
Bayesian statistics
Hamiltonian Monte Carlo (HMC)

Leonardo Egidi
2024/2025

Università di Trieste

1



Table of contents i

When MCMC fails?

The momentum distribution

The three steps of an HMC iteration

HMC and Stan

2



When MCMC fails?



MCMC inefficiency i

• The Metropolis-Hastings algorithm and the Gibbs sampling generate
correlated variables from a stochastic process called Markov chain.
Markov chains carry different convergence properties that can be
exploited to provide easier proposals in cases where generic
importance sampling does not readily apply.

• An inherent inefficiency in the Gibbs sampler and Metropolis algorithm
is their random walk behavior: the simulations can take a long time
zigging and zagging while moving through the target distribution.
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MCMC inefficiency ii

• Reparameterization and efficient jumping rules can improve the
situation, but for complicated models this local random walk behavior
remains, especially for high-dimensional target distributions.

• Hamiltonian Monte Carlo (HMC) borrows an idea from physics to
suppress the local random walk behavior in the Metropolis algorithm,
thus allowing it to move much more rapidly through the target
distribution.
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Moving to Hamiltonian Monte Carlo

• Once we have built a model, Bayesian computation reduces to
evaluating expectations, or integrals.

Eπ(θ|y) =
∫
θπ(θ|y)dθ. (1)

• How do we compute posterior expectations in practice?

• Construct a Markov chain that explores the parameter space.

• Anything you would want to do if you could write it analytically, you
can do to any accuracy with the draws (history) of the chain

lim
S→∞

1
S

S∑
s=1

θ(s) → Eπ(θ|y)
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Moving to Hamiltonian Monte Carlo

• To be efficient we need to focus computation on the relevant
neighborhoods of parameter space. Relevant neighborhoods, however,
are defined not by probability density but rather by probability mass.

• But exactly which neighborhoods end up contributing most to
arbitrary expectations?

• The neighborhoods around the maxima of probability distributions
feature a lot of probability density, but, especially in a large number of
dimensions, or in long tailed distributions, they do not feature much
volume. In other words, the sliver size dθ tends to be small there.
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The Geometry of High-Dimensional Spaces

• Expectation values are given by accumulating the integrand over a
volume of parameter space and, while the density is largest around
the mode, there is not much volume there.

• To identify the regions of parameter space that dominate
expectations we need to consider the behavior of both the density and
the volume. In high-dimensional spaces the volume behaves very
differently from the density, resulting in a tension that concentrates
the significant regions of parameter space away from either extreme.
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The Geometry of High-Dimensional Spaces

• Consider a rectangular partitioning centered around a distinguished
point, such as the mode (example from Betancourt, 2017):

• One of the characteristic properties of high-dimensional spaces is that
there is much more volume outside any given neighborhood than
inside of it!
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The Geometry of High-Dimensional Spaces

• Generically, then, volume is largest out in the tails of the target
distribution away from the mode, and this disparity grows
exponentially with the dimension of parameter space.

• The neighborhood immediately around the mode features large
densities, but in more than a few dimensions the small volume of that
neighborhood prevents it from having much contribution to any
expectation. On the other hand, the complimentary neighborhood far
away from the mode features a much larger volume, but the vanishing
densities lead to similarly negligible contributions expectations

• The only significant contributions come from the neighborhood
between these two extremes known as the typical set.
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Typical set

Thus, relevant neighborhoods are defined not by probability density but
rather by probability mass.
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Typical set

Probability mass concentrates on a hypersurface called the typical set that
surrounds the mode.
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Moving to Hamiltonian Monte Carlo i

• We can accurately estimate expectations by averaging over the typical
set instead of the entirety of parameter space. We need a method
able to do it!

• MCMC uses a Markov chain to stochastically explore the typical set.
However, some inefficiencies arise:

• random walk behaviour (Gibbs sampling and random walk MH): the
simulations can take a long time zigging and zagging while moving
through the target distribution;

• finite time exploration is not guaranteed...

• stuck in high curvature regions, which are are hardly explored by
Markov Chains.
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Moving to Hamiltonian Monte Carlo ii

• HMC borrows strengths from physics to suppress the random walk
behaviour in the Metropolis algorithm, thus allowing it to move much
more rapidly through the target distribution.

• Ideal behaviour of the chains is then achieved by the so-called
geometric ergodicity.

• To inquiry the differential structure of the target distribution, HMC
uses the gradient of the log-posterior distribution, d log(π(θ|y))

dθ : this
will imply an adjustment of the algorithm towards the typical set area.

• Hamiltonian Monte Carlo is the unique procedure for automatically
generating this coherent exploration for sufficiently well-behaved
target distributions.
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When something goes wrong

Under ideal conditions, MCMC estimators converge to the true
expectations in a very practical progression.
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When something goes wrong

Under ideal conditions, MCMC estimators converge to the true
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When something goes wrong

There are many pathological posterior geometries, however, that spoil
these ideal conditions.
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When something goes wrong

There are many pathological posterior geometries, however, that spoil
these ideal conditions.
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When something goes wrong

There are many pathological posterior geometries, however, that spoil
these ideal conditions.
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Hamiltonian Monte Carlo

• Hamiltonian Monte Carlo yields fast, and robust, exploration of the
distributions common in practice, by exploring the geometry of the
typical set through the gradient of the target distribution.
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Hamiltonian Monte Carlo: bivariate Gaussian
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Add the phase space

For each component θj in the target space, Hamiltonian Monte Carlo adds
a momentum variable ρj . Both θ and ρ are then updated together in a
new Metropolis algorithm, in which the jumping distribution for θ is
determined largely by ρ.
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Add the phase space

• Each iteration of HMC proceeds via several steps, during which the
position and momentum evolve based on rules imitating the behavior
of position the steps can move rapidly where possible through the
space of θ and even can turn corners in parameter space to preserve
the total energy of the trajectory.

• Hamiltonian Monte Carlo is also called hybrid Monte Carlo because it
combines MCMC and deterministic simulation methods.

• In HMC, the posterior density π(θ|y) (which, as usual, needs only be
computed up to a multiplicative constant) is augmented by an
independent distribution π(ρ) on the momenta, thus defining a joint
distribution,

π(θ, ρ|y) = π(ρ)π(θ|y) (2)

.
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Add the phase space

• We simulate from the joint distribution but we are only interested in
the simulations of θ; the vector ρ is thus an auxiliary variable,
introduced only to enable the algorithm to move faster through the
parameter space.

• HMC also requires the gradient of the log-posterior density. In
practice the gradient must be computed analytically. If θ has d
dimensions, this gradient is:

d log π(θ|y)
dθ =

(
d log π(θ|y)

dθ1
, . . . ,

d log π(θ|y)
dθd

)
.

• For most of the models we consider in this course, this vector is easy
to determine analytically and then program.
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The momentum distribution



The momentum distribution

• It is usual to give ρ a multivariate normal distribution (recall that ρ
has the same dimension as θ) with mean 0 and covariance set to a
prespecified mass matrix M (so called by analogy to the physical
model of Hamiltonian dynamics).

• To keep it simple, we commonly use a diagonal mass matrix, M. If so,
the components of ρ are independent, with

ρj ∼ N (0,Mjj), j = 1, . . . , d .

• It can be useful for M to roughly scale with the inverse covariance
matrix of the posterior distribution, but the algorithm works in any
case; better scaling of M will merely make HMC more efficient.
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The three steps of an HMC
iteration



The three steps of an HMC iteration i

HMC proceeds by a series of iterations (as in any Metropolis algorithm), with
each iteration having three parts (a-b-c below):

1. Update ρ with a random draw from its posterior distribution—which, as
specified, is the same as its prior distribution, ρ ∼ N (0,M).

2. Update simultaneously θ and ρ via a discrete mimicking of physical
Hamiltonian dynamics equations:

dθ
dt = + ∂H

∂ρ
= ∂K

∂ρ

dρ
dt =− ∂H

∂θ
= −∂K

∂θ
− ∂V
∂θ

,

where K(θ, ρ) is called the kinetic energy, and V (θ) is the potential energy.
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The three steps of an HMC iteration ii

• To do this discretization, we can establish the following relationship
between the posterior/target distribution and the Hamiltonian
dynamics, by defining the Hamiltonian Function H(θ, ρ):

π(θ, ρ|y) = exp{−H(θ, ρ)}

H(θ, ρ) =− log π(θ, ρ|y)

=− log π(ρ|θ, y)− log π(θ|y)

= K(θ, ρ) + V (θ)

= kinetic + potential

(3)

• Thus, the quantity ∂V /∂θ is the gradient of the (log) target
distribution.
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The three steps of an HMC iteration iii

• The canonical density function π(θ, ρ|y) (2) ensures that if we
marginalize out the momentum we immediately recover our target
distribution. It does not depend on a particular choice of
parameterization, and we can write it in terms of an invariant
Hamiltonian function.

• For such characteristic, it captures the invariant probabilistic structure
of the phase space distribution and, most importantly, the geometry
of its typical set.

• Because the Hamiltonian captures the geometry of the typical set, we
should be able to use it to generate a vector field oriented with the
typical set of the canonical distribution and hence the trajectories that
we are after. Indeed, the desired vector field can be generated from a
given Hamiltonian with Hamilton’s equations.
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The three steps of an HMC iteration iv

• Phase space decomposes into concentric energy level sets of the
Hamiltonian, H−1(E). Instead of specifying a point in phase space
with its position and momentum, we can specify it with an energy, E ,
and its position on the corresponding level set, θE ∈ H−1(E).
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The three steps of an HMC iteration v

• To approximate the trajectory of the Hamiltonian dynamics and solve
the differential equations (3), we need some integrators. HMC can be
implemented in practice by using a leapfrog integrator assuming a
time discretization—or step size—ε.

• This step involves L leapfrog steps (to be defined in a moment), each
scaled by ε. In a leapfrog step, both θ and ρ are changed, each in
relation to the other. The L leapfrog steps proceed as follows:
Repeat the following steps L times:

(a) Use the gradient (the vector derivative) of the
log-posterior density of θ to make a half-step of ρ:

ρ← ρ+ 1
2 ε

d log π(θ|y)
dθ .
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The three steps of an HMC iteration vi

(b) Use the momentum vector ρ to update the position
vector θ:

θ ← θ + εM−1ρ.

(c) Again use the gradient of θ to half-update ρ:

ρ← ρ+ 1
2 ε

d log π(θ|y)
dθ .

• Except at the first and last step, updates (c) and (a) above can be
performed together.
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The three steps of an HMC iteration vii
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The three steps of an HMC iteration viii

• Some remarks sofar:
• This algorithm (a)–(c) is called a ’leapfrog’ because of the splitting of

the momentum updates into half steps: is a discrete approximation to
physical Hamiltonian dynamics in which both position and momentum
evolve in continuous time.

• In the limit of ε near zero, the leapfrog algorithm preserves the joint
density π(θ, ρ|y).

• For finite ε, the joint density π(θ, ρ|y) does not remain entirely
constant during the leapfrog steps but it will vary only slowly if ε is
small
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The three steps of an HMC iteration ix

3. Accept-reject step Label θ(t−1), ρ(t−1) as the value of the parameter and
momentum vectors at the start of the leapfrog process and θ∗, ρ∗ as the
value after the L steps. In the accept-reject step, we compute the
acceptance ratio:

R = π(θ∗|y)π(ρ∗)
π(θ(t−1)|y)π(ρ(t−1)) .

4. Final assignment Set:

θt =

{
θ∗ with probability min(R, 1)
θ(t−1) otherwise.

5. Repeat these iterations until approximate convergence, as assessed by R̂
being near 1 and the effective sample size being large enough for all
quantities of interest.
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The three steps of an HMC iteration x

Some remarks:

• After the point (4), the auxiliary momenta are discarded and we are left
with a point in the typical set of the target distribution

• HMC can be tuned in three places: (i) the probability distribution for the
momentum variables ρ (which, in our implementation requires specifying
the diagonal elements of a covariance matrix, that is, a scale parameter for
each of the d dimensions of the parameter vector), (ii) the scaling factor ε
of the leapfrog steps, and (iii) the number of leapfrog steps L per iteration.

• Theory suggests that HMC is optimally efficient when its acceptance rate is
approximately 65% (see diagnostics part).
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HMC and Stan



Efficient HMC in Stan

• Hamiltonian Monte Carlo takes a bit of effort to program and tune. In
more complicated settings, though, we have found HMC to be faster
and more reliable than basic Markov chain simulation algorithms.

• To mitigate the challenges of programming and tuning, we use a
computer program, Stan (Sampling through adaptive neighborhoods)
to automatically apply HMC given a Bayesian model.

• The key steps of the algorithm are: (a) data and model input, (b)
computation of the log posterior density (up to an arbitrary constant
that cannot depend on the parameters in the model) and its
gradients, (c) a warm-up phase in which the tuning parameters are
set, (d) an implementation of the no-U-turn sampler to move
through the parameter space, and (e) convergence monitoring and
inferential summaries at the end.
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Diagnostics i

In an ideal world, our simulation algorithm would return iid samples from
the target (posterior) distribution.

However, MCMC/HMC simulation has two short-comings

• The distribution of the samples, π̃(θ(s)) only converges to the target
distribution as s →∞.

• The samples are dependent.

Now we shall consider how we deal with these issues. In typical practice,
one monitors the performance of an MCMC algorithm by:

• inspecting the value of the acceptance rate (in M-H only)

• constructing graphs

• computing diagnostic statistics on the stream of simulated values
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Diagnostics ii

In both MCMC and HMC methods, some diagnostics about the
convergence of the algorithm must be always checked. Quickly:

• Running multiple chains from different starting values that are
over-dispersed relative to the posterior distribution (and checking the
chains mixing).

• Checking the autocorrelation in the draws: a strong correlation
between successive iterates may prevent the algorithm from exploring
the entire region of the parameters’ space.

• Running diagnostic tests: Gelman-Rubin statistics R̂, Geweke
diagnostics,...
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Diagnostics iii

• Gelman-Rubin statistic R̂:estimate the mixing chains and their
convergence to the stationary distribution. As a golden rule,
convergence and mixing of the chains is reached when R̂ ≤ 1.1.

• Effective sample size: ESS estimates the reduction in the true
number of samples, compared to iid samples, due to the
autocorrelation in the chain. As a rule, the higher is the ESS, and the
better is the performance.

In the next slide, parameters’ traceplots: 4 chains (usual choice for Stan),
perfect mixing.
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Diagnostics iv
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Divergences i

• In order to approximate the exact solution of the Hamiltonian
dynamics we need to choose a step size ε of the leapfrog integrator
governing how far we move each time we evolve the system forward.
That is, the step size controls the resolution of the sampler.

• Unfortunately, for particularly hard problems there are features of the
target distribution that are too small for this resolution. Consequently
the sampler misses those features and returns biased estimates.
Fortunately, this mismatch of scales manifests as divergences which
provide a practical diagnostic.
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Divergences ii

• A divergence arises when the simulated Hamiltonian trajectory
departs from the true trajectory as measured by departure of the
Hamiltonian value from its initial value. When this divergence is too
high, the simulation has gone off the rails and cannot be trusted.

• The Stan interfaces report divergences as warnings and provide ways
to access which iterations encountered divergences

• If the posterior is highly curved, very small step sizes are required for
this gradient-based simulation of the Hamiltonian to be accurate.
When the step size is too large (relative to the curvature), the
simulation diverges from the true Hamiltonian.
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Divergences iii

• In Stan, we can find some divergences:

• Divergent transitions after warmup Recommendations: (1) Increase
the target acceptance rate (2) Reparameterize your model.

• Maximum treedepth exceeded Warnings about hitting the maximum
treedepth are not as serious as warnings about divergent transitions.
While divergent transitions are a validity concern, hitting the
maximum treedepth is an efficiency concern. Recommendations:
Increase the maximum allowed treedepth.

• BFMI low You may see a warning that says some number of chains
had an estimated Bayesian Fraction of Missing Information (BFMI)
that was too low. This implies that the adaptation phase of the
Markov Chains did not turn out well and those chains likely did not
explore the posterior distribution efficiently.
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Divergences iv

• For a complete list, check: https://mc-
stan.org/misc/warnings.html#divergent-transitions-after-warmup.

• In Stan, the adapt_delta argument is the target average proposal
acceptance probability during Stan’s adaptation period, and
increasing it will force Stan to take smaller steps. The downside is
that sampling will tend to be slower because a smaller step size
means that more steps are required. Since the validity of the
estimates is not guaranteed if there are post-warmup divergences, the
slower sampling is a minor cost.

• If the divergent transitions cannot be eliminated by increasing the
adapt_delta parameter, we have to find a different way to write the
model that is logically equivalent but simplifies the geometry of the
posterior distribution. This problem occurs frequently with
hierarchical models
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Divergences v

• Luckily, Stan allows graphical inspection for the divergences:
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Further reading

• A conceptual introduction to Hamiltonian Monte Carlo, by
M.Betancourt.

• Chapters 11-12 from Bayesian Data Analysis, by A. Gelman et al.
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