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A partial change of paradigm

• Up to now we have typically generated iid variables directly from the
density of interest π or indirectly in the case of importance sampling.

• The Metropolis-Hastings algorithm and the Gibbs sampling generate
instead correlated variables from a stochastic process called Markov
chain. Markov chains carry different convergence properties that can
be exploited to provide easier proposals in cases where generic
importance sampling does not readily apply.

• We will briefly review these stochastic process to fully understand how
an MCMC algorithm works and to program it in a proper way.
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The basic problem

• Suppose we want to draw from our posterior distribution π(θ|y), but
we cannot sample independent draws from it. For example, we often
do not know the normalizing constant.

• However, we may be able to sample draws from π(θ|y) that are
slightly dependent. If we can sample slightly dependent draws using a
Markov chain, then we can still find quantities of interests from those
draws.

• This process is called Monte Carlo Integration. Basically a fancy way
of saying we can take quantities of interest of a distribution from
simulated draws from the distribution.
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Stochastic process

Definition (Stochastic process)
Given a state space Ω and a sequence of consecutive time instants
T = [0,T ], a stochastic process {X (t)}t∈T is defined as a
collection of random variables, i.e., each X (t) : Ω→ E is a
measurable function from the set of possible outcomes Ω to a
measurable space E.

• Informally, a stochastic process is then a consecutive set of random
quantities defined on some known state space.

• Notation In the Bayesian framework, we use the symbol θ to refer to
the random parameter(s), and we will consider a draw of θ(s) to be
the state of the chain at iteration s, s = 1, . . . , S, where S is the total
number of desired simulations.
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Markov chains

Definition (Markov chain)
A Markov chain {X (t)} is a sequence of dependent random variables

X (0),X (1), . . . ,X (t), . . .

such that the probability distribution of X (t) given the past variables
depends only on the last value, X (t−1). This conditional probability
distribution is called a transition kernel K, that is:

X (t)|X (0),X (1), . . . ,X (t−1) ∼ K (X (t−1),X (t)).

In other words, p(X (t)|X (0),X (1), . . . ,X (t−1)) ≡ p(X (t)|X (t−1)).

• A Markov chain is a stochastic process in which future states are
independent of past states given the present state.
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Examples of Markov chains

Examples:

1. a simple random walk stochastic process satisfies:

X (t+1) = X (t) + εt , (1)

where εt ∼ N (0, 1), independently of X (t); therefore, the Markov
kernel K (X (t),X (t+1)) corresponds to a N (X (t), 1) density, depending
on X (t) only.

2. a stochastic sequence of binary random variables {X (t)}, where
X (t) = 1 with probability pt , and pt is generated from a
Beta(3 + X (t−1), 3− X (t−1)).
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Properties of a Markov chain

For the most part, the Markov chains encountered in Markov Chain Monte Carlo
(MCMC) settings enjoy some fundamental properties.

1. Irreducibility The kernel K allows for free moves all over the state-space:
no matter the starting value X (0), the sequence {X (t)} has a positive
probability of eventually reaching any region of the state-space.

2. Positive Recurrency The chain will return to any arbitrary nonnegible set an
infinite number of times, with a finite expected return time.

3. Aperiodicity The only length of time for which the chain repeats some cycle
of values is the trivial case with cycle length equal to one.

4. Stationarity There exists a probability distribution f such that if X (t) ∼ f ,
then X (t+1) ∼ f . Therefore, formally the kernel and the stationary
distribution satisfy the equation:∫

X
K(x , y)f (x)dx = f (y)
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Stationarity and limiting distribution

• In Bayesian terms, our Markov chain is a bunch of draws {θ(s)} of θ that
are each slightly dependent on the previous one, and the posterior π is our
target density f . The chain wanders around the parameter space,
remembering only where it has been in the last period.

• The fourth property, stationarity, is fundamental in MCMC setting. In
case of recurrent chains, the stationary distribution is also a limiting
distribution, in the sense that the limiting distribution of θ(s) as s →∞ is
π for almost any initial value θ(0).

• This fifth property is also called ergodicity, and it obviously has major
consequences from a simulation point of view in that, if a given kernel K
produces an ergodic Markov chain with stationary distribution π, generating
a chain from this kernel K will eventually produce simulations from π.
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Monte Carlo Integration on the Markov Chain

• Once we have a Markov chain that has converged to the stationary
distribution, then the draws in our chain appear to be like draws from
π(θ|y).

• So it seems like we should be able to use Monte Carlo Integration methods
to find our quantities of interest. One problem: our draws are not
independent, and this assumption is required for Monte Carlo Integration to
work. Remember the Strong Law of Large Numbers: if θ(1), . . . , θ(S) are iid
with mean µ = E(θ(s)), then with probability 1:

1
S

S∑
s=1

θ(s) → µ a.s., as S →∞.

• Luckily, we have the Ergodic Theorem for correlated samples.
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The Ergodic theorem

The following theorem means suggests that the Strong Law of Large
Numbers that lies at the basis of Monte Carlo methods can also be applied
in MCMC settings.

Theorem (The Ergodic Theorem)
Given S values θ(1), θ(2), . . . , θ(S) from a Markov chain that is
aperiodic, irreducible, and positive recurrent (then the chain is called
ergodic), and let h : Θ→ R a real and integrable function such that
E(h(θ)) <∞. Then with probability 1, as S →∞

1
S

S∑
s=1

h(θ(s))→
∫

Θ
h(θ)f (θ)dθ, (2)

where the target distribution f (·) is the stationary distribution of the
chain.

11



Comments to the Ergodic theorem

• This is the Markov chain analogue to the SLLN, and it allows us to
ignore the dependence between draws of the Markov chain when we
calculate quantities of interest from the draws. The stationary
distribution is also a limiting distribution.

• The asymptotic variance of a MCMC estimator is approximately:

S−1σ2(1 + 2
∑

s
ρs),

where ρs is the s-th lag autocorrelation of the sequence (it behaves
like a penalty).

• We will rely on MCMC algorithms—such as Metropolis-Hasting and
Gibbs sampling—which are almost always theoretically convergent,
meaning that the algorithm always converges to the stationary
distribution f .
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How Does a Markov Chain Work - Discrete example

• For discrete state space with k possible states, the transition kernel K is
defined as a k × k matrix of transition probabilities:

P =


Pr(A|A) Pr(B|A) Pr(C |A) . . . Pr(k|A)
Pr(A|B) Pr(B|B) . . . Pr(k|B)
. . .

Pr(A|k) Pr(B|k) . . . Pr(k|k)


where the first row expresses the probabilities of reaching any other state
from state A in one step, and so on for the other rows. Thus, we may
define Pr(θ(s+1) = A|θ(s) = B), ∀s. Notice that the transition kernel does
not depend on s. We say that the chain is homogeneous.

• The goal is to generate θ(1), . . . , θ(S) from the stationary distribution
underlying the chain.
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How Does a Markov Chain Work - Discrete example

Suppose that k = 6 and that P is:

P =



0.5 0.5 0 0 0 0
0.25 0.5 0.25 0 0 0
0 0.25 0.5 0.25 0 0
0 0 0.25 0.5 0.25 0
0 0 0 0.25 0.5 0.25
0 0 0 0 0.5 0.5


where

Pr(θ(s+1) = B|θ(s) = A) = 0.5

Pr(θ(s+1) = C |θ(s) = B) = 0.25
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How Does a Markov Chain Work - Discrete example

(1) Define an initial vector of probabilities of length k, π(0).

(2) At iteration 1, the distribution π(1) - from which θ(1) will be generated - is
given by:

π(1) = π(0)P

(3) At iteration 2, the distribution π(2) - from which θ(2) will be generated - is
given by:

π(2) = π(1)P = π(0)P2

(4) . . .

(s) At iteration s, the distribution π(s) from which θ(s) will be generated is
given by:

π(s) = π(s−1)P = π(0)Ps
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How Does a Markov Chain Work - Discrete example

• We may find the unique, invariant distribution, i.e. a probability vector π
such that

π = πP (3)

• In our example this vector is π = (0.1, 0.2, 0.2, 0.2, 0.2, 0.1).

• For all the MCMC algorithms we use in Bayesian statistics, the Markov
chain will typically converge to π, regardless of our starting points.

• So if we can devise a Markov chain whose stationary distribution π is our
desired posterior distribution—π(θ|y)—then we can run this chain to get
draws that can be considered as approximately drawn from π(θ|y), once
the chain has converged.
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Thinning

• Once we have a Markov chain that has converged to the stationary
distribution, then the draws in our chain appear to be like draws from
π(θ|y).

• In order to break the dependence between draws in the Markov chain,
some have suggested only keeping every d-th draw of the chain. This
is known as thinning.

• Pros: Perhaps gets you a little closer to iid draws. Saves memory
since you only store a fraction of the draws.

• Cons: Unnecessary with ergodic theorem. Shown to increase the
variance of your Monte Carlo estimates.
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MCMC methods

• MCMC is a class of methods in which we can simulate draws that are
slightly dependent and are approximately from a (posterior)
distribution.

• We then take those draws and calculate quantities of interest for the
(posterior) distribution.

• In Bayesian statistics, there are generally two MCMC algorithms that
we use:

• Metropolis-Hastings algorithm

• Gibbs sampling
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History

• Monte Carlo: used by Enrico Fermi, 1930s, while studying neutron
diffusion.

• MCMC The modern version was invented in the late 1940s by Stanislaw
Ulam, while he was working on nuclear weapons projects at the Los Alamos
National Laboratory. John Von Neumann programmed the ENIAC
computer to carry out Monte Carlo calculations.
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Metropolis-Hastings algorithm

Suppose we have a posterior π(θ|y) that we want to sample from, but

• the posterior does not look like any distribution we know (no
conjugacy...)

• the posterior consists of more than 2 parameters (grid approximations
intractable)

• some (or all) of the full conditionals do not look like any distributions
we know (thus, Gibbs sampling is unfeasible)

If all else fails, we can use the Metropolis-Hastings algorithm, which will
always work, at least in theory.

20



Basic Metropolis Hastings

1. Choose a starting value θ(0).

2. At iteration s, given θ(s−1), draw a candidate θ∗ from a proposal
(instrumental) distribution g(θ∗|θ(s−1)).

3. Compute the acceptance ratio:

R = π(θ∗|y)g(θ(s−1)|θ∗)
π(θ(s−1)|y)g(θ∗|θ(s−1)) . (4)

4. Compute the accept probability as ρ = min{R, 1}.

5. The value at iteration s is:

θ(s) =

{
θ∗ with probability ρ
θ(s−1) wth probability 1− ρ

6. Repeat steps 2-5 and get S samples θ(1), . . . , θ(S).
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Basic M-H: steps review

Step 1: choosing a starting value

• Under some easily satisfied regularity conditions on the proposal
density g(θ∗|θ(s−1)), the sequence θ(1), . . . , θ(S) will converge to a
random variable (limiting distribution) that is distributed according to
the posterior distribution π(θ|y).

• The important thing to remember is that θ(0) must have positive
probability, that is π(θ(0)|y) > 0.
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Basic M-H: steps review

Step 2: draw θ∗ from the proposal distribution

• The proposal g(θ∗|θ(s−1)) determines where we move to in the next
iteration of the Markov chain (analogous to the transition kernel).

• The support of g must contain the support of the posterior.
• Different M-H algorithms are constructed depending on the choice of

proposal density:
• Independent M-H: if the proposal density g is independent of the

current value:
g(θ∗|θ(s−1)) = g(θ∗).

• Random Walk M-H: if the proposal density g is symmetric around
zero, that is satisfying g(θ∗|θ(s−1)) ≡ h(θ∗ − θ(s−1)). It yields that
g(θ(s−1)|θ∗) ≡ h(θ(s−1) − θ∗) and the acceptance ratio (4) has the
simple form:

R = π(θ∗|y)
π(θ(s−1)|y) .
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Basic M-H: steps review

Step 2: draw θ∗ from the proposal distribution

• In the Independent M-H all our candidate draws θ∗ are drawn from
the same distribution, regardless of where the previous draw was.
This can be extremely efficient or extremely inefficient, depending on
how close the proposal distribution is to the posterior. In general,
chain will behave well only if the proposal distribution has heavier
tails than the posterior.

• In the Random-Walk M-H the acceptance probability does not
depend on g . This means that, for a given pair (θ(s−1), θ∗), the
probability of acceptance is the same whether θ∗ is generated from a
Normal or a Cauchy distribution.

24



Basic M-H: steps review

Step 3: compute acceptance probability ρ

• The acceptance probability is:

ρ = min
{
1, π(θ∗|y)g(θ(s−1)|θ∗)
π(θ(s−1)|y)g(θ∗|θ(s−1))

}
.

In the case where proposal distribution is symmetric, we have that
g(θ∗|θ(s−1)) = g(θ(s−1)|θ∗), thus:

ρ = min
{
1, π(θ∗|y)
π(θ(s−1)|y)

}
.

• If our candidate draw has higher probability than our current draw, then
our candidate is better ⇒ so we definitely accept it. Otherwise, our
candidate is accepted according to the probability ratio (4).

• Since ρ is a ratio, we only need π(θ|y) up to a constant of proportionality,
since p(y) cancels out in both the numerator and denominator.
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Basic M-H: steps review

Step 3: compute acceptance probability ρ

• In cases where our proposal distribution is not symmetric, we need to
weight our evaluations of the draws at the posterior densities by how
likely we are to draw each draw.

• For example, if we are very likely to jump to some θ∗, then
g(θ∗|θ(s−1)) is likely to be high, so we should accept less of them
than some other θ∗ that we are less likely to jump to.
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Basic M-H: steps review

Step 4: decide whether to accept θ∗

• Accept θ∗ as your θ(s) with probability ρ. If θ∗ is not accepted, then
θ(s) = θ(s−1). Practically, how we do this?

1. For each θ∗, draw a value U ∼ Unif(0, 1).

2. If U ≤ ρ, accept θ∗; otherwise, use θ(s−1) = θ(s). Candidate draws
with higher density than the current draw are always accepted.

3. Unlike in rejection sampling (A-R method), each iteration always
produces a draw, either θ(s−1) or θ∗.

• Now, we have to analyse the acceptance rate of our M-H algorithm.
It is very important to monitor the acceptance rate, that is the
fraction of candidate draws that are accepted, of our M-H algorithm.
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M-H acceptance rate

• If your acceptance rate is too high, the chain is probably not mixing well
(not moving around the parameter space quickly enough).

• If your acceptance rate is too low, your algorithm is too inefficient
(rejecting too many candidate draws).

• There is a trade-off: we would like large jumps (updates), so that the
chain explores the state space, but large jumps usually have low acceptance
probability as the posterior density can be highly peaked (and you jump off
the mountain side)

• What is too high and too low depends on your specific algorithm, but
generally:

• random walk: somewhere between 0.25 and 0.50 is recommended
• independent chain: something close to 1 is preferred
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A simple example: random-walk M-H for a Gamma(4.4, 1.7)

Gaussian proposal distribution with standard deviation 2.

# Define a function for the entire M-H with fixed arguments
# n.sims: number of simulations (samples)
# start = starting value for theta_0
# burnin = throw out a certain number of the first draws
# cand.sd = sd of the normal proposal
# shape, rate = gamma arguments

mh.gamma <-
function(n.sims=10^5, start=1, burnin=0.3*n.sims, cand.sd=2,

shape=1, rate=1) {

# (1) initialization for theta_0 and definition of the draws

theta.cur <- start
draws <- c()

29



Ex 1: random-walk M-H for a Gamma(4.4, 1.7)

R code continuation:

# (2) sampling from a normal with mean
# equal to the last value and sd = sd

theta.update <- function(theta.cur, shape, rate) {
theta.can <- rnorm(1, mean = theta.cur, sd = cand.sd)

# (3) accept probability
accept.prob <- dgamma(theta.can, shape = shape, rate = rate)/

dgamma(theta.cur, shape = shape, rate = rate)

# (4) accept step
if (runif(1) <= accept.prob)

theta.can
else theta.cur

}
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Ex 1: random-walk M-H for a Gamma(4.4, 1.7)

R code continuation:

# store the final draws
for (i in 1:n.sims) {

draws[i] <- theta.cur <- theta.update(theta.cur,
shape = shape, rate = rate)}

# plots
samp<-draws[(burnin+1):n.sims]
par(mfrow=c(1,2))
hist(samp, nclass=50, prob=T,

main="Posterior density",
col="grey", xlab=expression(theta), cex.lab=2, cex.main=2)

curve(dgamma(x, shape=shape, rate=rate), add=T, lwd =3,
col ="red")

plot(samp, type="l", ylab=expression(theta), xlab="Iterations",
cex.lab=2, cex.main=2, main="Markov chain")

return(samp)}
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Ex 1: random-walk M-H for a Gamma(4.4, 1.7)

Posterior density
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Ex 2: independent M-H for a Beta(2.7, 6.3)

Posterior density
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Figure 1: g(θ) = Unif(0, 1). Acceptance rate = 0.503

33



Ex 2: independent M-H for a Beta(2.7, 6.3)

Posterior density
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Figure 2: g(θ) = Unif(0, 3). Acceptance rate = 0.12
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Metropolis-Hastings for Shuttle data

Challenger data
In 1986, the space shuttle Challenger exploded during takeoff, killing
the seven astronauts aboard. The explosion was the result of an O-ring
failure, a splitting of a ring of rubber that seals the parts of the ship
together. The accident was believed to have been caused by the
unusually cold weather (31 Fahrenheit or 0 Celsius) at the time of
launch, as there is reason to believe that the O-ring failure probabilities
increase as temperature decreases. Data on previous space shuttle
launches and O-ring failures is given in the dataset challenger
provided with the mcsm package.
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Metropolis-Hastings for Shuttle data

• Suppose to have the following data coming from the previous shuttle
flights:

x <- c(66, 70, 69, 68, 67, 72, 73, 70, 57, 63, 70, 78, 67,
53, 67, 75, 70, 81, 76, 79, 75, 76, 58)

Y <- c(0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
0, 0, 0, 1, 0, 1)

where we registered the number of failures Y for each of the n = 23
flights, at a given temperature (Fahrenheit) x .
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Metropolis-Hastings for Shuttle data

We suppose a simple binomial model for Y :

Pr(Yi = y) =
(
7
y

)
πy

i (1− πi )7−y ,

where πi is the failure probability for the i-th flight:

πi = exp {β0 + β1xi}
1 + exp {β0 + β1xi}

and xi is the temperature value. The log-likelihood is then:

l(β0, β1) =
n∑

i=1
yi (β0 + β1xi )−

n∑
i=1

7 log(1 + exp {β0 + β1xi}).
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Metropolis-Hastings for Shuttle data

loglik <- function(beta) {
sum(y * (beta[1] + beta[2] * x)) -

sum(7 * log(1 + exp(beta[1] + beta[2]*x)))}

relative likelihood
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Metropolis-Hastings for Shuttle data

• We elicit a uniform prior distribution for β0 and β1, π(β0, β1) ∝ 1. The
posterior is then proportional to:

π(β0, β1|y) ∝ p(y |β0, β1)π(β0, β1) =
exp {

∑n
i=1 yi (β0 + β1xi )}∏n

i=1[1 + exp {β0 + β1xi}]
.

• The posterior above is not known...We need MCMC simulation. So, we set
up a random-walk Metropolis with the following proposal distributions at
iteration s:

β∗0 ∼ N (β(s−1)
0 , s1)

β∗1 ∼ N (β(s−1)
1 , s2)

where s1, s2 are the instrumental variances.
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Metropolis-Hastings for Shuttle data

mh <- function(nsim, s1, s2, b.init) {
mh.out <- matrix(ncol = 2, nrow = nsim)
b <- b.init
for (i in 1:nsim) {

b.p <- c(rnorm(1, b[1], s1), rnorm(1,b[2], s2))
if (runif(1) < exp(loglik(b.p) - loglik(b)))

b <- b.p
mh.out[i, ] <- b
}

mh.out}
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Metropolis-Hastings for Shuttle data

Scenario 1: s1 = s2 = 1. Poor mixing!

0 1000 2000 3000 4000 5000

0
2

4
6

Iterations

β 0

0 1000 2000 3000 4000 5000

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

Iterations

β 1

β0

β 1

 0.01 

 0.01 
 0.1 

 0.5 
 0.9 

−10 −5 0 5 10 15

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

●●●●●

●●●●●

●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

41



Metropolis-Hastings for Shuttle data

Scenario 2: s1 = 2, s2 = 0.1. Better, still not adequate...
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Metropolis-Hastings for Shuttle data

Scenario 3: s1, s2 estimated from Scenario 2. Better, still not good...
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Metropolis-Hastings for Shuttle data

Consider now a correlated bivariate normal for the proposal distribution:

(
β∗0
β∗1

)
∼ N

((
β

(s−1)
0

β
(s−1)
1

)
,

(
σ20 Cov(β0, β1)

Cov(β1, β0) σ21

))
.

library(mvtnorm)
mhd <- function(nsim, V, b.init) {

mh.out <- matrix(ncol = 2, nrow = nsim)
b <- b.init
for (i in 1:nsim) {

b.p <- rmvnorm(n = 1, mean = b, sigma = V)
if (runif(1) < exp(loglik(b.p) - loglik(b)))

b <- b.p
mh.out[i, ] <- b
}

mh.out}
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Metropolis-Hastings for Shuttle data

Scenario 4: cov.matrix V estimated from Scenario 3. Better!
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Metropolis-Hastings for Shuttle data

• When there is a not negligible parameters’ correlation, a suited
proposal should capture this fact.

• We can use the last simulation to report posterior summaries for β0
and β1.

apply(mh.out4,2, mean)
[1] 4.5555695 -0.1163703

−10 −5 0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

β0

D
en

si
ty

−0.3 −0.2 −0.1 0.0 0.1

0
2

4
6

8

β1

D
en

si
ty

46



Gibbs sampling



Gibbs sampling

• Suppose that the parameter of interest is θ = (θ1, . . . , θk ) and we want to
sample from its posterior distribution, π(θ1, θ2, . . . , θk |y).

• We can use the Gibbs sampler to sample from the joint distribution if we
knew the full conditional distributions for each parameter.

• For each parameter, the full conditional distribution is the distribution of
each single component of the parameter vector, conditional on the known
information and all the other parameters:

π(θj |θ∼[j], y),

with θ∼[j] = (θ1, θ2, . . . , θj−1, θj+1, . . . , θk ).

• Question: How can we know the joint distribution simply by knowing the
full conditional distributions?
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The Hammersley-Clifford Theorem (for two blocks only)

Theorem (Hammersley-Clifford)
Suppose we have a joint density f (x , y). We can write out the joint
density in terms of the conditional densities f (x |y) and f (y |x), that is:

f (x , y) = f (y |x)∫ f (y |x)
f (x |y)dy

.

Proof.
f (x , y) = f (y |x)f (x) = f (y|x)

1
f (x)

. Now:

1
f (x) =

∫ f (y)
f (x)dy =

∫ f (x,y)
f (x)

f (x,y)
f (y)

dy =
∫ f (y|x)

f (x|y)dy .
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The Hammersley-Clifford Theorem (for two blocks only)

• The theorem shows that knowledge of the conditional distribution is
sufficient to get the joint density. This approach works for more than
two blocks of parameters also.

• Studying the full conditionals rather than the full posterior may be
easier in many cases and able to break a big problem in smaller
sub-problems.

• But how do we figure out the full conditionals?
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Steps for Calculating Full Conditional Distributions

Suppose we have a posterior distribution π(θ|y). To calculate the full
conditionals for each component of θ, do the following:

1. Write out the full posterior ignoring constants of proportionality.

2. Pick a block of parameters (for example, θ1) and drop everything that
does not depend on θ1.

3. Use your knowledge about distributions to figure out what the
normalizing constant is (and thus what is the full conditional
distribution π(θ1|θ∼[1], y).

4. Repeat steps 2 and 3 for all parameter blocks.
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Gibbs sampling

Suppose we wish to to sample from π(θ|y), where the parameter vector is
θ = (θ1, . . . , θk ).

1. Pick a vector of starting values θ(0)

2. At step s, given θ(s−1) = (θ(s−1)
1 , . . . , θ

(s−1)
k ) we can draw:

• θ
(s)
1 ∼ π1(θ1|θ(s−1)

2 , . . . , θ
(s−1)
k , y)

• θ
(s)
2 ∼ π2(θ2|θ(s)

1 , θ
(s−1)
3 , . . . , θ

(s−1)
k , y)

• . . .

• θ
(s)
k ∼ πk (θk |θ(s)

1 , θ
(s)
2 , . . . , θ

(s)
k−1, y)

3. Repeat step 2 until until we get S draws, with each draw being a vector
θ(s), s = 1, . . . , S.

π1, . . . , πk are the full conditional distributions for the components θ1, . . . , θk ,
respectively. The final result is a Markov chain with a bunch of draws θ that can
be considered approximately drawn from our posterior.
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Example: bivariate normal

• As a toy example, suppose we want to sample from:

θ =
(
θ1
θ2

)
∼ N

((
µ1
µ2

)
,

(
1 ρ

ρ 1

))

• The full conditionals for the two vector components are univariate
normals, respectively:

θ1|θ2 ∼ N (µ1 + ρ(θ2 − µ2), 1− ρ2)
θ2|θ1 ∼ N (µ2 + ρ(θ1 − µ1), 1− ρ2)

• We can generate several independent chains, starting from different
corners of the two-dimensional parameter space.
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Example: bivariate normal

bn<-function(init=c(0,0),mu=c(0,0),
rho=0, nsim=100){

theta=matrix(nrow=nsim, ncol=2)
theta[1,]=init
for (i in 2:nsim){

theta[i,1]<-rnorm(1,mean= mu[1]+ rho*(theta[i-1,2]-mu[2]),
sd=sqrt(1-rho^2))

theta[i,2]<-rnorm(1,mean= mu[2]+ rho*(theta[i,1]- mu[1]),
sd=sqrt(1-rho^2))

}
plot(theta, type="l", xlab=expression(theta[1]),

ylab=expression(theta[2]), cex.lab =2, cex.main=2,
main= bquote(rho==.(rho)))

}
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Example: bivariate normal (100 draws)
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Example: bivariate normal (10000 draws)

−4 −2 0 2

−
4

−
2

0
2

4

ρ = 0.2

θ1

θ 2

−4 −2 0 2 4

−
4

−
2

0
2

4

ρ = 0.5

θ1

θ 2

−4 −2 0 2

−
4

−
2

0
2

4

ρ = 0.7

θ1

θ 2

−3 −2 −1 0 1 2 3 4

−
2

0
2

4

ρ = 0.9

θ1

θ 2

55



Example: bivariate normal (100 draws)
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Example: bivariate normal (10000 draws)
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Example: nuclear pumps

• Suppose we have data on the number of failures (Yi) for each of 10 pumps
in a nuclear plant. We also have the total times (ti) of observation for each
pump.

y <- c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22)
t <- c(94, 16, 63, 126, 5, 31, 1, 1, 2, 10)
rbind(y, t)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

y 5 1 5 14 3 19 1 1 4 22
t 94 16 63 126 5 31 1 1 2 10

• We want to model the number of failures with a Poisson model, where the
expected number of failure λi ’s differs for each pump. Since the time for
which we observed each pump is different, we need to scale each λi by its
observed time ti (offset!).
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Example: nuclear pumps

• Thus, we assume Yi ∼ Pois(λi ti ), which means that our likelihood is

p(y |θ) ∝
n∏

i=1

Pois(λi ti )

• Let us put some Gamma priors on λ1, . . . , λ10 and β, respectively:

λ1, . . . , λ10 ∼ Gamma(1.8, β), β ∼ Gamma(0.01, 1)

so we have a total of 11 parameters. The joint posterior is then:

π(λ, β|y , t) ∝
10∏

i=1

Pois(λi ti )Ga(1.8, β)Gamma(0.01, 1)

=
10∏

i=1

(
e−λi ti (λi ti )yi

yi !
β1.8

Γ(1.8)λ
1.8−1
i e−λiβ

)
1

Γ(0.01)β
0.01−1e−β
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Example: nuclear pumps

• This formula may be simplified as:

π(λ, β|y , t) ∝
10∏

i=1

(
e−λi (β+ti )λyi +1.8−1)β10×1.8+0.01−1e−β

• Now we may find the full conditional distributions π(λi |λ∼[i], β, y , t) and
π(β|λ, y , t), where λ∼[i] denotes the vector λ without the i-th component.

π(λi |λ∼[i], β) ∝ e−λi (β+ti )λyi +1.8−1

π(β|λ) ∝ e−(
∑

i
λ+1)β

β10×1.8+0.01−1

• Then:

λi |λ∼[i], β, y , t ∼ Gamma(yi + 1.8, β + ti )

β|λ, y , t ∼ Gamma(10× 1.8 + 0.01,
∑

i

λi + 1) 60



Example: nuclear pumps

Gibbs sampling:

1. Pick an initial value for β, β(0).

2. At iteration s, s = 1, 2, . . . , S: given λ(s−1) = (λ(s−1)
1 , . . . , λ

(s−1)
10 ) we

draw:

• λ
(s)
1 ∼ Gamma(y1 + 1.8, β(s−1) + t1)

• λ
(s)
2 ∼ Gamma(y2 + 1.8, β(s−1) + t2)

• . . .

• λ
(s)
10 ∼ Gamma(y10 + 1.8, β(s−1) + t10)

3. We draw β(s) from Gamma(10× 1.8 + 0.01,
∑

i λ
(s)
i + 1), using the

vector λ(s) found in step 2.

4. Repeat using most updated values until we get S draws.
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Comments

• The Gibbs sampler is automatic (no user set parameters) which is
good for software. There is not an accept/reject step!

• But, M-H is more general and if dependence in the full conditionals,
π(θj |θ∼[j], y) is strong, then the Gibbs sampler can be very slow to
move around the space, and—in some instances—a joint M-H
proposal may be more efficient.

• One can combine the two in a hybrid sampler, updating some
components using Gibbs and others using M-H.
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MCMC diagnostics



MCMC output analysis

• In an ideal world, our simulation algorithm would return iid samples
from the target (posterior) distribution.

• However, MCMC simulation has two short-comings

• The distribution of the samples, π̃(θ(s)) only converges to the target
distribution as s →∞.

• The samples are dependent.

• Now we shall consider how we deal with these issues. In typical
practice, one monitors the performance of an MCMC algorithm by:

• inspecting the value of the acceptance rate (in M-H only)

• constructing graphs

• computing diagnostic statistics on the stream of simulated values
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Convergence

• Recall that MCMC is an iterative procedure, such that

• Given the current state of the chain, θ(s), the algorithm makes a
probabilistic update to θ(s+1).

• The update is made in such a way that the distribution
π̃(θ(s))→ π(θ|y), the target distribution, as s →∞, for any starting
value θ(0).

• Hence, the early samples are strongly influenced by the distribution of
θ(0), which presumably is not drawn from π(θ|y).
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Convergence

Some practical issues for the users:

• The accepted practice is to discard an initial set of samples as being
unrepresentative of the steady-state distribution of the Markov chain
(the target distribution)

• That is, the first B + 1 samples {θ(0), θ(1), . . . , θ(B)} are discarded.

• This user-defined initial portion of the chain to discard is known as a
burn-in phase for the chain.

• The value of B, the length of burn-in, is determined by the user using
various convergence diagnostics which provide evidence that π̃(θ(B))
and π(θ|y) are in some sense close.
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Convergence

• We may recognize three different kinds of convergence:

1. to the stationary distribution of the chain

2. of the empirical mean to the integral we wish to approximate

3. to an iid sample

• In order to check for the convergences above, the MCMC users has
several choices, the most popular among them are:

• Running multiple chains from different starting values that are
over-dispersed relative to the posterior distribution (and checking the
chains mixing).

• Checking the autocorrelation in the draws: a strong correlation
between successive iterates may prevent the algorithm from exploring
the entire region of the parameters’ space.

• Running diagnostic tests: Gelman-Rubin statistics R̂, Geweke
diagnostics,...
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Graphical analysis of convergence

• Consider a fake example: we run two chains for a given parameter µ1,
and we find these two distinct situations: what can we say about
convergence?
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Graphical analysis of convergence

• Let’s take a look to the estimated densities coming from the two
chains:
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• Bimodal distributions! We cannot use them to make inference on µ1...
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Graphical analysis of convergence

• Scenario 1: Either sequence alone looks stable, but the juxtaposition
makes it clear that they have not converged to a common distribution.

• Scenario 2: The two sequences happen to cover a common
distribution but neither sequence appears stationary.

These graphs demonstrate the need to use between-sequence and also
within-sequence information when assessing convergence.
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Running multiple chains

Consider the case of the bivariate normal with the Gibbs sampling. Let’s
run 100 simulations from three distinct starting points:

my.draws<-bm(init=c(0,0),rho=0.7)
my.draws2<-bm(init=c(5,5), rho=0.7)
my.draws3<-bm(init=c(10,10), rho=0.7)
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Running multiple chains: 100 samples

1) Convergence: poor, stationarity is not reached.
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Running multiple chains: 100 samples

2) Autocorrelation: they do not seem iid.
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Running multiple chains: 10000 samples

We repeat the same experiments running 10000 iterations:

my.draws<-bm(init=c(0,0),rho=0.7, nsim=10000)
my.draws2<-bm(init=c(5,5), rho=0.7, nsim=10000)
my.draws3<-bm(init=c(10,10), rho=0.7, nsim=10000)
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Running multiple chains: 10000 samples

1) Convergence: Ok! Each chain is not discernible from the others.
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Running multiple chains: 10000 samples

2) Autocorrelation: Ok! Autocorrelation vanishes after a few lags.
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Graphical analysis

• Chains should be mixed, we should not be able to distinguish one
from the others.

• Regardless of the starting points, the chains should converge to the
same distribution.

• The chain will often be seen to migrate away from θ(0) toward a
region of high posterior probability centred around a mode of π(θ|y).

• Graphical analysis of the chains trace is the first step. Of course, we
need more formal tests.
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Formal convergence test: Gelman-Rubin statistic

• Consider a scalar parameter θ and let θ(s)
m be the s-th draw in the

m-th chain, with s = 1, . . . ,S and m = 1, . . . ,M. We may then
compute:

• the between-chains variance

B = S
M − 1

M∑
m=1

(θ̄m − θ̄)2

where
θ̄m = 1

S
∑

s

θ(s)
m ; θ̄ = 1

M
∑

m

θ̄m.

• the within-chain variance:

W = 1
M(S − 1)

∑
m

∑
s

(θ(s)
m − θ̄m)2
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Gelman-Rubin statistic

• An unbiased estimator for the posterior variance Var(θ|y) is the weighted
average:

̂Var(θ|y) = S − 1
S W + 1

S B

• Early in iterations, ̂Var(θ|y) overestimates the true posterior variance:
• Because of overdispersion of the starting values, this overestimates the

true variance, but it is unbiased if the starting distribution equals the
stationary distribution (if starting values were not overdispersed).

• The potential scale reduction factor (or Gelman-Rubin statistic) is:

R̂ =

√
̂Var(θ|y)
W ≈

√(
1 + B

SW

)
, (5)
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Gelman-Rubin statistic

• For any finite S, the within variance W should be an underestimate
of Var(θ|y) because the individual sequences have not had time to
range over all of the target distribution and, as a result, will have less
variability.

• R̂ declines to 1 as S →∞.

• If the potential scale reduction is high, then we have reason to believe
that proceeding with further simulations may improve our inference
about the target distribution.

• When the chains have mixed (converged) the variance within each
sequence and the variance between sequences for each variable will be
roughly equal.

• As a golden rule, convergence and mixing of the chains is reached
when R̂ ≤ 1.1.
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Geweke diagnostic

• The Geweke diagnostic takes two nonoverlapping parts (usually the
first 0.1 and last 0.5 proportions) of the Markov chain and compares
the means of both parts, using a difference of means test to see if the
two parts of the chain are from the same distribution (null
hypothesis).

• The test statistic is a standard Z-score with the standard errors
adjusted for autocorrelation.
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Remarks

• If R̂ is high, try increasing the number of iterations.

• If we have more than one parameter, then we need to calculate the
potential scale reduction factor for each parameter. We should run
our chains out long enough so that all the potential scale reduction
factors are small enough.

• Formal tests for convergence should not be taken without question as
evidence for convergence.

• Graphical plots and examining posterior distributions for stability
should always be employed for key (functions of) variables of interest

• Running multiple chains from dispersed starting points to check for
stability in the estimates (and use the G&R test)
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Convergence diagnostics in R

• The coda package covers four formal tests for convergence, perhaps
the two most popular ones being those reported by Geweke and those
of Gelman and Rubin.

• Before we use the diagnostics, we should turn our chains into mcmc
objects.

library(coda)
chain1 <- mcmc(my.draws)
chain2 <- mcmc(my.draws2)
chain3 <- mcmc(my.draws3)

• We can tell the mcmc() function to burn-in or drop draws with the
start and end arguments.

• mcmc() also has a thin argument, which only tells it the thinning
interval that was used (it does not actually thin for us).
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Convergence diagnostics in R

• To implement the G&R test in the bivariate Gaussian example:

gelman.diag(combinechains)
Potential scale reduction factors:

Point est. Upper C.I.
[1,] 1 1.01
[2,] 1 1.01

Multivariate psrf

1

• For both the parameters, R̂ ≤ 1.
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Convergence diagnostics in R

We may also produce a plot for the two parameters:

gelman.plot(combinechains)
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Convergence diagnostics in R

• To implement the Geweke test for the bivariate Gaussian case:

geweke.diag(chain1)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5
var1 var2
1.604 1.189

geweke.diag(chain2)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5
var1 var2
0.3123 0.4908

• We accept the null hypothesis of means equality for both the
parameters and both the chains.
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Formal autocorrelation test

• Once the simulated sequence have mixed, we can compute an approximate
effective number of independent simulation draws for any estimand of
interest θ.

• If the S simulations draws within each sequence were truly independent,
then the between-variance B would be an unbiased estimate of the
posterior variance, Var(θ|y), and we would have a total of S ×M
independent simulations from the M chains.

• One way to define the effective sample size for correlated simulations is to
consider the statistical efficiency of the average of the simulations, θ̄, as an
estimate for the posterior mean E(θ|y). Then, we define the limit:

lim
S→∞

SMVar(θ̄) =

(
1 + 2

∞∑
t=1

ρt

)
Var(θ|y). (6)
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Formal autocorrelation test

• In equation (6), ρt is the autocorrelation of the sequence θ at lag t. If the
S simulation draws from each of the M chains were independent, then
Var(θ̄) would simply be 1

SM Var(θ|y) and the sample size would be SM. In
the presence of correlation we then define the effective sample size as

neff = SM
1 + 2

∑∞
t=1 ρt

, (7)

and we can estimate this quantity by:

n̂eff = SM
1 + 2

∑T
t=1 ρ̂t

. (8)

• The ESS estimates the reduction in the true number of samples, compared
to iid samples, due to the autocorrelation in the chain. The closer to
S ×M the better for ESS.
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Further reading

Further reading:

• Chapter 6 from Bayesian Computation with R, J. Albert.

• Chapter 6 and 7 from Introducing Monte Carlo Methods with R, C.
Robert and G. Casella.

• Chapter 11 from Bayesian Data Analysis (3rd ed.), A. Gelman et al.

Strong and deep reading:

• Chapters 4,6,7 and 8 from Monte Carlo Statistical Methods, C.
Robert and G. Casella.
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