PROGRAMMING FOR COMPUTATIONAL

CHEMISTRY

Introduction to Fortran

Emanuele Coccia

Dipartimento di Scienze Chimiche e Farmaceutiche

E. Coccia (DSCF) IVAK)



General flowchart

Goal for a computer: executing a set of instructions to solve a
given numerical problem

Data
output

Data
input

Elaborating
data

E. Coccia (DSCF) 2/13



Programming language

@ Reproducible syntax to write instructions for a computer

E. Coccia (DSCF) 3/13



Programming language

@ Reproducible syntax to write instructions for a computer
@ Separation between the physical support and instructions

E. Coccia (DSCF) 3/13



Programming language

@ Reproducible syntax to write instructions for a computer
@ Separation between the physical support and instructions

@ Semantics: assign a meaning to the syntactic forms of the
longuage

E. Coccia (DSCF) 3/13



Top-down design

@ Computer Science: best method to tfranslate a scientific
model intfo a code

E. Coccia (DSCF) 4/13



Top-down design

@ Computer Science: best method to tfranslate a scientific
model intfo a code

@ Start from the general instructions: input, do operations,
output

E. Coccia (DSCF) 4/13



Top-down design

@ Computer Science: best method to tfranslate a scientific
model intfo a code

@ Start from the general instructions: input, do operations,
output

@ From the general problem to the identification of the main
sections

E. Coccia (DSCF) 4/13



Top-down design

@ Computer Science: best method to tfranslate a scientific
model intfo a code

@ Start from the general instructions: input, do operations,
output

@ From the general problem to the identification of the main
sections

@ Simplify towards smallest pieces of code (stepwise
refinement)

E. Coccia (DSCF) 4/13



Define an algorithm

@ To solve a problem, the proposed approach has to be:

E. Coccia (DSCF) 5/13



Define an algorithm

@ To solve a problem, the proposed approach has to be:
@ clear and univocally defined

E. Coccia (DSCF) 5/13



Define an algorithm

@ To solve a problem, the proposed approach has to be:

@ clear and univocally defined
Q effective

E. Coccia (DSCF) 5/13



Define an algorithm

@ To solve a problem, the proposed approach has to be:

@ clear and univocally defined
Q effective
© finite

E. Coccia (DSCF) 5/13



Define an algorithm

@ To solve a problem, the proposed approach has to be:

@ clear and univocally defined
Q effective
© finite

@ Two steps:

E. Coccia (DSCF) 5/13



Define an algorithm

@ To solve a problem, the proposed approach has to be:
@ clear and univocally defined
Q effective
© finite
@ Two steps:
@ Develop or choose an algorithm

E. Coccia (DSCF) 5/13



Define an algorithm

@ To solve a problem, the proposed approach has to be:
@ clear and univocally defined
Q effective
@ finite

@ Two steps:

@ Develop or choose an algorithm
@ Coding the algorithm

E. Coccia (DSCF) 5/13



Compiling a code

@ From high- to low-level (machine) language: the role of the
compiler

E. Coccia (DSCF) 6/13



Compiling a code

@ From high- to low-level (machine) language: the role of the
compiler

@ From a source code (e.g., name.f90) to an executable

E. Coccia (DSCF) 6/13



Compiling a code

@ From high- to low-level (machine) language: the role of the
compiler

@ From a source code (e.g., name.f90) to an executable

@ Two main steps:

@ Translating the source code into an object file, containing
meta-instructions

@ Converting the object (and possibly other ones in libraries)
info an executable

E. Coccia (DSCF) 6/13



Compiling a code

Source
X J
COMPILER

e

Object
A J

LINKER —{ Libraries
P

Exe

A

E. Coccia (DSCF) 7/13



Errors in programming

@ Syntax errors: recognised by the compiler and (usually) easy
to fix

E. Coccia (DSCF) 8/13



Errors in programming

@ Syntax errors: recognised by the compiler and (usually) easy
to fix

@ Semantic errors: use debugging options to find and fix them,
sfructured programming to avoid them

E. Coccia (DSCF) 8/13



@ First high-level language

E. Coccia (DSCF) 9/13



@ First high-level language
@ Largely used for scientific and technical purposes

E. Coccia (DSCF) 9/13



@ First high-level language
@ Largely used for scientific and technical purposes
@ Born in the mid-50s: FORmula TRANSslator

E. Coccia (DSCF) 9/13



@ First high-level language
@ Largely used for scientific and technical purposes

@ Born in the mid-50s: FORmula TRANSslator
@ Standard releases:

o FORTRAN4
FORTRANG6
FORTRAN77
Fortran90
Fortran95
Fortran03
Fortran08

E. Coccia (DSCF) 9/13



Generic (Fortran) code

START PROGRAM MAIN

DATA DECLARATION

INSTRUCTIONS

]

Subroutine Subroutine
A B

Function
A

END PROGRAM MAIN

E. Coccia (DSCF)



Our first code

@ Open a terminal

E. Coccia (DSCF) 11/13



Our first code

@ Open a terminal
@ Type vi hello_world.f90

E. Coccia (DSCF) 11/13



Our first code

@ Open a terminal
@ Type vi hello_world.f90
@ Letf us do it together (hello_world.f?0)

E. Coccia (DSCF) 11/13



Compiling and running

@ ifort -c hello_world.f90 — produces hello_world.o

E. Coccia (DSCF) 12/13



Compiling and running

@ ifort -c hello_world.f90 — produces hello_world.o

@ ifort -o hello_world.x hello_world.f90 — produces the
executable hello_world.x

E. Coccia (DSCF) 12/13



Compiling and running

@ ifort -c hello_world.f90 — produces hello_world.o

@ ifort -o hello_world.x hello_world.f90 — produces the
executable hello_world.x

@ (Some) compiler options:

E. Coccia (DSCF) 12/13



Compiling and running

@ ifort -c hello_world.f90 — produces hello_world.o

@ ifort -o hello_world.x hello_world.f90 — produces the
executable hello_world.x
@ (Some) compiler options:
@ -o object (executable)

E. Coccia (DSCF) 12/13



Compiling and running

@ ifort -c hello_world.f90 — produces hello_world.o

@ ifort -o hello_world.x hello_world.f90 — produces the
executable hello_world.x

@ (Some) compiler options:

@ -o object (executable)
@ -c compile only

E. Coccia (DSCF) 12/13



Compiling and running

@ ifort -c hello_world.f90 — produces hello_world.o
@ ifort -o hello_world.x hello_world.f90 — produces the
executable hello_world.x
@ (Some) compiler options:
@ -o object (executable)
@ -c compile only
@ -pg profiing

E. Coccia (DSCF) 12/13



Compiling and running

@ ifort -c hello_world.f90 — produces hello_world.o

@ ifort -o hello_world.x hello_world.f90 — produces the
executable hello_world.x
@ (Some) compiler options:
@ -o object (executable)
@ -c compile only

@ -pg profiing
© -On optimisation level

E. Coccia (DSCF) 12/13



Compiling and running

@ ifort -c hello_world.f90 — produces hello_world.o

@ ifort -o hello_world.x hello_world.f90 — produces the
executable hello_world.x
@ (Some) compiler options:
@ -o object (executable)
@ -c compile only

@ -pg profiing
© -On optimisation level
Q.

E. Coccia (DSCF) 12/13



Source and binaries

@ Two types of files: binary or text

e Binaries can be programs or data files written by programs or
the operating system
o Text files are those that can be read by us human beings

@ Two categories of files: programs or data

@ Either a file contains a set of instructions to be executed by
the CPU (a program) or it contains information (data)

E. Coccia (DSCF) 13/13



