.6) 0.03 2.6 (− 8.8, 15.5) 0.69 − 30.0 (− 69.3, 
59.8) 

0.40 

Age 4* 3.1 (− 20.3, 33.4) 0.83 − 14.5, (− 37.8, 
17.4) 

0.33 58.5 (− 0.6, 
152.6) 

0.06 0.1 (− 10.6, 12.1) 0.99 − 13.6 (− 60.2, 
87.2) 

0.72 

Age 6* 16.1 (− 16.3, 61.1) 0.37 1.2 (− 32.6, 51.8) 0.96 31.8 (− 27.5, 
139.6) 

0.36 − 3.4 (− 16.6, 
11.9) 

0.64 − 15.9 (− 68.5, 
124.4) 

0.73 

NO2 

1st trimester* − 14.5 (− 33.9, 
10.5) 

0.21 − 17.5 (− 37.3, 
8.5) 

0.17 48.1 (− 0.1, 
119.6) 

0.05 5.8 (− 4.3, 16.9) 0.28 15.0 (− 40.0, 
120.4) 

0.68 

2nd trimester* − 16.6 (− 37.6, 
11.4) 

0.24 − 3.4 (− 29.3, 
32.0) 

0.84 − 1.1 (− 38.1, 
57.9) 

0.97 8.3 (− 3.1, 21.0) 0.21 7.1 (− 49.8, 
128.4) 

0.86 

3rd trimester* 11.4 (− 13.6, 43.7) 0.41 − 15.9 (− 36.1, 
10.8) 

0.21 − 22.0 (− 49.0, 
19.1) 

0.24 − 1.1 (− 11.0, 
10.0) 

0.85 16.3 (− 41.0, 
129.2) 

0.66 

1-3 trimesters* − 10.2 (− 31.6, 
17.8) 

0.43 − 16.9 (− 38.5, 
12.4) 

0.23 3.9 (− 32.9, 60.9) 0.85 6.3 (− 4.3, 18.2) 0.29 16.6 (− 42.6, 
136.9) 

0.67 

Age 2* 21.6 (4.1, 42.0) 0.02 − 6.8 (− 24.0, 
14.2) 

0.49 ¡29.2 (-47.2, 
-5.0) 

0.02 − 0.8 (− 7.8, 6.7) 0.83 − 4.5 (− 42.4, 
58.4) 

0.86 

Age 4* 11.6 (− 7.6, 34.7) 0.24 − 0.9 (− 21.5, 
25.1) 

0.92 − 13.2 (− 38.3, 
22.0) 

0.41 7.1 (− 1.2, 16.1) 0.11 40.3 (− 21.0, 
149.0) 

0.25 

Age 6* 18.6 (− 3.6, 46.0) 0.11 − 11.6 (− 31.5, 
13.9) 

0.33 − 15.2 (− 41.4, 
22.7) 

0.38 0.6 (− 8.3, 10.3) 0.87 20.7 (− 35.3, 
125.3) 

0.56 

*Sample size: n = 170 for pregnancy exposure, n = 132 for childhood exposure (age 2–6) for Bacteroidetes, Actinobacteria, Proteobacteria and Firmicutes. 
n = 108 for pregnancy exposure, n = 84 for childhood exposure (age 2–6) for Verrucomicrobia. 
Abbreviations: PM10, particulate matter with an aerodynamic diameter ≤10 μm; NO2, nitrogen dioxide; CI, confidence interval; IQR, interquartile range. 
Adjusted for child’s age, sex, twin, family income, season of birth, low birthweight, delivery mode and breastfeeding for exposure windows during childhood. 

a Adjusted for child’s age, sex, twin, family income for exposure windows during pregnancy. 
b Per IQR increase; Statistically significant results shown in bold. 

Table 4 
Associations between gut microbiome and SCQ scores at age 6.  

Microbiome Crudea Adjustedb 

(% change [95% 
CI])c 

p- 
value 

(% change [95% 
CI])c 

p- 
value 

Proteobacteria (n =
170) 

4.7 (1.7, 7.9) <0.01 4.4 (1.3, 7.5) <0.01 

Proteobacteria (n =
132) 

4.3 (0.9, 7.8) 0.01 2.6 (− 26.6, 
43.5) 

0.13 

Abbreviations: SCQ, social communication questionnaire; CI, confidence inter-
val. 
Adjusted for child’s age, sex, twin, family income, season of birth, low birth-
weight, delivery mode and breastfeeding for n = 132 sample. 

a Adjusted for age and sex. 
b Adjusted for child’s age, sex, twin, family income for exposure windows for 

n = 170 sample. 
c Per 1-unit increase for Bacteroidetes, per 2-fold increase for Proteobacteria; 

Statistically significant results shown in bold. 
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mediated were 3.1% and 11.0%, respectively (p-values > 0.05; 
Table S11). 

4. Discussion 

To our knowledge, this study is the first to investigate the mediating 
role of the microbiome in the association between environmental toxins 
and autistic traits. Interestingly, the microbiota profile, specifically 
Proteobacteria at the phylum level, showed 25.1% and 16.5% mediation 
effects on the associations between both 1st trimester PM10 and NO2 
exposure, respectively, and autistic traits in children. These findings 
suggest a plausible mechanism underlying the relation between air 
pollution and ASD and add evidence to the existing literature on the 
gut–brain axis suggested in ASD. 

Despite the proposed role of the microbiome as a mediator of genetic 
and environmental risk factors, research has been scarce, specifically on 
ASD. The majority of earlier evidence comes from animal studies that 
indirectly investigated the effect of the microbiome. For example, oral 
treatment of B. fragilis or B. thetalotaomicron to the offspring of the ro-
dent model of maternal immune activation, a model that resembles 
infection during pregnancy, improved the gut microbial composition 
and permeability while reducing ASD-related behavior (Hsiao et al., 
2013; Kentner et al., 2019). Similarly, modeling maternal exposure to 
valproic acid, an anticonvulsant drug associated with an increased risk 
for ASD (C.G. de Theije et al., 2014), resulting in offspring with altered 
gut microbiota composition, neuro-inflammation, and ASD-associated 
behavioral abnormalities (C.G.M. de Theije et al., 2014). Meanwhile, 
two human studies have investigated the mediating role of the micro-
biome linking air pollution with liver function or glucose levels (Yi et al., 
2021; Alderete et al., 2018); however, this study is the first study to have 
autistic traits as the outcome variable. 

Prenatal (1st trimester of pregnancy) and postnatal (at age 2 and 4 
years) exposure to air pollutants was associated with autistic traits at age 
6 years, suggesting long-lasting effects. According to the Developmental 
Origins of Health and Disease, exposure to environmental agents results 

in long-lasting human physiology and behavior alterations (Barker, 
2007). These long-term effects may be partly due to the developing 
epigenetic code (Suter et al., 2010, 2013) and microbiome (Chu et al., 
2016; Chu and Aagaard, 2016), since the gut microbiome can be 
transferred across the placenta during fetal development (Braniste et al., 
2014; Jašarević et al., 2016), leading to varied effects in the offspring. 
Moreover, alterations in the maternal microbiome due to environmental 
risk exposure can be passed on, since mammals acquire their initial 
microbiome via birthing. The microbiota may convey lasting effects on 
health and disease through the epigenetic modification of the host 
genome (Kumar et al., 2014; Cortese et al., 2016). Moreover, epigenetic 
changes caused by microbiota can influence host transcriptional pat-
terns. For example, fatty acid butyrate—a SCFA produced by the 
microbiome—can inhibit the action of histone deacetylase inhibitor, and 
result in disruption in cell cycle progression, gene silencing, differenti-
ation, and genotoxic reactions (Waldecker et al., 2008). As this study did 
not include methylation data, further studies that incorporate both 
methylome and microbiome data could provide an integrated 
multi-omics description on the pathway linking air pollution and autistic 
traits. 

The 1st trimester of pregnancy as well as ages 2 and 4 years were 
susceptible exposure periods to the neurotoxic effects of PM10. These 
exposure periods have been suggested to be susceptible to environ-
mental risk factors in previous studies. Brain development most rapidly 
occurs during series of time-sensitive periods when neuroplasticity is 
heightened (Ismail et al., 2017; Meredith, 2015). The early fetal period 
is marked by prominent neurogenesis, the 2nd trimester of pregnancy 
and first 2 years of early life is characterized by synaptogenesis (John-
ston et al., 2009), while ages 2 to 10 is the period when synaptic pruning 
rapidly occurs (Huttenlocher and Dabholkar, 1997). The susceptible 
periods of air pollution exposure related to autistic traits overlap with 
the critical periods of neurodevelopment, which also coincide with the 
developmental periods of the gut microbiome. Gut microbiome changes 
appear to occur most dynamically during the first 3 years of life (Yat-
sunenko et al., 2012; Derrien et al., 2019). Therefore, it can be 

Fig. 2. Mediation analysis of the association between air pollution and autistic traits through gut microbiome changes, (a) Mediation of Proteobacteria relative 
abundance on the association between PM10 during the1st trimester and autistic traits, (b) Mediation of Proteobacteria relative abundance on the association between 
NO2 during the1st trimester and autistic traits, *: % change per interquartile range, Abbreviations: PM10, particulate matter with an aerodynamic diameter ≤10 μm; 
NO2, nitrogen dioxide. 

Table 5 
Mediating role of proteobacteria on the association between air pollution and SCQ scores.  

Path Indirect effect Direct effect Total effect Mediated proportion 
(%) 

p- 
value 

% change [95% 
CI])a 

p- 
value 

% change [95% 
CI])a 

p- 
value 

% change [95% 
CI]))a 

p- 
value 

1st trimester PM10 – proteo – 
SCQ 

6.1 (1.2, 11.2) <0.01 16.8 (0.8, 35.2) 0.04 23.8 (10.6, 38.7) <0.01 25.1 0.01 

1st trimester NO2 – proteo – SCQ 3.8 (− 0.005, 7.8) 0.05 17.2 (2.8, 33.7) 0.03 21.7 (9.4, 35.3) 0.01 16.5 0.06 

Abbreviations: SCQ, social communication questionnaire; CI, confidence interval; PM10, particulate matter with an aerodynamic diameter ≤10 μm; NO2, nitrogen 
dioxide; IQR, interquartile range, statistically significant results shown in bold. 
Sample size: n = 170 and n = 132 for the 1st trimester and age 2 analyses, respectively. 

a Per IQR-increase in air pollutant exposure. 
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speculated that the microbiome would be more prone to environmen-
tally toxic materials up to age 3, when changes are more rapid. However, 
only microbiome data at age 6 years were obtained, and thus, it is un-
clear in which period our participants’ microbiome was most suscepti-
ble. Considering the relative stability of the gut microbiome after the age 
of 3 years, the microbiome profile at age 6 years might reflect that of an 
earlier stage. However, recent studies have also found differences in the 
gut microbiome of 7–12-year-olds compared to adults, suggesting that 
complete maturation of the gut microbiome may take longer than pre-
viously suggested (Zhong et al., 2019). Thus, further studies using 
microbiome data from periods of early life are warranted to confirm this 
study’s hypothesis. 

Proterobacteria abundance was associated with both PM10 and NO2 
exposure during the 1st trimester of pregnancy. Exposure to mixed 
vehicle emissions increased the abundance of lung Proterobacteria in 
mice (Daniel et al., 2021). Exposure to PM2.5 was associated with 
increased Proterobacteria abundance in buccal mucosa microbacteria 
(Wu et al., 2021). A previous study involving adult patients with 
schizophrenia found that NO2 exposure and PM10 in the preceding year 
explained 3.7% and 7.5% of the gut microbiome composition, respec-
tively (Yi et al., 2021). Another study reported that NO2 explained 4.4% 
of the variance in gut microbiome composition in overweight to obese 
adults (Fouladi et al., 2020). In our study, 1st trimester PM10 and NO2 
explained 1.6% and 0.7% of the gut microbiome at age 6 years, 
respectively, which is a smaller effect size compared to previous studies. 
However, direct comparison between these studies is not recommended 
since this study investigated children’s microbiota profiles, whereas 
previous studies targeted adult populations. Moreover, the distribution 
and concentration of air pollutants from different countries or regions 
may vary. 

Proterobacteria abundance was cross-sectionally associated with 
autistic traits at age 6 years. Although previous studies on microbiota 
differences in patients with ASD have been highly heterogeneous, most 
studies found that the overall microbiota composition of ASD cases 
differs from that of controls (Bundgaard-Nielsen et al., 2020). However, 
there were no specific bacteria consistently associated with ASD diag-
nosis or severity. Nevertheless, Proteobacteria abundance was found to 
be elevated in individuals with ASD compared with controls (Finegold 
et al., 2010; Williams et al., 2011). Proteobacteria is associated with host 
inflammation (Shin et al., 2015) and produces a potent toxic factor 
lipopolysaccharide (Liu et al., 2019a); exposure to this factor can reduce 
glutathione in the brain (Zhu et al., 2007; Chauhan and Chauhan, 2006), 
suggesting possible neurotoxic effects. 

Among the Organization for Economic Cooperation and Develop-
ment member countries, South Korea ranked first in terms of mean 
population exposure to PM2.5 in 2019 (Lee et al., 2018), as most cities in 
South Korea were urbanized (Shin et al., 2022). The new air quality 
guideline by the World Health Organization (WHO) recommends that 
the annual mean PM10 value should not exceed 15 μg/m3 and that the 
annual standard NO2 concentration should not exceed 10 μg/m3 (World 
Health Organization, 2021). The air quality guideline by the Ministry of 
Environment in South Korea has set higher limit levels: 50 μg/m3 for the 
annual PM10 value and 0.03 ppm (56.4 μg/m3) for the annual NO2 value 
(Kumbhakar et al., 2021). As the mean concentrations of these pollut-
ants in the present study were similar to the recommended values 
mentioned in the South Korea guideline and higher than those 
mentioned in the WHO guideline and neurotoxicity of air pollutants was 
observed at these values, we suggest a stricter policy to regulate air 
pollution levels. 

This study has some limitations. We used data from a community- 
based cohort and none had undergone formal testing for ASD. 
Although the SCQ has a valid and reliable questionnaire (Corsello et al., 
2007), its primary purpose is screening for ASD. Therefore, further 
studies using diagnostic interviews are needed to expand the results to 
clinical populations. As the relationship between the gut microbiome 
and autistic traits was cross-sectional, causal relations are not definite, 

and reverse causation is possible. We did not provide refined informa-
tion such as genera or species, due to the lower detection rates compared 
to the phlya and substantial reduction in sample size.. Moreover, the 
small sample size limits the results’ statistical power, and further 
replication in a larger population is warranted. We did not adjust for 
multiple testing and rather focused on the trend of the results; thus, the 
findings of this study should be interpreted cautiously. Although various 
covariates were accounted for, some confounding factors, including diet 
diversity and other endocrine-disrupting chemicals, were not considered 
(Yap et al., 2021). Furthermore, other individual data that may affect 
exposure to air pollution, such as indoor air pollution, physical activity, 
time spent outdoors, and occupational status, were lacking (Lim et al., 
2021). Air pollutant exposure was obtained through data from moni-
toring stations and exposure misclassification cannot be ruled out. 
Moreover, we did not consider changes in exposure levels over time 
among individuals when we investigated exposure windows. This 
problem may not influence our study results significantly as we 
compared exposure levels within a 3-year period (e.g., exposure years in 
2015–2017 for children at age 6), where exposure levels may not change 
significantly in the three years. Furthermore, we did not consider other 
air pollutants such as ultrafine particles, which may have greater ca-
pacity to reach the gut and brain (Akimoto, 2003; Oberdorster et al., 
1994), due to lacking data. In addition, other air pollutants, including 
carbon monoxide, ozone and PM2.5, were not included in the analyses as 
these pollutants were not associated with autistic scores in the study 
(Fig. S8). Lastly, the majority of participants resided in urban areas, and 
most were from highly educated and high income families; thus the 
results may not be generalizable to populations in rural regions. 

Despite these limitations, this study was strengthened by its longi-
tudinal design and repetitive assessment of PM10, NO2 exposure and 
autistic traits. We identified multiple susceptible periods in early life and 
explored the mediating role of the gut microbiome in bridging envi-
ronmental toxins and neurodevelopmental outcomes. 

5. Conclusions 

Air pollution during the 1st trimester of pregnancy may affect 
autistic traits at age 6 years through the alteration of Proteobacteria 
abundance. Future studies with larger sample sizes and microbiome 
samples at earlier ages are warranted. Moreover, research on whether 
correction of gut microbial dysbiosis could reduce the impact of PM10 
exposure on autistic traits is needed. 
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