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Motivations and theory



Motivations

• The purpose of generalized linear models is to extend the idea of
linear modelling to cases for which the linear relationship between X
and E(y |X ) or the normal distribution for each y is not appropriate,
even after any transformation of the data.

• Example: when y is discrete, for instance the number of phone calls
received by a person in one hour. The mean of y may be linearly
related to X , but the variation term cannot be described by the
normal distribution.

• We review generalized linear models from a Bayesian perspective,
although this class of models may be usefully applied from a classical
perspective too.
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Motivations

Given a n × p predictor matrix X and a parameters vector
β = (β1, . . . , βp)T , a generalized linear model is specified in three stages:

1. The linear predictor, η = Xβ.

2. The link function g(·), twice differentiable, that relates the linear
predictor to the mean of the outcome variable, µ:

g(µ) = η → g−1(η) = µ.

3. The random component specifying the distribution of the outcome
variable y with mean E(y |X ) = µ = g−1(Xβ). The distribution can
also depend on a dispersion parameter φ.
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Dispersion exponential family of distributions

• The third stage is the most important in terms of statistical
interpretation. In the linear regression we assume that yi ∼ N (µ, σ2),
where µ = η = Xβ. We say that yi belongs to the dispersion
exponential family of probability distributions:

yi ∼ EF(b(θ), φ/ω) (1)

if the single yi has probability density function (pdf):

p(y |θ, ω) = exp
(
ω

φ
(yθ − b(θ)) + c(y , φ)

)
, (2)

where θ and φ are unknown parameters, ω is a known scalar, and
b(·), c(·) are known functions that characterize the particular
distribution within the class.
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Dispersion exponential family of distributions

• The distributions that belong to the EF family of distributions satisfy
the following relations:

E(y) = b′(θ)
Var(y) = φb′′(θ)/ω,

(3)

where V (µ) ≡ b′′(θ) is known as variance function. We may rewrite
the first equation as:

E(y) ≡ µ ≡ g−1(Xβ) = b′(θ) (4)

• It is easy to prove that the normal, the Poisson and the binomial
distribution belong to the EF family.
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Dispersion exponential family of distributions: Poisson

If yi ∼ Pois(λi ), i = 1, . . . , n, then:

p(yi |λi ) = e−λi
λyi

i
yi !

= exp (yi log λi − λi − log(yi !)) ,

where θi = log(λi ), b(θi ) = λi = eθi , c(yi , φ) = log(yi !), φ = ω = 1.
Thus:

E(yi ) =b′(θi ) = deθi

dθi
= eθi = λi

Var(yi ) =φb′′(θi )/ω = d2eθi

d(θi )2 = eθi = λi
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Dispersion exponential family of distributions: Normal

If yi ∼ N (µi , σ
2), i = 1, . . . , n, then:

p(yi |µi , σ
2) = (2πσ)−1/2e−

1
2σ2 (yi−µi )2

= (2πσ)−1/2 exp
(
− 1
2σ2 (y2

i − 2yiµi + µ2
i )
)

= exp
(

1
2σ2 (2yiµi − µ2

i )− 1
2 log(2πσ)− 1

2σ2 y2
i

)
where θi = µi , b(θi ) = µ2

i /2 = θ2
i , c(yi , φ) = 1

2 log(2πσ)− 1
2σ2 y2

i , φ = σ2,
ω = 1. Thus:

E(yi ) =b′(θi ) = dθ2
i /2

dθi
= 2θi/2 = µi

Var(yi ) =σ2b′′(θi )/ω = d2θi
2/2

d(θi )2 = σ2
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Canonical link function

• The link function g(·) has not particular restrictions, usually
g : (a, b)→ (−∞,+∞), with a and b the lower and the upper bound
of the support of µi , respectively. However, there is an easy choice for
g , called canonical link function, such that

g(µi ) ≡ ηi = θi . (5)

• In the Poisson case:

g(µi ) = θi ⇔ g(b′(θi )) = θi ⇔ g(eθi ) = θi ⇔ g(·) = log(·),

the link function is the logarithm. In the normal case is the identity
function, in the binomial is the logit function. (See next table for a
summary of three distributions belonging to the EF family. Careful!
The list is not exaustive...)
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Canonical link function

Notation Bin(n, p) Pois(λ) N (µ, σ2)
Range of y N N R
Dispersion parameter: φ 1 1 σ2

Cumulant function: b(θ) nlog(1 + eθ) eθ θ2

2
c(y ;φ) log

(n
y
)

−logy ! − 1
2 ( y2

σ2 + log 2πσ2)
µ(θ) n eθ

1+eθ eθ θ

Variance function: V (µ) nµ(1− µ) µ 1
Canonical link function: logit logarithm identity

Table 1: Characteristics of some common univariate distributions in the
dispersion exponential family.
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Overdispersion, offsets

GLM represent a wide class of models allowing for modelling:

• overdispersion, the possibility of variation beyond that of the assumed
sampling distribution.

Example The proportion of democrat voters in North Carolina is assumed
to be binomial with some explanatory variables (such as voters’ age, sex,
and so forth). The data might indicate more variation than expected under
the binomial model, Var(y) > np(1− p).

• offsets, the possibility to include in the linear predictor η a known
coefficient, able to take care of different exposures.

Example The number of car accidents is assumed to follow a Poisson
distribution with rate λ with some explanatory variables. The rate of
occurrence is λ per units of time, so that with exposure T the expected
number of accidents is λT , where T represents the vector of exposure
times for each unit.
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Bayesian inference and GLMs

• We consider GLMs with noninformative and informative prior
distributions on regression parameters β, similarly as what we have
done for linear models. A prior distribution can be placed on the
dispersion parameter ψ as well, and any prior information about β
can be described conditional on φ, that is p(β, φ) = p(β|φ)p(φ).

• As in LMs, the classical analysis of GLMs is obtained if a
noninformative or flat prior distribution is assumed for β: the
posterior mode corresponding to a noninformative uniform prior
density is the maximum likelihood estimate for β.

• Posterior inference in GLMs typically will require the approximation
and sampling tools like Markov Chain Monte Carlo (MCMC). We will
generally use Stan (rstan and rstanarm packages) to sample from
their posterior distributions.
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Logistic regression



Logistic regression

• Logistic regression is the standard way to model binary outcomes
(that is, data yi that take on the values 0 or 1).

• We model the probability that the single yi = 1:

pi ≡ Pr(yi = 1) = logit−1(xiβ), (6)

where ηi = xiβ is the linear predictor, and the logit function is
expressed as:

logit(pi ) ≡ log pi
1− pi

= xiβ (7)

• It is easy to check that logit−1(ηi ) = eηi

1+eηi .
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Logistic regression - Interpreting the coefficients

Coefficients in logistic regression can be challenging to interpret because of
the nonlinearity just noted.

To understand better, let’s fit a simple model about some political US
polls in 1992.

1992 polls
Conservative parties generally receive more support among voters with
higher incomes. We use this pattern from the National Election Study
in 1992. For each respondent i in this poll, we label yi = 1 if he/she
preferred Bush (the Republican candidate), or 0 if he/she preferred Bill
Clinton (Democrate candidate). We predict preferences given the
respondent’s income level (our x), which is characterized on a
five-points scale. n = 1179 respondents.
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Logistic regression - Interpreting the coefficients

Let’s fit the model in the classical way:

glm(formula = vote ~ income,
family = binomial(link = "logit"))

coef.est coef.se
(Intercept) -1.40 0.19
income 0.33 0.06
---

n = 1179, k = 2

Thus, the fitted model is Pr(yi = 1) = logit−1(−1.40 + 0.33incomei ).
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Logistic regression - Interpreting the coefficients
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Logistic regression - Interpreting the coefficients

• As with linear regression, the intercept can only be interpreted
assuming zero values for the other predictors. When zero is not
interesting or not even in the model (as in this case), we may
evaluate Pr(Bush support) at the mean of respondents’ incomes, x̄ ,
logit−1(−1.40 + 0.33x̄) = 0.4.

• A difference of 1 in outcome (on this 1-5 scale) corresponds to a
positive difference of 0.33 in the logit probability of supporting Bush.

• logit−1(−1.40 + 0.33× 3)− logit−1(−1.40 + 0.33× 2) = 0.08. A
difference of 1 in income category corresponds to a positive difference
of 8% in the probability of supporting Bush.

• consider the derivative of the logistic curve at x̄ = 3.1, this is:
βeη̄/(1 + eη̄)2. Thus, the change in Pr(yi = 1) per small unit of
change in x at the mean value is 0.33e−0.39/(1 + e−0.39)2 = 0.13.

• divide by 4 rule: β/4 = βe0/(1 + e0)2 = 0.08. As a rule of
convenience, we can divide corefficients by 4 to get an upper bound of
the predictive difference corrpesponding to a change of 1 in x . 17



Logistic regression - Interpreting the coefficients

• There is another popular way to interpret the logistic regression
coefficients, in terms of odds ratios.

• If two outcomes have the probabilities (p, 1− p), p/(1− p) is called
the odds. An odds of 1 is equivalent to a probability of 0.5, that is,
equally likely outcomes.

• Taking the logarithm of the odds ratio yields the log odds ratios, in
our previous example with one predictor:

log pi
1− pi

= α + βincomei (8)

Adding 1 to x in the equation above has the effect of adding β to
both sides of the equation. A units difference in x corresponds to a
multiplicative change of e0.33 = 1.39 in the odds.

18



Logistic regression: Stan model (1992polls.stan)

data{
int N; // number of voters
int vote[N]; // vote: 0 (Clinton), 1 (Bush)
int income[N]; // 1-5 income scale

}
parameters{

real alpha; // intercept
real beta; // income coefficient

}
model{

for (n in 1:N){
vote[n] ~ bernoulli_logit(alpha+income[n]*beta);

// likelihood
}
alpha ~ normal(0, 10); // intercept weakly-inf prior
beta ~ normal(0, 2.5); // income weakly-inf prior

}

19



Logistic regression: Bayesian estimation

• Let’s fit now the same model under the Bayesian approach, first of all
with noninformative priors, using the stan_glm function in the
rstanarm package, α ∼ N (0, 1002), β ∼ N (0, 1002):

fit.2 <- stan_glm (vote ~ income,
family=binomial(link="logit"),
prior=normal(0, 100),
prior_intercept=normal(0,100))

print(fit.2)
Median MAD_SD

(Intercept) -1.4 0.2
income 0.3 0.1

• The estimates are the same as those obtained from the glm function.
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Logistic regression: Bayesian estimation

• We use now some weakly informative priors, α ∼ N (0, 102),
β ∼ N (0, 2.52):

fit.3 <- stan_glm (vote ~ income,
family=binomial(link="logit"),
prior=normal(0, 2.5),
prior_intercept=normal(0,10))

print(fit.3)
Median MAD_SD

(Intercept) -1.4 0.2
income 0.3 0.1

• The estimates are the same as those obtained from previous analysis.
This means that we have enough observations to weaken the role of
the prior distribution.

21



Logistic regression - Role of the prior

• Thus, one may ask him(her)self: what is the advantage to use the
Bayesian approach in place of the classical approach, given that the
final results coincide?

• The Bayesian juggler (analyst) may enjoy more! The prior is part of
the model and its role may be very useful (to be continued).

(a) Classical juggler (b) Bayesian juggler
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Logistic regression - Separation

• Nonidentifiability is a common problem in logistic regression. In
addition to the problem of collinearity, familiar from linear regression,
discrete-data regression can also become unstable from complete
separation, which arises when a linear combination of the predictors is
perfectly predictive of the outcome.

• A common solution to separation is to remove predictors until the
resulting model is identifiable, which typically results in removing the
strongest predictors from the model.

• An alternative approach to obtain stable logistic regression
coefficients is to use Bayesian inference: precisely, suitable prior
distributions on β.
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Logistic regression

• Consider to simulate n = 100 data yi ∼ Bernoulli(pi ), where
logit(pi ) = β0 + β1xi1 + β2xi2, β0 = 1, β1 = 1.5, β2 = 2, and we draw
x1 ∼ N (0, 1), x2 ∼ Bin(n, 0.5).

• We fit now a simple logistic regression for y using the glm function
and the stan_glm contained in the R package rstanarm.

• The idea is to compare the estimates of a bunch of simulated
datasets under the classical and the Bayesian approach.

• Dataset 1: no separation.

• Dataset 2: separation (y = 1⇔ x2 = 1).

24



Logistic regression: dataset 1. Classical vs noninformative

# classical
glm(formula = y ~ x1 + x2, family = binomial(link = "logit"))

coef.est coef.se
(Intercept) 1.08 0.37
x1 1.45 0.36
x2 1.88 0.65
---

n = 100, k = 3

# noninformative prior
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"),
prior=normal(0,100),
prior_intercept = normal(0,100))

Median MAD_SD
(Intercept) 0.9 0.3
x1 1.1 0.3
x2 2.1 0.6
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Logistic regression: dataset 1. Noninf. vs weakly-inf.

# noninformative prior
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"),
prior=normal(0,100),
prior_intercept = normal(0,100))

Median MAD_SD
(Intercept) 0.9 0.3
x1 1.1 0.3
x2 2.1 0.6

# weakly-informative priors (normal(0,10^2) and normal(0,2.5^2))
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"))
Median MAD_SD

(Intercept) 0.9 0.3
x1 1.1 0.3
x2 1.9 0.6
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Logistic regression: dataset 2. Classical vs noninformative

# classical
glm(formula = y ~ x1 + x2, family = binomial(link = "logit"))

coef.est coef.se
(Intercept) 0.91 0.36
x1 1.26 0.43
x2 20.15 2370.96
---

n = 100, k = 3

# noninformative priors (normal(0,100^2))
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"),
prior=normal(0,100),
prior_intercept=normal(0,100))

Median MAD_SD
(Intercept) 1.0 0.4
x1 1.3 0.5
x2 62.2 51.6
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Logistic regression: dataset 2. Noninf. vs weakly-inf.

# noninformative priors (normal(0,100^2))
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"),
prior=normal(0,100),
prior_intercept=normal(0,100))

Median MAD_SD
(Intercept) 1.0 0.4
x1 1.3 0.5
x2 62.2 51.6

# weakly-informative priors (normal(0,10^2) and normal(0,2.5^2))
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"))
Median MAD_SD

(Intercept) 1.0 0.4
x1 1.2 0.4
x2 4.3 1.2
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Logistic regression: dataset 2. weakly-inf. vs weakly-inf.

# weakly-informative priors (normal(0,10^2) and normal(0,2.5^2))
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"))
Median MAD_SD

(Intercept) 1.0 0.4
x1 1.2 0.4
x2 4.3 1.2

# weakly-informative priors (cauchy(0,10^2) and cauchy(0,2.5^2))
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"),
prior=cauchy(0,2.5),
prior_intercept = cauchy(0,10))

Median MAD_SD
(Intercept) 0.9 0.4
x1 1.2 0.4
x2 6.4 3.2
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Logistic regression: dataset 1
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Logistic regression: dataset 2

Dataset 2
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Logistic regression: stable estimates

Comments:

• Weakly informative priors allow to obtain stable logistic regression
coefficients.

• Noninformative priors do not solve separation.

• Prior choice is a fundamental part of our models, especially as the
complexity grows.
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Probit regression



Probit regression

• The probit model is the same as the logit, except it replaces the
logistic by the normal distribution. We can write the model directly as

Pr(yi = 1) = Φ(xiβ), (9)

where Φ is the standard normal cumulative distribution.

• As shown in the next plot, the probit model is close to the logit
model with the residual standard deviation set to 1.6 rather than 1.
As a result, coefficients in a probit regression are typically close to
logistic regression coefficients divided by 1.6.
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Probit regression
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Probit regression: 1992 polls

• We estimate the conservative support for the 1992 US elections, but
this time with probit regression:

fit.4 <- stan_glm (vote ~ income,
family=binomial(link="probit"),
prior=normal(0, 2.5),
prior_intercept=normal(0,10))

print(fit.4)
Median MAD_SD

(Intercept) -0.9 0.1
income 0.2 0.0

• Rule of thumb: −0.89 ≈ −1.40/1.6, and 0.2 ≈ 0.33/1.6. (Red:
logistic coefficients)
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Discrete data regression



Discrete data regression: cockroaches data

Cockroaches data
A company that owns many residential buildings throughout New York
City tells that they are concerned about the number of cockroach
complaints that they receive from their 10 buildings. They provide you
some data collected in an entire year for each of the buildings and ask
you to build a model for predicting the number of complaints over the
next months.
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Discrete data regression: cockroaches data

We have access to the following fields (pest_data.RDS):

• complaints: Number of complaints per building in the current
month

• traps: The number of traps used per month per building

• live_in_super: An indicator for whether the building has a live-in
super

• age_of_building: The age of the building

• total_sq_foot: The total square footage of the building

• average_tenant_age: The average age of the tenants per building

• monthly_average_rent: The average monthly rent per building

• floors: The number of floors per building
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Discrete data regression: cockroaches data

Let’s make some plots of the raw data, such as the distribution of the
complaints:
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Poisson regression: cockroaches data

A common way of modeling this sort of skewed, single bounded count data
is as a Poisson random variable. For simplicity, we will start assuming:

• ungrouped data, with no building distinction

• no time-trend structures

We use the number bait stations placed in the building, denoted below as
traps, as explanatory variable. This model assumes that the mean and
variance of the outcome variable complaints (number of complaints) is
the same. For the i-th complaint, i = 1, . . . , n, we have

complaintsi ∼ Poisson(λi )
λi = exp (ηi )
ηi = α + β trapsi

39



Poisson regression: cockroaches data

Let’s fit this simple model via the stan_glm function of the rstanarm
package:

y <- pest_data$complaints
x <- pest_data$traps
M_pois <- stan_glm(y~x, family=poisson(link="log"))
print(M_pois)

Median MAD_SD
(Intercept) 2.6 0.2
x -0.2 0.0
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Poisson regression: cockroaches. Posterior plots

• Let’s have a glimpse of simulated posterior distributions for α and β:
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• As we expected, it appears the number of bait stations set in a
building is associated with the number of complaints about
cockroaches that were made in the following month.
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Poisson regression: cockroaches. Overdispersion

Comments:

• Taking the posterior means of the parameters as point estimates, a
building with x̄ = 7 traps will have a predicted average amounting at:

λ = exp(2.61− 0.2x̄) ≈ 3.35

• Under this model, E(complaints) = Var(complaints) ≈ 3.35.

• However, the raw mean of the data is 3.66 and its variance is
14.9...maybe the Poisson model is not well suited for this dataset?
There is much overdispersion.
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Poisson regression: cockroaches. Extending the model

• Modelling the relationship between complaints and bait stations is the
simplest model. However, we can expand the model.

• Currently, our model’s mean parameter is a rate of complaints per 30
days, but we’re modelling a process that occurs over an area as well
as over time. We have the square footage of each building, so if we
add that information into the model, we can interpret our parameters
as a rate of complaints per square foot per 30 days. For the i-th
complaint, we assume:

complaintsi ∼ Poisson(sq_footi λi )
λi = exp (ηi )
ηi = α + β trapsi
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Poisson regression: cockroaches. Offset term

The term sq_foot is called an exposure term. If we log the term, we can
put it in ηi :

complaintsi ∼ Poisson(λi )
λi = exp (ηi )
ηi = α + β trapsi + log_sq_footi

exposure <- log(pest_data$total_sq_foot/1e4)
M_pois_exposure <- stan_glm(y~x+offset(exposure),

family=poisson(link="log"))
print(M_pois_exposure)

Median MAD_SD
(Intercept) 0.8 0.2
x -0.2 0.0
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Poisson regression: cockroaches. Offset term

Comments:

• Let’s compute now a naive estimates for λ using the posterior
estimates, considering a building with x̄ = 7 and exposure equal to
1.77:

λ = exp(0.8− 0.2× x̄ + log_sq_foot) ≈ 3.22

• This again looks like we haven’t captured the smaller counts very well,
nor have we captured the larger counts. We need something different
to model the overdispersion.
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Poisson regression: cockroaches. Overdispersion

• A possible drawback of the Poisson distribution is that the mean
coincides with the variance. It may be not well suited when data
reveals much more variation than that assumed by the Poisson
distribution

• Negative binomial If Y ∼ Neg-Binomial(λ, φ), where λ has the same
meaning as before and φ is the dispersion parameter, we have;

E(Y ) =λ
Var(Y ) =λ+ λ2/φ.

• The variance grows as the dispersion parameter φ tends to 0. As
φ→∞, the two distributions coincide.
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Poisson vs Negative binomial: λ = 2.
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Negative binomial regression: cockroaches. Overdispersion

• Thus, we assume the following model to allow for overdispersion:

complaintsi ∼ Neg-Binomial(λi , φ)
λi = exp (ηi )
ηi = α + β trapsi

M_negbin <- stan_glm(y ~ x,
family =neg_binomial_2(link="log"))

print(M_negbin)
Median MAD_SD

(Intercept) 2.7 0.4
x -0.2 0.1
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Negative binomial regression: cockroaches. Overdispersion

Comments:

• Taking again the posterior means of the parameters as point
estimates, a building with x̄ = 7 traps will have a predicted average
amounting at:

λ = exp(2.60− 0.19x̄) ≈ 3.56,

and the variance may be approximately computed as:

λ+ λ2/φ = 3.56 + (3.56)2/3.3 = 7.4,

that seems a more realistic assumption.

• A Poisson model doesn’t fit over-dispersed count data very well
because the same parameter λ controls both the expected counts and
the variance of these counts.
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Negative binomial regression: cockroaches. Overdisp.+offset

• Let’s consider now the exposure in the negative binomial model as
well:

complaintsi ∼ Neg-Binomial(λi , φ)
λi = exp (ηi )
ηi = α + β trapsi + log_sq_footi

M_negbin_exp <- stan_glm(y ~ x,
family =neg_binomial_2(link="log"),
offset=exposure)

print(M_negbin_exp)
Median MAD_SD

(Intercept) 0.9 0.4
x -0.2 0.1
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Negative binomial regression: cockroaches.

Let’s take a look at the simulated posterior distribution for α, β and 1/φ.
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Negative binomial regression: cockroaches.

Let’s take a look at the scatterplot between α and β:
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Negative binomial regression: cockroaches. Residuals

Comments:

• We had a glimpse that the negative binomial model outperforms the
Poisson model when discrete data present much variation and heavy
tails.

However:

• we should check the residuals , similarly as what we have done for the
linear model.
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Negative binomial regression: cockroaches. Residuals

We need simulation:

• Generate nsims hypothetical samples y rep from our model.

• Run nsims regression on each y rep.

• Compute the standardized residuals as:

y − λ̃√
λ̃+ λ̃2/φ̃

,

where λ̃ is the mean over the y rep replications, and φ̃ is the mean of the
posterior estimates.
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Negative binomial regression: cockroaches. Residuals
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Negative binomial regression: cockroaches. Residuals

Comments:

• Looks ok, but we still have some very large standardized residuals.
This might be because we are currently ignoring that the data are
clustered by buildings, and that the probability of roach issue may
vary substantially across buildings.

• It looks like we would need a sort of hierarchical structure: complaints
within buildings. (to be continued...)

• Maybe ungrouped structure is poor here!
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Further reading

Further reading:

• Chapter 16 from Bayesian Data Analysis, A. Gelman et al.

Weakly informative priors in logistic regression:

• Gelman, A., Jakulin, A., Pittau, M.G. and Su, Y-S. (2008). A weakly
informative default prior distribution for logistic and other regression
models. Annals of Applied Statistics, 2(4), 1360–1383. Here is the

pdf .
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https://projecteuclid.org/download/pdfview_1/euclid.aoas/1231424214
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