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Towards multilevel/hierarchical
models: an overview



Multilevel structures

• Hierarchical/Multilevel models are extensions of regression in which
data are structured in groups and coefficients can vary by group.

• Example of multilevel structures:

• Simple grouped data—persons within cities—where some information
is available on persons and some information is at the city level.

• Repeated measurements.

• Time-series cross sections.

• Non-nested structures.

3



Varying-intercept and varying-slope models i

• With grouped data, a regression that includes indicators for groups is
called a varying-intercept model because it can be interpreted as a
model with a different intercept within each group
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Varying-intercept and varying-slope models ii

• Model with one continuous predictor x and indicators for J = 5
groups. The model can be written as a regression with 6 predictors or,
equivalently, as a regression with two predictors (x and the constant
term), with the intercept varying by group (left figure panel):

yi = αj(i) + βxi + εi , varying-intercept.

• Another option (central panel) is to let the slope vary with constant
intercept:

yi = α + βj(i)xi + εi , varying-slope.
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Varying-intercept and varying-slope models iii

• Finally, the right panel shows a model in which both the intercept and
the slope vary by group:

yi = αj(i) + βj(i)xi + εi , varying-intercept and slope.

The varying slopes are interactions between the continuous predictor x
and the group indicators.

• It can be challenging to estimate all these αj ’s and βj ’s, especially
when inputs are available at the group level.
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Clustered data i

• With multilevel modeling we need to go beyond the classical setup of
a data vector y and a matrix of predictors X . Each level of the model
can have its own matrix of predictors.

• Observational study from Gelman and Hill, (2006): effect of city-level
policies on enforcing child support payments from unmarried fathers.

• The treatment is at the group (city) level, but the outcome is
measured on individual families.

• To estimate the effect of child support enforcement policies, the key
“treatment” predictor is a measure of enforcement policies, which is
available at the city level.

• Aim: estimate the probability that the mother received informal
support, given the city-level enforcement measure and other city- and
individual-level predictors.
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Clustered data ii

Figure 1: Table 1: compact table for clustered data
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Clustered data iii

Figure 2: Table 2: two data-matrices for clustered data

• First table: data for the analysis as it might be stored in a computer
package, with information on each of the 1367 mothers surveyed.
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Clustered data iv

• Second table: to make use of the multilevel structure of the data,
however, we need to construct two data matrices, one for each level
of the model (city and mothers).

• Conceptually, the two-matrix, or multilevel, data structure has the
advantage of clearly showing which information is available on
individuals and which on cities.

• It also gives more flexibility in fitting models, allowing us to move
beyond the classical regression framework.
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Clustered data v

We briefly outline several possible ways of analyzing these data, as a
motivation and lead-in to multilevel modeling.

• Individual-level regression: Pr(Yi = 1) = logit−1(Xiβ) where X includes the
constant term, the treatment (enforcement intensity), and the other predictors
(father’s age and indicators for mother’s race at the individual level; and benefit
level at the city level). X is thus constructed from the data matrix of Table 1.
Problem: it ignores city-level variation beyond that explained by enforcement
intensity and benefit level,which are the city-level predictors in the model.

• Group-level regression on city averages: perform a city-level analysis, with
individual-level predictors included using their group-level averages. The outcome,
yj , would be the average total support among the respondents in city j, the
enforcement indicator would be the treatment, and the other variables would also
be included as predictors. Such a regression—in this case, with 20 data
points—has the advantage that its errors are automatically at the city level.
Problem: however, by aggregating, it removes the ability of individual predictors
to predict individual outcomes.
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Clustered data vi

• Individual-level regression with city indicators, followed by group-level regression of
the estimated city effects: two-steps analysis, first fitting a logistic regression to
the individual data y given individual predictors (in this example, father’s age and
indicators for mother’s race) along with indicators for the 20 cities. Then, the next
step is to perform a linear regression at the city level, considering the estimated
coefficients of the city indicators (in the individual model that was just fit) as the
“data” yj . This city-level regression has 20 data points and uses, as predictors,
the city-level data (in this case, enforcement intensity and benefit level).
Problem: can run into problems when sample sizes are small in particular groups,
or when there are interactions between individual- and group-level predictors.
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Clustered data vii

Multilevel modeling is a more general approach that can include predictors
at both levels at once.

• The multilevel model looks something like the two-step model we
have described, except that both steps are fitted at once.

• Two components: a logistic regression with 1369 data points
predicting the binary outcome given individual-level predictors and
with an intercept that can vary by city, and a linear regression with 20
data points predicting the city intercepts from city-level predictors.

Pr(Yi = 1) = logit−1(αj(i) + Xiβ), i = 1, . . . , n,

where X is the matrix of individual-level predictors and j(i) indexes
the city where person i resides.
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Clustered data viii

The second part of the model—what makes it “multilevel”—is the
regression of the city coefficients:

αj ∼ N (Ujγ, σ
2
α), j = 1, . . . , 20,

where U is the matrix of city-level predictors, γ is the vector of
coefficients for the city-level regression, and σα is the standard
deviation of the unexplained group-level errors.

• The key is the group-level variation parameter σα, which is estimated
from the data (along with α, β).

• The model for the α allows us to include all 20 of them in the model
without having to worry about collinearity.
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Repeated measurements

• Another kind of multilevel data structure involves repeated
measurements on persons (or other units)—thus, measurements are
clustered within persons, and predictors can be available at the
measurement or person level.

• Suppose a dataset where some people who bought an insurance
policy are every year asked either to renew or to interrupt the policy.
We basically have as many repeated measurements for each person as
many years that person is observed/asked.

• A naive multilevel logistic regression could then be similar to the
previous model, with each αj defined here in terms of the j-th
ensured for which the i-th policy was observed.

• Here also, we can work with a more rectangular-structured data
matrix (similarly as Table 1) or with two-data matrices: the choice is
done in terms of users’ convenience.
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Indicator variables and fixed or random effects i

• When including an input variable with J categories into a classical regression,
standard practice is to choose one of the categories as a baseline and include
indicators for the other J − 1 categories (in the child enforcement example, one
could set city 1 (Oakland) as the baseline and include indicators for the other 19.
The coefficient for each city then represents its comparison to Oakland.)

• In a multilevel model it is unnecessary to do this arbitrary step of picking one of
the levels as a baseline. For example, in the child support study, one would include
indicators for all 20 cities in the model. In a classical regression these could not all
be included because they would be collinear with the constant term, but in a
multilevel model this is not a problem because they are themselves modeled by a
group-level distribution.
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Indicator variables and fixed or random effects ii

• The varying coefficients (αj ’s or βj ’s) in a multilevel model are
sometimes called random effects, a term that refers to the
randomness in the probability model for the group-level coefficients.

• The term fixed effects is used in contrast to random effects—but
not in a consistent way! Fixed effects are usually defined as varying
coefficients that are not themselves modeled.

• As an interpretation issue, fixed effects are constant across individuals,
and random effects vary.

• Varying slopes can be interpreted as interactions between an
individual-level predictor and group indicators. As with classical
regression models with interactions, the intercepts can often be more
clearly interpreted if the continuous predictors are appropriately
centered
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Non-nested models i

• So far we have considered the simplest hierarchical structure of individuals i
in groups j. We briefly discuss now more complicated grouping structures.

• Example: a psychological experiment with two potentially interacting
factors. We collect success rates data on pilots of flight simulators, with
n = 40 data points corresponding to J = 5 treatment conditions and K = 8
different airports, as shown in the next figure (from G&H book, sect. 13.5).
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Non-nested models ii
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Non-nested models iii

The data stored as a matrix and as an array are displayed in the next figure
(always from G&H book):
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Non-nested models iv

• The responses can be fit to a non-nested multilevel model of the form:

yi ∼ N (µ+ γj(i) + δk(i), σ
2
y ), i = 1, . . . , n

γj ∼ N (0, σ2
γ), j = 1, . . . , J

δk ∼ N (0, σ2
δ), k = 1, . . . ,K ,

(1)

where the parameters γj and δk represent treatment effects and airport
effects. Their distributions are centered at zero because the regression
model for y already has an intercept µ, and any nonzero mean for the γ
and δ distributions could be folded into µ.

• When fit to the data in the figure, the estimated residual standard
deviations at the individual, treatment and airport levels are σ̂y = 0.23,
σ̂γ = 0.04 and σ̂δ = 0.32. Thus, the variation among airports is
huge—even larger than that among individual measurements—but the
treatments vary almost not at all.
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Non-nested models v

• Connection with Analysis of Variance (ANOVA): as we know from
classical statistics, ANOVA is typically used to learn the relative importance
of different sources of variation in a dataset. In this example, how much of
the variation in the data is explained by treatments, how much by airports,
and how much remains after these factors have been included in a linear
model? If a multilevel model has already been fit, it can be summarized by
the variation in each of its batches of coefficients.

• In classical statistics, ANOVA refers either to a family of additive data
decomposition, or to a method of testing the statistical significance of
added predictors in a linear model. For the flight data simulator we can
write:

yi = µ+ γj(i) + δk(i) + εi , (2)

and a classical two-way ANOVA can be obtained as follows:
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Non-nested models vi

which indicates that the variation among treatments is not statistically
significant. Let’s see the sources of variation and degrees of freedom:

• 5 treatment effects minus 1 constraint = 4 degrees of freedom
• 8 airports effects minus 1 constraint = 7 df
• 40 residuals minus 12 constraints (1 mean, 4 treatment effects, 7

airport effects) = 28 df
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Non-nested models vii

• When comparing nested models, ANOVA is related to the classical test of
the hypothesis that the smaller model is true, which is equivalent to the
hypothesis that the additional predictors all have coefficients of zero when
included in the larger model.

• When moving to multilevel modeling, the key idea we want to take from
ANOVA is the estimation of the importance of different batches of
predictors.

• A general solution to perform ANOVA here is to fit the model (2)—along
with the random effects for γ, δ, and the error ε— and summarize the
estimated variance components, σ̂y , σ̂γ , σ̂δ.
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Item-response and ideal-point models i

• Usually applied to data with multilevel structure, typically non-nested, for
example with measurements associated with persons and test items, or
judges and cases.

• A standard model for success or failure in testing situations is the logistic
item-response model, also called the Rasch model. Suppose J persons are
given a test with K items, with yjk = 1 if the response is correct. Then the
logistic model can be written as:

Pr(yjk = 1) = logit−1(αj − βk), (3)

with parameters:
• αj : the ability of person j,
• βk : the difficulty of item k.
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Item-response and ideal-point models ii

In general, not every person is given every item, so it is convenient to index
the individual responses as i = 1, . . . , n, with each response i associated
with a person j(i) and item k(i). Thus model (3) becomes:

Pr(yi = 1) = logit−1(αj(i) − βk(i)). (4)

• The model (4) is not identified, because a constant can be added to all the
abilities αj and all the difficulties βk , and the predictions of the model will
not change. From the standpoint of classical logistic regression, this
nonidentifiability is a simple case of collinearity and can be resolved by
constraining the estimated parameters in some way, for instance setting
α1 = β1 = 0, constraining the αj ’s to sum to zero, or constraining the βk ’s
to sum to zero.
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Item-response and ideal-point models iii

• In a multilevel model, such constraints are unnecessary. The natural
multilevel model for (4) assigns some normal distributions to the ability and
the difficulty parameters:

αj ∼ N (µα, σ2
α), j = 1, . . . , J ,

βk ∼ N (µβ , σ2
β), k = 1, . . . ,K .

Now it is µα and µβ that are not identified, because a constant can be
added to each without changing the predictions. The simplest way to
identify the multilevel model is set µα = 0, or to set µβ = 0 (but not both).

• Ideal-point modeling is an application of item-response models to a settimg
where what is being easured is not ability of individuals and difficulty of
items, but rather positions of individuals and items on some scale of values.

• Example: Supreme Court voting (G&H book, sect. 14.3).
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Non-nested NB model of structure in social networks i

• Understanding the structure of social networks, and the social processes
that form them, is a central concern of sociology for both theoretical and
practical reasons. Networks have been found to have important
implications for social mobility, getting a job, the dynamics of fads and
fashion, attitude formation, and the spread of infectious disease.

• Example (from book G&H, sect. 15.3): overdispersed Poisson regression
model to learn about social structure. We fit the model to a random-sample
survey of Americans who were asked, “How many X’s do you know?” for a
variety of characteristics X, defined by name (Michael, Christina, Nicole,...),
occupation (postal worker, pilot, gun dealer,...), ethnicity (Native
American), or experience (prisoner, auto accident victim,...).

• The original goals of the survey were (1) to estimate the distribution of
individuals’ network size, defined to be the number of acquaintances, in
U.S. population and (2) to estimate the sizes of certain subpopulations,
especially those that are hard to count using regular survey results.
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Non-nested NB model of structure in social networks ii

• Modeling setup: for respondent i = 1, . . . , 1370 and subpopulations
k = 1, . . . , 32, we use the notation yik for the number of persons in group k
known by person i .

• We evaluate three possible models, assuming yik ∼ Poisson(λik):

Erdos-Renyi model : λik = abk
null model : λik = aibk

overdispersed model : λik = aibkgik .

• Null model: in which individuals i have varying levels of gregariousness or
popularity, so that the expected number of persons in group k known by
person i will be proportional to this gregariousness parameter, which we
label ai . Departure from this model—patterns not simply explained by
differing group sizes or individual popularities—can be viewed as evidence
of structured social acquaintance networks.
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Non-nested NB model of structure in social networks iii

• Overdispersion in these data can arise if the relative propensity for knowing
someone in prison, for example, varies from respondent to respondent. We
can write this in the generalized linear model framework as:

yik ∼ Poisson(eai+bk+γik ),

where each γik = log(gik) ≡ 0 in the null model. For each subpopulation k,
we let the multiplicative factors gik = eγik follow a Gamma distribution with
a value of 1 for the mean and a value of 1/(ωk − 1) for the shape
parameter. In this way:

yik ∼ NegBin(eai+bk , ωk),

30



Costs and benefits of multilevel modeling i

Before we go to the effort of learning multilevel modeling, it is helpful to
briefly review what can be done with classical regression:

• Prediction for continuous or discrete outcomes,

• Fitting of nonlinear relations using transformations,

• Inclusion of categorical predictors using indicator variables,

• Modeling of interactions between inputs,

• Causal inference (under appropriate conditions).
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Costs and benefits of multilevel modeling ii

Motivations for moving to multilevel models:

• Accounting for individual- and group-level variation in estimating
group-level regression coefficients.

• Modeling variation among individual-level regression coefficients. In
classical regression, one can do this using indicator variables, but
multilevel modeling is convenient when we want to model the
variation of these coefficients across groups, make predictions for new
groups, or account for group-level variation in the uncertainty for
individual-level coefficients.

• Estimating regression coefficients for particular groups

• A potential drawback to multilevel modeling is the additional
complexity of coefficients varying by group.
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Costs and benefits of multilevel modeling iii

• A multilevel model requires additional assumptions beyond those of
classical regression—basically, each level of the model corresponds to
its own regression with its own set of assumptions such as additivity,
linearity, independence, equal variance, and normality.

• The usual alternative to multilevel modeling is classical
regression—either ignoring group-level variation, or with varying
coefficients that are estimated classically (and not themselves
modeled)—or combinations of classical regressions.

• In various limiting cases, the classical and multilevel approaches
coincide. When there is very little group-level variation, the multilevel
model reduces to classical regression with no group indicators;
conversely, when group-level coefficients vary greatly (compared to
their standard errors of estimation), multilevel modeling reduces to
classical regression with group indicators.
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Costs and benefits of multilevel modeling iv

• When the number of groups is small (less than five, say), there is
typically not enough information to accurately estimate group-level
variation. As a result, multilevel models in this setting typically gain
little beyond classical varying-coefficient models.

• Computational softwares: lme4, WinBUGS, JAGS, Stan (rstan,
rstanarm).

• In this course, we will strongly rely on Stan and Bayesian methods.
However, we will also cover classical procedures.
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The hierarchical/multilevel
framework



Motivations i

• A common problem in applied statistics is modeling
individuals/objects of a population.

• Within this population, there may be some subpopulations sharing
some common features. Thus, we should statistically acknowledge for
this distinct groups’ membership.

• Multilevel/hierarchical models are extensions of regression models in
which data are structured in groups and coefficients can vary by
group. We start with simple grouped structures—such as people
within cities, students within schools, etc—where some information is
available on individuals and some information is at the group level.
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Motivations ii

If we assume that every individual is equivalent then we can pool the data,
but only at the expense of bias ⇔ Complete pooling.

yi ∼ N (α+βxi , σ
2)

36



Motivations iii

Conversely, modelling every individual separately avoids any bias, but then
the data becomes very sparse and inferences weak ⇔ No pooling.

yi ∼ N (αi+βxi , σ
2)
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Motivations iv

A compromise between complete pooling and no pooling that could
balance bias and variance would be ideal. Thus, hierarchical models allow
for this:

yij ∼ N (αj(i)+βxi , σ
2)
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Motivations v

• The common feature of such models is that the observed units yij are
indexed by the statistical unit i in group j (examples: students within
schools, players within teams). In general, these observable outcomes
are modeled conditionally on certain not observable parameters θj ,
viewed as drawn from a population distribution, which themselves are
given a probabilistic (prior) distribution in terms of further
parameters, known as hyperparameters.

• Simple nonhierarchical models are usually inappropriate for
hierarchical data: with few parameters, they generally cannot fit large
datasets accurately.

• Conversely, hierarchical models can have enough parameters to fit the
data well, while using a population distribution.
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The fundamental concept of exchangeability i

• In order to formalize this approach we need to consider the concept of
exchangeability, which turns out to be relevant in Bayesian statistics.

• Consider a set of experiments j = 1, . . . , J , in which experiment j has
data (vector) yj and parameter vector θj , with likelihood p(yj |θj). In
the linear model, we have θ = (α, β, σ2)

• If no information-other than the data y -is available to distinguish any
of the θj ’s from any of the others, and no ordering or grouping of the
parameters can be made, one must assume symmetry among the
parameters in their prior distribution.
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The fundamental concept of exchangeability ii

• This symmetry is represented probabilistically by exchangeability:
the parameters (θ1, . . . , θJ) are exchangeable in their joint prior
distribution if π(θ1, . . . , θJ) is invariant to permutations of the
indexes (1, . . . , J).

• In practice, ignorance implies exchangeabilitiy. Consider the analogy
to a roll of a dice: we should initially assign equal probabilities to all
six outcomes, but if we study the measurements of the dice and weigh
the dice carefully, we might eventually notice imperfections, which
might make us favour one outcome over the others and thus eliminate
the symmetry among the six outcomes.
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The fundamental concept of exchangeability iii

• The simplest form of an exchangeable distribution has each of the
parameters θj as an independent sample from a prior (or population)
distribution governed by some unknown parameter vector φ; thus,

π(θ|φ) =
J∏

j=1
π(θj |φ). (5)

• In general, φ is unknown, so our distribution for θ must average over
our uncertainty in φ:

π(θ) =
∫ ( J∏

j=1
π(θj |φ)

)
π(φ)dφ. (6)
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The fundamental concept of exchangeability iv

• In such a way, the joint distribution for y and θ becomes:

p(θ, y) =
n∏

i=1
p(yij |θj(i))π(θj(i)|φ)π(φ), (7)

with the nested index j(i) denoting the group membership of the i-th
unit, whereas the joint posterior distribution for θ, φ is:

π(θ, φ|y) ∝ π(φ, θ)p(y |θ). (8)

• Careful! φ is usually not known. Thus, the joint prior distribution
π(φ, θ) may be factorized as

π(φ, θ) = π(φ)π(θ|φ),

where π(φ) is the hyperprior distribution.
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Example: FdI voters. Role of exchangeability in inference i

FdI voters
Suppose you are an asian guy and let θ1, . . . , θ5 are the proportions of
voters for the party Fratelli d’Italia (FdI) in five Italian regions from the
last polls for the next European Elections. The regions, here in a random
order, are: Piemonte, Liguria, Umbria, Puglia, Lazio. What can you say
about the FdI vote proportion θ5, in the fifth region?

Since you have no information to distinguish any of the five regions from
the others, you must model them exchangeably. You might use a Beta
distribution for the five θj ’s, or some other distributions restricted in [0, 1].

I now randomly sample four regions from these five and tell you the polls’
proportions (in %): 23.2, 24.3, 18.4, 24.5. Remember, you are asian, you
do not know anything about FdI and the Italian politics...what can you say
about θ5?
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Example: FdI voters. Role of exchangeability in inference ii

Changing the indexing does not change the joint prior distribution. θj are
exchangeable, but they are not independent as we assume that the voters’
proportion θ5 is probably similar to the observed rates.

However, today you come in Italy for a two-weeks holiday and you start
reading Il Fatto Quotidiano, La Repubblica, Il Giornale, Libero.
Mmh...what a weird nation is Italy! You are getting information.

You reconsider the four voters’ proportions. You know that Giorgia Meloni,
the FdI leader and the actual Italian Prime Minister, is born in Roma,
Lazio, a region headed by Francesco Rocca, supported by the right-parties
as well. Maybe the missing proportion θ5 represents Lazio, where FdI is
very strong...You end up with a non-exchangeable prior distribution.

Take-home message: the more you know, the more informative (then, less
exchangeable) should be your prior distribution! However. exchangeability
is a very good starting point...
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Hierarchical models: formalization

Often observations (and/or parameters) are not fully exchangeable, but are
partially or conditionally exchangeable.

• If observations can be grouped, we may make hierarchical modelling,
where each group has its own subgroup, but the group properties are
unknown.

• If yi has additional information xi so that yi are not exchangeable but
(yi , xi) still are exchangeable, then we can make a joint model for
(yi , xi) or a conditional model for yi |xi .

In general, the usual way to model exchangeability with covariates is
through conditional independence:

π(θ1, . . . , θJ |x1, . . . , xJ) =
∫ [ J∏

j=1
π(θj |φ, xj)

]
π(φ|x)dφ
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Hierarchical models: objections to exchangeability

• In virtually any statistical application, it is natural to object to
exchangeability on the grounds that the units actually differ.

• That the units differ, implies that the θj ’s differ, but it might be
perfectly acceptable to consider them as if drawn from a common
distribution.

• As usual in regression, the valid concern is not about exchangeability,
but about encoding relevant knowledge as explanatory variables where
possible.

47



Hierarchical models: formalization

We may try to formalize a hierarchical model by acknowledging at least
two levels:

• individual level: observed yij , i = 1, . . . , n, j = 1, . . . J ;

yij ∼ p(y |θj) likelihood

• group level: unobserved θj , j = 1, . . . , J , depending on an hyperpa-
rameter φ.

θj ∼ π(θ|φ) group-level model

• heterogeneity level: only in the Bayesian framework, we could model
the unobserved φ

φ ∼ π(φ) hyperprior
48



Hierarchical linear regression



Extending linear models

• Hierarchical regression models are useful as soon as there are
predictors at different levels of variation. Some examples may be:

• In studying scholastic achievement, we may have students within
schools, with predictors both at the individual and at the group level.

• Data obtained by stratified or cluster sampling

• With predictors at multiple levels, the assumption of exchangeability
of units or subjects at the lowest level breaks down.

• We can think of a generalization of linear regression, where intercepts,
and possibly slopes, are allowed to vary by group.

• A batch of J coefficients is assigned a model, and this group-level
model is estimated simultaneously with the data-level regression of y .
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The general hierarchical linear model i

• n observations in J groups.

• Within each group, a likelihood p(yij |θj) fro the individual units is
defined.

• At the second stage, a group-level modeling distribution for π(θj |φ) is
required. Then, a varying-intercept, varying slope model takes the
general form:

yij ∼ N (αj(i) + xijβj(i), σ2y ),(
α

β

)
∼ N

((
µα

µβ

)
,

(
σ2α ρσασβ

ρσασβ σ2β

))
,

(9)

where xij is a given covariate/predictor.

• µα, µβ , σ
2
α, σ

2
β are hyperparameters for which we require a hyperprior

distribution if a Bayesian framework is assumed. 50



The general hierarchical linear model ii

• When more than two coefficients vary by group, we can write (9) in
vector-matrix form as:

yij ∼ N (Xjβj(i), σ
2
y ),

βj ∼ N (µβ ,Σβ),
(10)

where Σβ is a variance/covariance matrix for βj .

• In a Bayesian framework, Σβ needs to be assigned a prior distribution.
Canonical and conjugate choice: inverse-Wishart (see BDA, 15.4).
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Extending linear models: radon data

Radon data (G&H book, chapter 12)
Suppose to measure radon emissions in more than 80000 houses
throughout US. Our goal in analyzing these data is to estimate the
distribution of radon levels in each of the approximately 3000 counties,
so that homeowners could make decisions about measuring or
remediating the radon in their houses.

The data are structured hierarchically: houses within counties. As a
predictor, we have the floor on which th measurement is taken, either
basement or first floor; radon comes from underground and can enter
more easily when a house is built into the ground. We fit a model
where yi is the logarithm of the radon measurement in house i , and x
is the floor variable (0 if basement, 1 if first floor).
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Partial pooling with no predictors i

• Hierarchical (or multilevel) modelling is a compromise between two
extremes: complete pooling, in which the group indicators are not
included in the model, and no pooling, in which separate models are
fit within each group. For such a reason, we may refer to hierarchical
modellling as partial pooling.

• We start our journey into hierarchical models with the simplest model
ever for the radon data, a hierarchical linear model with no predictors:

yij ∼N (αj(i), σ
2), i = 1, . . . , n Individual level

αj ∼ N (µα, τ
2), j = 1, . . . , J Group level

(11)

where αj(i) = 1, . . . , J is the intercept for the i-th unit, belonging to
the j-th group.
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Partial pooling with no predictors ii

• Consider the goal of estimating the distribution of radon levels of the
houses within each of 85 counties in Minnesota. One estimate would
be the average that completely pools data across all counties. This
ignores variation among counties, however, so perhaps a better option
would be simply to use the average log radon level in each county.
Estimates ± standard errors are plotted against the number of
observations in each county in the next plot, left panel.

• A third option is hierarchical modelling: estimates ± standard errors
are plotted against the number of observations for each county.
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Partial pooling with no predictors iii
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Figure 3: Estimates ± standard errors for the average log radon levels in
Minnesota counties plotted versus the number of observations in the county.
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Partial pooling with no predictors iv

• Whereas complete pooling ignores variation between counties, the
no-pooling analysis overfits the data within each county.

• In no-pooling analysis, the counties with fewer measurements have
more variable estimates and larger higher standard errors. It
systematically causes us to think that certain counties are more
extreme, just because they have smaller sample sizes!

• The hierarchical estimate for a given county j can be approximated as
a weighted average:

α̂j =
nj
σ2 ȳj + 1

τ 2 ȳall
nj
σ2 + 1

τ 2

(12)

where nj is the number of observations in the j-th county, ȳj is the
mean of the observations in the county (unpooled estimate), and ȳall
is the mean over all counties (completely pooled estimate).
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Partial pooling with no predictors v

The weighted average (12) reflects the relative amount of information
available about the individual county, on one hand, and the average of all
counties, on the other:

• Averages from counties with smaller sample sizes carry less
information (nj small), and the weighting pulls the multilevel
estimates closer to the overall state average. If nj = 0, α̂j = ȳall, the
overall average.

• Averages from counties with larger sample sizes carry more
information. As nj →∞, α̂j = ȳj , the county average.

• When variation across counties is very small, the weighting pulls the
multilevel estimates to the overall mean: as τ 2 → 0, α̂j = ȳall.

• When variation across the counties is large, the weighting pulls the
multilevel estimates to the county average: as τ 2 →∞, α̂j = ȳj .
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Partial pooling with predictors i

• The same principle of finding a compromise between these two
extremes applies for more general models. We consider now the
individual-level predictor x , where xi = 1 for the first floor and xi = 0
for the basement.

• Thus, the second model we consider is a varying-intercept model:

yij ∼N (αj(i) + βxi , σ2), i = 1, . . . , n Individual level
αj ∼ N (µα, τ

2), j = 1, . . . , J Group level
(13)

• To appreciate hierarchical modelling, we start plotting some estimates
according to complete and no pooling.
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Partial pooling with predictors ii
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Figure 4: Complete pooling (dashed lines) and no pooling (solid lines) for 8
counties in Minnesota.
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Partial pooling with predictors iii

Both these analysis have problems.

• The complete pooling analysis ignores any variation in average radon
levels between counties.

• The no-pooling analysis has problems too, however, which we can see
in Lac Qui Parle County, since the estimate is based on only two
observations.

Let’s fit now model (13) via the function stan_lmer of the rstanarm R
package, and plot again the estimates.
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Partial pooling with predictors iv

mlm.radon.pred <- stan_lmer(y ~ x+ (1|county))
print(mlm.radon.pred)
stan_lmer
family: gaussian [identity]
formula: y ~ x + (1 | county)
observations: 919

------
Median MAD_SD

(Intercept) 1.5 0.1
x -0.7 0.1
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Partial pooling with predictors v

Error terms:
Groups Name Std.Dev.
county (Intercept) 0.33
Residual 0.76

Num. levels: county 85

We obtain the following posterior estimates for the two sources of
variation: τ̂ = 0.33, σ̂ = 0.76.
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Partial pooling with predictors vi
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Figure 5: Complete pooling (dashed lines), no pooling (solid lines) and partial
pooling (solid red lines).
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Partial pooling with predictors vii

• The estimated line from the hierarchical model (13) in each county
lies between the complete-pooling and no-pooling regression lines.
There is strong pooling (solid red line closer to complete-pooling line)
in counties with small sample sizes, and only weak pooling (solid red
line close to no-pooling line) in counties containing many
measurements.

• Classical regression models can be viewed as special cases of
multilevel models. The limits τ → 0 (complete pooling) and τ →∞
(no pooling) seem to be restrictive: given multilevel data, we can
estimate τ , which acts as hyperparameter of a prior distribution on α.

• Note that the function stan_lmer works in the same way as the
function lmer for classical inference. However, when the number of
groups is small, it can be useful to switch to Bayesian inference, to
better account for uncertainty in model fitting.
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Partial pooling with predictors viii

We can generalize equation (12) as follows:

α̂j ≈
nj
σ2

nj
σ2 + 1

τ 2
α

(ȳj − βx̄j) +
1

τ 2
α

nj
σ2 + 1

τ 2
α

µα, (14)

a weighted average of the no-pooling estimate for its group (ȳj − βx̄j) and
the prior mean µα.

• Multilevel modeling partially pools the group-level parameters αj

toward their mean level, µα.

• There is more pooling when the group-level standard deviation τ is
small.

• There is more smoothing for groups with fewer observations.
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Partial pooling with predictors ix

We may disaggregate the information averaging over the counties, the
fixed effects, and the county-level errors, the random effects, using the
functions fixef() and ranef() of the rstanarm package:

fixef(mlm.radon.pred)
(Intercept) x

1.4623684 -0.6919822

ranef(mlm.radon.pred)
$county

(Intercept)
1 -0.264735142
2 -0.534511687
. . .
85 -0.073852110

The est. line for the first county is: (1.46− 0.26)− 0.69x = 1.20− 0.69x .
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Sum-up about the Radon data example

• You find the data, some preliminary analysis shown in class, and
some R code elaboration in the official Moodle course page.

• Please, check the code and repeat the analysis
• Some points for further open discussion in class:

• Consider other modeling strategies, for instance change the
likelihood, or the priors if you use a Bayesian approach. Feel free
to use the function stan_glmer or the function glmer.

• Plot the estimates by using the bayesplot package.
• Divide the data in training and test and make some predictions.
• Check the goodness-of-fit of your model, propose some measures

for check.
• Fit the model on other states, maybe one or two: are the analysis

similar?
• Simulate some fake-data (both the response variables and the

explanatory variables) and repeat the multilevel analysis on these
fake-data.
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Eight schools example

Eight schools example (BDA book, 5.5)
We illustrate a normal model with a problem in which the hierarchical
Bayesian analysis gives conclusions that differ in important respects
from other methods.

A study was performed for the Educational Testing Service to analyze
the effects of special coaching programs on test scores in each of eight
high-schools.

The outcome variable in each study was a score, varying between 200
and 800, with mean about 500 and standard deviation about 100.
There is no prior reason to believe that any of the eight programs is
more effective than any other.

As we’ll see from a Bayesian perspective, the choice of the prior is of
substantial importance here.

68



Eight schools

• We denote with yij the result of the i-th test in the j-th school. We
assume the following model:

yij ∼ N (θj , σ2y )
θj ∼ N (µ, τ 2)

(15)

• Do some schools perform better/worse according to these coaching
effects?

• We will make three distinct analysis: separate analysis, pooled
analysis and hierarchical modelling.

• Actually, for each school we have the estimated coaching effects yj ,
y = (28, 8,−3, 7,−1, 1, 18, 12), and a measure of standard deviation
for them, s = (15, 10, 16, 11, 9, 11, 10, 18).
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Eight schools: separate analysis
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Eight schools: pooled analysis
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Eight schools: hierarchical model
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Eight schools: three models
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Eight schools: three models i

Comments:

• Separate analysis: the standard errors of these estimated effects make
very difficult to distinguish between any of the experiments...treating
each experiment separately and applying the simple normal analysis in
each yields 95% posterior intervals that all overlap substantially.

• Pooled-analysis: under the hypothesis that all experiments have the
same effect and produce independent estimates of this common effect,
we could treat y as eight normally distributed observations with
known variances. The pooled estimate is 7.7, and the posterior
variance is 16.6.

However, both the extreme analysis have difficulties.
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Eight schools: three models ii

Other comments:

• Consider school A. The effect in school A is estimated as 28.4 with a
standard error of 14.9 under the separate analysis, versus a pooled
estimate of 7.7 with a standard error of 4.1. Mmh...should I flip a
coin?

• We would like a compromise that combines information from all the
eight experiments without assuming all the θj to be equal. The
Bayesian analysis under the hierarchical model provides exactly that.

• As we may see from the third plot, the posterior distribution of
θ1, . . . , θ8 results to be closer to the complete analysis. Let’s see now
some other posterior analysis.
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Eight schools: posterior summaries for hierarchical model i
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Eight schools: posterior summaries for hierarchical model ii
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Eight schools: posterior summaries for hierarchical model iii
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Eight schools: posterior summaries for hierarchical model iv

• In the plot for the marginal posterior π(τ |y), τ = 0 is the most likely
value (no variation in θ, complete pooling).

• Conditional posterior means E(θj |τ, y) are displayed as functions of τ :
for most of the likely values of τ , the estimated effects are relatively
close together: as τ becomes larger (more variability among schools),
the estimates approach the separate analysis results.

• Conditional standard deviations sd(θj |τ, y) become larger as τ
increases.
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Eight schools: discussion

Comments:

• The general conclusion from these posterior summaries is that an
effect as large as 28.4 points (school A) in any school is unlikely. For
the likely values of τ , the estimates in all schools are substantially less
than 28 points.

• To sum up, the Bayesian analysis of this example not only allows
straightforward inferences about many parameters, but provides
posterior inferences that account for the partial pooling as well as the
uncertainty in the hyperparameters.

• We have still to investigate the role of the prior for the population
standard deviation τ .
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Eight schools: priors for τ 2 i

• As we have already seen in other situations, assigning a prior may
have a substantial effect on the final posterior inferences.

• In this example, τ 2 governs the extent of variation between the
schools: which are some suitable priors?

• We review three choices:

τ ∼ Uniform(0, 100) (16)
τ 2 ∼ InvGamma(0.01, 0.01) (17)
τ ∼ HalfCauchy(0, 2.5) (18)
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Eight schools: priors for τ 2 ii
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Figure 6: Marginal posterior (histograms) vs priors (solid red lines)
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Eight schools: priors for τ 2

• Uniform The data show support for a range of values below τ = 20,
with a slight tail after that, reflecting the possibility of larger values,
which are difficult to rule out given that the number of groups J is
only 8 (that is, not much more than the J = 3 required to ensure a
proper posterior density with finite mass in the right tail)

• Inverse gamma This prior distribution is sharply peaked near zero and
further distorts posterior inferences, with the problem arising because
the marginal likelihood for τ 2 remains high near zero. Moreover, the
posterior is quite sensitive to the choices of the hyperparameters (try!)

• Half Cauchy less likely to dominate the inferences

83



Eight schools: priors for τ 2 iii

Comments:

• The InvGamma prior is not at all noninformative for this problem
since the resulting posterior distribution remains highly sensitive to
the choice of the hyperparameters.

• The Uniform prior distribution seems fine for the 8-school analysis,
but problems arise if the number of groups J is much smaller, in which
case the data supply little information about the group-level variance,
and a noninformative prior distribution can lead to a posterior
distribution that is improper or is proper but unrealistically broad.
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Sum-up about the eight-schools example

• You find the data, some preliminary analysis shown in class, and
some R code elaboration in the official Moodle course page.

• Please, check the code and repeat the analysis.
• Some points for further open discussion in class:

• Fit the eight school example according to a frequentist approach
and compare the results with those from the Bayesian analysis.

• Repeat the analysis by changing the likelihood specification
and/or the prior specification.

• Compare the latter model with the Gaussian-Gaussian model in
terms of predictive information criteria (AIC, DIC, WAIC,
LOOIC...).
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Extending linear models: predicting US elections i

Forecasting US presidential elections (BDA book, sect. 15.2)
Political scientists in the US have been interested in the idea that
national elections are highly predictable, in the sense that one can
accurately forecast election results using information publicly available
several months before the election. We provide an example (see BDA,
sect. 15.2 for further details) using a hierarchical linear model estimated
from the elections through 1988 to forecast the 1992 elections.

The units of analysis are results in each state from each of the 11
presidential elections from 1948 to 1988. The response variable is the
Democratic party candidate’s share of the two party-vote for president in
that state and year. In total, we have 511 observations.
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Extending linear models: predicting US elections ii

• Let’s have a preliminary graphical look at the data. The Figure below
displays the democratic share of the two-party vote for president, for
each state, in 1984 (x -axis) and 1988 (y -axis) in the left plot, and the
same share for each state in 1972 (x -axis) and 1976 (y -axis) in the
right plot.
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Extending linear models: predicting US elections iii

• The left panel suggests that the presidential vote may be strongly
predictable from one election to the next: the points fall close to a
straight line! A linear model predicting y from x is reasonable and
relatively precise.

• However, the pattern is not always so strong, see the right panel
where the relation is not close to linear. Nevertheless, we can reveal
some patterns:

• the greatest outlying point, on the upper left, is Georgia (GA), the
home state of Jimmy Carter, the Democratic candidate in 1976;

• the other outlying points, all on the upper left side, are other states in
the South, Carter’s home region.
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Extending linear models: predicting US elections iv

• Then, it appears that it may be possible to create a good linear fit by
including other predictors in addition to the Democratic share of the
vote in the previous election, such as indicator variables for the
candidates’ home states and home regions. (For political analysis, the
US is typically divided into four regions: Northeast, South, Midwest,
and West, with each region containing ten or more states.)

• We start by fitting a preliminary, non-hierarchical regression model
trying to capture three levels of variations—at nation, regional and
state level—with the following explanatory variables:
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Extending linear models: predicting US elections v

• Nationwide: nation measures of popularity of the candidates,
popularity incumbent president, measures of condition of the economy
in the past two years.

• Regional: home-region indicators for the candidates and various
adjustments for past elections in which regional voting had been
important.

• Statewide: Democratic’s party share of the state’s vote in recent
presidential elections, measures of the state’s economy and political
ideology, and home-state indicators.

See the next Table for a complete overview about the explanatory
variables.

• We fit a classical regression including all the variables in the Table to
the data up to 1988.
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Extending linear models: predicting US elections vi
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Extending linear models: predicting US elections vii

• The ordinary linear regression model ignores the year-by-year structure
of the data, treating them as 511 independent observations, rather
than 11 sets of roughly 50 related observations each. The feature of
these data that such a model misses is that partisan support across
the states does not vary independently: in other words, because of
the known grouping into years, the assumption of exchangeability
among the 511 observations does not make sense, even after
controlling for the explanatory variables.

• At this stage, one would need to criticize the model by assessing how
and whether this fits the observed data. The crucial step of model
checking (or also goodness-of-fit) will be addressed later on.

• An important use of the model is to forecast the nationwide outcome
of the presidential election.

92



Extending linear models: predicting US elections viii

• Then, to check whether correlation of the observations from the same
election has a substantial effect on nationwide forecasts, we could try
to make some predictions to assess the model effectiveness: for
instance, we could simulate a test variable that reflects the average
precision of the model in predicting the national result, i.e. the square
root of the average of the squared nationwide realized residuals for
the 11 general elections in the dataset.

• The next Figure displays the values of this test variable (obtained
from the posterior distribution of β) against the hypothetical
replicated values under the model: the practical consequence of the
failure of the model is that its forecasts of national election results are
falsely precise.
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Extending linear models: predicting US elections ix
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Extending linear models: predicting US elections x

• We can improve the regression by:

• adding an additional predictor for each year to serve as an indicator
for nationwide partisan shifts unaccounted for by the other national
variables; this adds 11 new components of β corresponding to the 11
election years in the data;

• adding 44 region × year indicator variables to cover all regions in the
elections and capture regional variability; because the South tends to
act as a special region of the US politically, we give the 11 Southern
regional variables their own common variance, and treat the remaining
33 regional variables as exchangeable with their own variance.
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Extending linear models: predicting US elections xi

In total, we add 55 new β parameters and three new variance
components to the model. We can then write the varying-coefficients
model for data in state s, region r(s), and year t as:

yst ∼ N (Xstβ + γr(s)t + δt , σ
2
y )

γrt ∼

{
N (0, τ 2γ1) for r = 1, 2, 3 (non-South)
N (0, τ 2γ2) for r = 4 (South)

δt ∼ N (0, τ 2γ ),

(19)

where β, σy , τγ1, τγ2, τγ are hyperparameters.

• We repeat the same simulations done for the non-hierarchical model
(see next Figure) and we realize that these hierarchical simulations fit
the observed data much better.
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Extending linear models: predicting US elections xii
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Extending linear models: predicting US elections xiii

• In the next and final Figure we report the state-by-state predictions
applied to data from 1992, with a forecasted 85% probability that the
Democrats would win the national elecoral vote total. The forecasts
for individual states have predictive standard errors between 5% and
6%.
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Extending linear models: predicting US elections xiv

• To sum up, there are three main advantages of the hierarchical model
here:

• It allows the modeling of correlation within election years and regions.

• Including the year and region × year terms without a hierarchical
model, or not including these terms at all, corresponds to special cases
of the hierarchical model with τ =∞ (no-pooling) or 0 (complete
pooling), respectively. The more general model allows for a reasonable
compromise between these extremes.

• Predictions will have additional components of variability of regions
and year and should therefore be more reliable.
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Sum-up about the forecasting US election example

• You find the data in the official Moodle course page: the file
name is forecasting_us_elections.txt.

• For further open discussion in class:
• Load the data.
• Reproduce the Figure 15.1 of BDA, Chapter 15 (see the slides).
• Try to fit the simple non-hierarchical regression model and the

multilevel model in (19).
• Try to reproduce the main results (see Chapter 15 from BDA).
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Hierarchical logistic regression



Multilevel modeling for GLMs

• Multilevel/hierarchical modeling is applied to logistic and probit
regression and other generalized linear models (GLMs) in the same
way as with linear regression: its coefficients are grouped into batches
and a probability distribution is assigned to each batch.

• Also the computational tools to fit these models are basically the
same as those used for multilevel linear regression.
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1988 US polls i

1988 US polls (G&H book, chapter 14)
Dozens of national opinion polls are conducted by media organizations
before every election, and it is desirable to estimate opinions at the
levels of individual states as well as for the entire country. These polls
are generally based on national random-digit dialing with corrections for
non-response based on demographic factors such as sex, ethnicity, age,
and education. We choose a single outcome—the probability that a
respondent prefers the Republican candidate Bush against the democrat
Dukakis for president—as estimated by a logistic regression model from
a set of seven CBS News polls conducted during the week before the
1988 presidential election.
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1988 US polls ii

• The aim is to fit a regression model for the individual response y given
demographics and state. An average response θ` for each
cross-classification ` of demographics and state is estimated. In this dataset
we have sex (male or female), ethnicity (African American or other), age,
education (4 categories each), and 51 states, for ` = 1, . . . , L=3264
categories.

• From the US census, we look up the adult population N` for each category
`. The estimated population average of the response y in any state j is
then: θj =

∑
`∈j N`θl/

∑
`∈j N`, with each summation over the 64

demographic categories ` in the state. This weighting by population totals
is called poststratification.

• We need many categories because (a) we are interested in estimates for
individual states, and (b) non-response adjustments force us to include the
demographics. As a result, any given survey will have few or no data in
many categories. This is not a problem, however, if a multilevel model is
fitted. Each factor or set of interactions in the model is automatically given
a variance component.
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1988 US polls. Varying-intercept model i

• We fit a simple model version by including two individual predictors,
sex (female) and ethnicity (black):

Pr(yi = 1) = logit−1(αj(i) + βfemalefemalei + βblackblacki),
αj ∼ N (µα, τ

2
state), j = 1, . . . , 51

(20)

where j(i) is the state index, and τα captures the between-state
variability.

• We fit the model according to (a) a maximum likelihood approach
through the function glmer of the lme4 package, and (b) a Bayesian
approach by using the R package rstanarm (function stan_glmer),
relying on Hamiltonian Monte Carlo (HMC) sampling from the
posterior distribution.
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1988 US polls. Varying-intercept model ii

# frequentist fit

library(lme4)
M1 <- glmer (y ~ black + female + (1 | state),

family=binomial(link="logit"))
display(M1)

glmer(formula = y ~ black + female + (1 | state),
family = binomial(link = "logit"))

coef.est coef.se
(Intercept) 0.45 0.10
black -1.74 0.21
female -0.10 0.10

Error terms:
Groups Name Std.Dev.
state (Intercept) 0.41
Residual 1.00

---
number of obs: 2015, groups: state, 49
AIC = 2666.7, DIC = 2531.5
deviance = 2595.1
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1988 US polls. Varying-intercept model iii

# Bayesian fit

library(rstanarm)
M1.rstanarm <- stan_glmer (y ~ black + female + (1 | state),

family=binomial(link="logit"))
print(M1.rstanarm)

stan_glmer
family: binomial [logit]
formula: y ~ black + female + (1 | state)
observations: 2015

------
Median MAD_SD

(Intercept) 0.4 0.1
black -1.7 0.2
female -0.1 0.1

Error terms:
Groups Name Std.Dev.
state (Intercept) 0.45

Num. levels: state 49

• The top part display gives the estimate of the average intercept (µα), the
coefficients for black and female, and their standard errors.

• The between-state variation is estimated at τ̂state = 0.45. There is no residual
standard deviation (which instead is given in the linear regression) because the
logistic regression model does not have such a parameter.
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1988 US polls. Varying-intercept model iv

• The syntax (1| state) allows to include varying intercepts at the
state level.

• The top part display gives the estimate of the average intercept (µα),
the coefficients for black and female, and their standard errors.

• The between-state variation is estimated at τ̂state = 0.41 under the
frequentist approach, and 0.45 under the Bayesian approach. There is
no residual standard deviation (which instead is given in the linear
regression) because the logistic regression model does not have such a
parameter. Finally, the model has an overdispersion of 1.0 (see
residual in the first fit), because logistic regression with binary data
cannot be overdispersed. The summary for the frequentist fit also
reports the AIC, the DIC, and the model’s deviance.

• The two procedures yield very similar results.
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1988 US polls. Varying-intercept model v

From the Bayesan fit: 50% and 95% credible intervals for all the parameters.
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1988 US polls. Varying-intercept model vi

From the Bayesian fit: posterior marginal densities along with 50% intervals for the
‘fixed-effects’ βblack and βfemale.

female

black

−2 −1 0
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1988 US polls. Varying-intercept model vii

Parameters’ interpretation (for the Bayesian fit):

• The coefficient βblack reports a posterior estimate of -1.7: black is a
categorical variable (coded as 1 for black people, 0 otherwise). A
difference of 1 unit in this predictor has a linear effect of -1.7 on the
logit probability of supporting Bush. In terms of odds ratios, being
black gives an odds ratio of exp(−1.7) ≈ 0.18, causing a decrease in
the odds of approximately 0.82 (82%).

• The coefficient βfemale is estimated at -0.1. female is a categorical
predictor (1 for women, 0 otherwise). Being a woman has an effect of
-0.1 on the logit probability of supporting Bush. OR interpretation:
exp(−0.1) ≈ 0.9, decrease in the odds of approx. 10%.

Be aware: understanding and interpreting model estimates is the first step!
Ask, ask, ask yourself whether your estimates make sense...
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1988 US polls. Varying-intercept model viii

Many issues arise when you fit a model:

• Interpret your results. Do they make sense?

• Produce some plots for your estimates.

• Check your model. Is your model plausible, according to the data that
you have? To be continued...

• Augment your model, if necessary: predictors, random effects,etc.

• Compare your model with other competing models. Is your model
better than the others? Use AIC, DICC, LOOIC...To be continued...

• Use your model to make predictions.

Being a modeller represents a compromise between a mathematician and
an artist. You can tremble between these two extremes.
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1988 US polls. Varying-intercept model ix

‘Random effects’ α for the states: post. means ± s.e.
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1988 US polls. Varying-intercept and slope model i

• We could ask ourself: is also the slope for the female varying in some
states? Maybe, the women preference for Bush in Alabama is rather
different than the same support in New Jersey...

• We propose a second model, a varying-intercept and slope model:

Pr(yi = 1) = logit−1(αj(i) + βfemale
j(i) femalei + βblackblacki), i = 1, . . . , n(

αj

βfemale
j

)
∼N

((
µα

µβ

)
,

(
τ 2α ρτατβ

ρτατβ τ 2β

))
, j = 1, . . . , 51,

(21)

where τ 2α and τ 2β are the variances for the intercepts and the slopes,
repsectively, and ρ is the correlation coefficients between α and β.
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1988 US polls. Varying-intercept and slope model ii

# Bayesian fit

M2.rstanarm <- stan_glmer (y ~ black + female + (1+ female | state),
family=binomial(link="logit"))

print(M2.rstanarm)
stan_glmer
family: binomial [logit]
formula: y ~ black + female + (1 + female | state)
observations: 2015

------
Median MAD_SD

(Intercept) 0.5 0.1
black -1.7 0.2
female -0.1 0.1

Error terms:
Groups Name Std.Dev. Corr
state (Intercept) 0.47

female 0.23 -0.40
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1988 US polls. Varying-intercept and slope model iii

Parameters’ interpretation:

• τ̂α = 0.47, the variation between the βfemale, τ̂β , is 0.23, whereas
ρ̂ = −0.4. Thus, there is negative correlation between the states and
the female effects.

• Other parameters are almost unchanged with respect to the
varying-intercept model.
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1988 US polls. Varying-intercept and slope model iv
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Model comparison i

• We should start assessing the goodness of fit of our models. In
Bayesian inference, the main tools to compare models are the
penalized likelihood criteria: AIC, DIC, BIC,...

• We consider here also an extension of AIC based on cross validation,
LOOIC, available via the loo package.

• The meaning is the same: the lower is the value of one among these
criteria, and the better is the model fit.
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Model comparison ii

# Bayesian fits
lpd1 <- log_lik(M1.rstanarm)
loo1 <- loo(lpd1)
lpd2 <- log_lik(M2.rstanarm)
loo2 <- loo(lpd2)
c(loo1$looic, loo2$looic)

[1] 2649.373 2651.668

# frequentist fits
d1 <- display(M1)
d2 <- diaplay(M2)
c(d1$AIC, d2$AIC)

[1] 2666.66 2668.721

• The varying-intercept and slope model fit is not better than the fit of the varying
intercept model, in both the fitting procedures. The simpler the better (Occam
rasor)!

• We could try to extend our model and, eventually, increase the goodness of fit (to
be continued).
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A fuller model including non-nested factors

• Finally, we expand the previous models to use all the demographic predictors in
the CBS weighting, including the interactions sex × ethnicity and age ×
education. At the state level, we include indicators for the 5 regions (Northeast,
Midwest, South, West, and District of Columbia, considered as a separate region
because of its distinctive voting patterns) along with v.prev, a measure of the
previous Republican vote in the state. Then, a multilevel logistic regression
including the four categorical predictors (sex, ethnicity, age, and education), along
with the 51 states memberships and the 5 regions is provided:

Pr(yi = 1) = logit−1(β0 + βfemalefemalei + βblackblacki+

+ βfemale.blackfemalei · blacki + αage
k(i) + αedu

l(i) + αage.edu
k(i),l(i) + αstate

j(i) ),

αstate
j ∼ N (αregion

m(j) + βv.prevv.prevj , σ2state), j = 1, . . . , 51

αage
k ∼ N (0, σ2age), k = 1, . . . , 4

αedu
l ∼ N (0, σ2edu), l = 1, . . . , 4

αage.edu
k,l ∼ N (0, σ2age.edu), k = 1, . . . , 4, ł = 1, . . . , 4

αregion
m ∼ N (0, σ2region), m = 1, . . . , 5.

(22)
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Sum-up about the US 1988 election example

• You find the data and the R code with some preliminary analysis and some
model fits in the official Moodle course page: be careful, you need more than
one file to load and process the data. For further details, check the G&H book,
chapter 14. Check the code and repeat the analysis.

• For further open discussion in class:
• Fit a complete-pooling and a no-pooling model and compare the estimates

with one or more multilevel models.
• Try to reproduce, or at least try to make a similar plot, the Figure 14.2

from the book G&H.
• Fit the model (22) following both a Bayesian and a frequentist approach,

and produce the estimates, also from a graphical perspective (hint: use the
bayesplot package).

• Divide the data in training and test sets and use the training data to
predict the test data (hint: use measures of predictive accuracy such as
accuracy, sensitivity and specificity).

• Following (20), (21), and (22), write (not fit) a model where you want to
further include the individual categorical predictor income, defined on a
1–5 scale (1 is poor, 5 is wealthy), and the regional continuous predictor
reg_income, expressing an average of the citizens’ income in the 5 regions
in the past two years. 120
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Hierarchical Poisson regression



Hierarchical Poisson regression

• As with linear and logistic regression, generalized linear models can be
fit to multilevel structures by including coefficients for group
indicators and then adding group-level models.

• In modeling discrete data, such as counts, we need to take into
account overdispersion and measures of exposures.
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Hierarchical Poisson regression

• Data that are fit by a GLM are overdispersed if the data-level variance
is higher than would be predicted by the model. Binomial and
Poisson models are subject to overdispersion because they do not
have variance parameters to capture the variance in the data.

• However, overdispersion can be directly modeled using a data-level
variance component in a multilevel model. Consider a measure of
exposure ui , such that log(ui) is the offset, then:

Poisson regression : yi ∼ Poisson(uieXiβ),
overdispersed Poisson regression : yi ∼ Poisson(uieXiβ+εi )

εi ∼ N (0, σ2ε ).
(23)

The new parameter σε measures the amount of overdispersion, with
σε = 0 corresponding to the classical Poisson regression.
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Police stops in New York

Police stops data (G&H book, chapter 15)
There have been complaints in New York City and elsewhere that the
police harass members of ethnic minority groups. The police has a
policy of keeping records on every "stop and frisk", and this information
was collated for all stops over a 15-month period in 1998-1999. One
could analyse these data to see to what extent different ethnic groups
were stopped by the police. Focus is on blacks (African Americans),
hispanics (Latinos), and whites (European Americans). For each ethnic
group e = 1, 2, 3 and precint of the New York City p = 1, . . . , 75, we
model the number of stops using an overdispersed Poisson regression.
The exposure uep is the number of arrests by people of ethnic group e in
precint p in the previous year as recorded by the Department of Criminal
Justices Services (the exposure is multiplied by 15/12 to scale to a
15-month period), so that log((15/12)uep) is an offset.
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Police stops: an overdispersed Poisson regression i

• For each ethnic group e and precint p:

yep ∼ Poisson
(15
12

uepeµ+αe+βp+εep
)

αe ∼ N (0, σ2α)

βp ∼ N (0, σ2β)

εep ∼ N (0, σ2ε),

(24)

where the coefficients αe control the ethnic group, the βp ’s adjust for variation
among precints, and the εep ’s allow for overdispersion.

• Identifiability constraints: when comparing ethnic groups, we could look at the
ethnicity coefficients relative to their mean:

αadj
e = αe − ᾱ, e = 1, 2, 3.

• Having done this, we also adjust the intercept of the model accordingly:
µadj = µ+ ᾱ. Now µadj + αadj

e = µ+ αe for each ethnic group e, and so we can
use µadj and αadj in place of µ and α without changing the model for the data.
See next Figures for the estimates.
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Police stops: an overdispersed Poisson regression ii
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Police stops: an overdispersed Poisson regression iii
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Police stops: an overdispersed Poisson regression iv

• The previous Figure shows that, for the most frequent categories of stops
(violent crimes and weapons offenses) blacks and hispanics were much more
likely to be stopped than whites, in all categories of precints. For violent
crimes, blacks and hispanics were stopped 2.5 times and 1.9 times as often
as whites, respectively, and for weapons crimes, blacks and hispanics were
stopped 1.8 times and 1.6 times as often as whites.

• We could extend the model (24), for instance by changing the batching of
precints, or altering the role played by the previous year’s arrests.

• Alternatively, one could also include some precint-level predictors:

yep ∼ Poisson
(15
12uepe

µ+αe+ζ1z1p+ζ2z2p+βp+εep
)
,

where z1p and z2p represent the proportion of blacks and hispanics in
precint p.

• For further modeling details, see the G&H Book, Chapter 15, and the paper
‘An Analysis of the New York City Police Department’s “Stop-and-Frisk”
Policy in the Context of Claims of Racial Bias’, by Gelman, Fagan and Kiss.
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Sum-up about the NYC police stops data example

• You find the data in the official Moodle course page: the file
name is nyc_arrests.txt.

• For further open discussion in class:
• Load the data.
• Fit the model (24) from a Bayesian and a frequentist point of

view, provide the estimates (also from a graphical perspective)
and comment the results.

• Extend the model: write a modeling extension (fit is not required)
where a further continuous covariate income_ethnicity,
expressing an average income for the ethnicity e in New-York City,
is available. (Hint: there is not a unique way to incorporate it).
Finally, discuss the eventual sign of the estimated coefficient from
a "socio-political" perspective.
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Discrete data regression: cockroaches data i

Cockroaches data
A company that owns many residential buildings throughout New York
City tells that they are concerned about the number of cockroach
complaints that they receive from their 10 buildings in 12 months.
They provide you some data collected in an entire year for each of the
buildings and ask you to build a model for predicting the number of
complaints over the next months and to understand which and how
many of the available covariates could explain the number of
complaints.
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Discrete data regression: cockroaches data ii

We have access to the following fields (pest_data.RDS):

• complaints: Number of complaints per building in the current
month

• traps: The number of traps used per month per building

• live_in_super: An indicator for whether the building has a live-in
super

• age_of_building: The age of the building

• total_sq_foot: The total square footage of the building

• average_tenant_age: The average age of the tenants per building

• monthly_average_rent: The average monthly rent per building

• floors: The number of floors per building
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Discrete data regression: cockroaches data iii

Let’s make some plots of the raw data, such as the distribution of the
complaints:
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Poisson regression: cockroaches data i

• A common way of modeling this sort of skewed, single bounded count
data is as a Poisson random variable. For simplicity, we will start
assuming:

• ungrouped data, with no building distinction

• no time-trend structures

• We use the number bait stations placed in the building, denoted
below as traps, as explanatory variable. This model assumes that the
mean and variance of the outcome variable complaints (number of
complaints) is the same. For the i-th complaint, i = 1, . . . , n, we have

complaintsi ∼ Poisson(λi)
λi = exp (ηi)
ηi = α + β trapsi

(25)
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Poisson regression: cockroaches data ii

• We fit the model in Stan and we obtain the following posterior
estimates (R output):

mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
alpha 2.58 0.15 2.28 2.48 2.58 2.69 2.88 979 1
beta -0.19 0.02 -0.24 -0.21 -0.19 -0.18 -0.15 997 1

• We could now check the model in terms of some graphical measures: for
instance, in a Bayesian framework we may want to assess whether some
replicated data under the model are close to the observed ones (this is the
so-called posterior predictive checking approach).
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Poisson regression: cockroaches data iii

We check the model via some simulated data:
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Poisson regression: cockroaches data iv

We check the proportion of zeros in the data and in the replications:
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Poisson regression: cockroaches data v

Comments:

• We immediately realize that replicated distributions are far from the
observed data distribution, and that the proportion of zero assumed
by the Poisson model is quite underestimated...It is clear that the
model does not capture this feature of the data well at all.

• Maybe the Poisson distribution distribution is not suited in this
case...let’s still explore the standardised residuals of the observed vs
predicted number of complaints.

• We can also view how the predicted number of complaints varies with
the number of traps.
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Poisson regression: cockroaches data vi

Standardized residuals:
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Poisson regression: cockroaches data vii

Predictive intervals:
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We can see that the model does not seem to fully capture the data. 138



Hierarchical NB regression i

• A non-hierarchical model is not suited here...and we could swithc to the
negative binomial distribution to capture overdispersion!

• We can extend the Poisson model (25) encoding hierarchical structure for
the building and considering an offset term. Thus, for each complaint i we
have:

complaintsib ∼ NegBin(λib, φ)

λib = exp (ηib)

ηib = αb(i) + β trapsi + βsuper superi + log_sq_footi
αb ∼ N (µ, τ 2α),

φ ∼ N+(0, 1)

(26)

where b(i) is the nested index for the building where the i-th complaint is
registered.

• Using a hierarchical regression the model adequacy improves (see next
slides).
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Hierarchical NB regression ii
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Hierarchical NB regression iii
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Hierarchical NB regression iv

Better!
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Sum-up about the cockroaches data example

• You find the data and the relevant R code in the official Moodle
course page.

• For further open discussion in class:
• Check the code and repeat the analysis. Careful: all the analysis

have been done through the canonical use of the Stan software,
but feel free to use the functions stan_glmer and/or glmer.

• Extend the model: write a modeling extension (fit is not required)
where also the time structure is included in the model.
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https://moodle2.units.it/course/view.php?id=11900
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Further reading

To properly capture the contents and the details about
hierarchical/multilevel modeling, we strongly suggest the following further
reading:

• Chapter 15 and 16 from Bayesian Data Analysis, by A. Gelman et al.

• Chapter 11, 12, 13, 14, 15 from Data Analysis using Regression and
Multilevel/Hierarchical models, by A. Gelman and J. Hill.
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