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Missing-data models i

= Missing-data models cover many statistical settings, including censoring
models and mixture and latent variable models (tobit, probit, stochastic
volatility, etc.).

= The representation is as follows:

p010) = [ rlv. 2l )
where z refers to the missing/augmented data, and (y, z) ~ f(y, z|0).

= In many applications, the vector z merely serves to simplify calculations, as
it does not necessarily have a specific meaning for the corresponding
statistical problem.

= The model (1) can be seen as a missing-data model in the sense that z can
be interpreted as missing from the observations y.



Missing-data models ii

= We refer to the function L°(0; y, z) = f(y, z|0) as the complete model or
complete-data likelihood, which is the likelihood we would obtain were we
to observe (y, z), also called the complete data.

= In a mixture model with J components the likelihood has the form:

p(yl6, ¢ quﬁm yild;), (2

i=1 j=1

where ¢; is the j-th group-membership assignment probability, and p(y:|6;)
is the likelihood of the i-th data point in group j.



Missing-data models iii

= By introducing a vector of auxiliary/latent indicators, z = (z1, z2, . . ., z»),
such that ¢; = Pr(z; = j), and given that y;|zi = j ~ p(yi|6;), we can
define a complete likelihood for (y;, z;) as follows:

LC(97¢; yf7Zi) S8 f(yi>Z"‘97¢) = ¢jP(YI|9j)7 (3)

and summing over the J group we can resemble Equation (1) and re-find
Equation (2) according to a missing-data representation.
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The EM algorithm i

s The EM algorithm is a deterministic optimization technique that takes
advantages of the representation (1) to find the parameters’ values which
maximize an expected version of the complete-data likelihood.

= Assume to observe y = (y1,...,yn) jointly distributed from p(y|@) that
satisfies the representation in (1). We want to compute
0 = argmax L(0; y) = argmax p(y|).

s We can derive a useful relationship by using the conditional laws:

f(y,2|0) = f(zly,0)p(y|0), (4)
then we apply the logarithmic transformation, moving log p(y|0) to the left
side:

log p(y|0) = log f(y,z|0) — log f(zly,0)
= log L(0; y,z) — log f(z]y, 0).



The EM algorithm ii

= Suppose now to take expectations of both sides, treating z as a random
variable. Thus, for any value 6y, we take the expectation with respect to
the distribution f(z|6o, y):

log p(y|0) = Eg,[log L°(6; y, z)] — Eg,[log f(zly, 0)], (6)

where the first term does not depend on z.

= In the EM algorithm, while we aim at maximizing log p(y|0), only the first
term on the right side of (6) will be considered. We denote

Q(0160, y) = Eqq[log L(0; y, 2)]- (7)



The EM algorithm iii

= The EM algorithm indeed proceeds iteratively by maximizing Q(0|6o,y) at
each iteration, and, if é(l) is the value of § maximizing Q(6/6o, y), by
replacing 6y by the updated value 9(1). In this manner, a sequence of
estimators {f;}; is obtained, where 0, is the value of § maximizing
Q(010-1), y)-

= The iterative scheme thus contains both an expectation step and a
maximization step, giving the algorithm its name. See details in Algorithm
1.



The EM algorithm iv

Algorithm 1: The EM algorithm

Input: complete likelihood L¢(6;y, z), threshold e
Output: sequence of estimators {é(/')}f

Initialize: set j = 0, pick a value 6y

while [|f(;) — 6;_1)|| > € do

1. Compute (the E-step))

Q(9|é(1)a }/) = Eé(/') [IOg LC(G; Y, Z)]7
where the expectation is with respect to f(z|é(j),y)
2. Maximize Q(G\é(j),y) in 0 and take (the M-step)
b1y = arg?aXQ(f)l%,y)

and set j =/ +1
L end

return é(j+1)




The EM algorithm v

= By virtue of Jensen's inequality, it is easy to show that , at each step of the
EM algorithm, the likelihood on the left side of Equation (6) increases,

L(Bys1yiy) > LBy y)-

This means that under some conditions every limit point of an EM
sequence {é(j)}j is a stationary point of L(6;y), albeit not necessarily the
maximum likelihood estimator or even a local maximum.

= |t thus means that, in practice, running the EM algorithm several times
with different, randomly chosen starting points is recommended if one
wants to avoid using a poor approximation to the true maximum.

= Implementing the EM algorithm thus means being able to (a) compute the
function Q(0’|0,y) and (b) maximize this function.
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EM for a Gaussian mixture i

= Suppose a two-component Gaussian mixture:

plyln) = g (s, 1) + SN (pz, 1), ®)

where this likelihood is bimodal. This model can easily be expressed as a
missing-data model, assume then that (z1, z, ..., z,) € {1,2}" such that:

Pr(zi=1)=1—-Pr(zi =2) =1/4, yilzi =/~ N(w;,1). (9)

= The observed likelihood is then equal to

Ly T] g ewt=0n—m)/2} T] 3 eol-i—)/2). (10)

izj=1 izj=2
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EM for a Gaussian mixture ii

= We can then compute the expected complete-data log-likelihood (E-step)
as:

Q0'10,y) = —fZEe[z,, P+ (1—z) (i — )yl (11)

= Solving the M-step provides the closed form expressions:

1 = By lZZiYi y] /Ee [ZEW]

i=1 i=1

=Ey [Z(l z,-)y,-|y] /Eo [Z(l z,-)|y] .

i=1

(12)

= See Example 5.15 in Introducing Monte Carlo Methods with R for a
graphical inspection of the algorithm.
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EM for Bayesian inference i

= In problems with many parameters, Gaussian approximations to the joint
distribution are often useless, and the joint mode is typically not helpful.

= |t is often useful, however, to base an approximation on a marginal
posterior model of a subset of the parameters: we use the notation
0 = (z,$) and suppose we are interested in first approximating the
marginal posterior m(¢|y).

= The EM algorithm just introduced can be viewed as an iterative method for
finding the mode of the marginal posterior density, w(¢|y), and is extremely
useful for many common models for which it is hard to maximize 7(|y)
directly but easy to work with 7(z|¢,y) and w(¢|z, y).

= In what follows, we think of ¢ as the parameters in our problem and z as
missing data: as for the frequentist/classical approach, EM is widely
applicable when the models can be re-expressed as distributions on
augmented parameter spaces z (such as mixture, hierarchical models, etc.)
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EM for Bayesian inference ii

Bayesian inference draws no distinction between missing data and
parameters: both are uncertain, and they have a joint posterior distribution,
conditional on observed data.

As a final output, the EM finds the modes of 7(¢|y) averaging over z.

We start by resembling Equation (5) in the following way:

log w(4ly) = log m(z, ply) — log w(z|¢, y), (13)

and take expectations of both sides, treating z as a random variable with
the distribution 7(z|¢o, y), where ¢q is the current parameter guess.

Thus, averaging over z yields:

log m(¢ly) = Eg,[log 7(z, ¢|y)] — Eg,[log w(z[¢, )], (14)

where the expectation is taken over z under the distribution m(z|¢o, y), and
the second term in (14) is maximized at ¢ = ¢o.
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EM for Bayesian inference iii

= Analogously as the classical EM, we consider the first term of Equation
(14) to maximize log w(¢|y) and we denote it by

Q(¢ldo,y) = Ego [log 7(z, 4ly)], (15)

the expected log-posterior density function.

= Because the marginal posterior density, m(¢|y), increases in each step of
the EM algorithm, and because the Q function is maximized at each step,
EM converges to a local mode of the posterior density except in some
special cases.

= An analogous version of the Algorithm 1 can be derived for the Bayesian
case, just by using the new Q in (15) for the E and the M steps. Full
details are provided in Algorithm 2.

= A simple way to search for multiple modes (as in mixtures) with EM is to
start the iterations at many points throughout the parameter space.

15



EM for Bayesian inference iv

Algorithm 2: The Bayesian EM algorithm

Input: log-posterior density log 7(z, ¢|y), threshold e
Output: sequence of modes {‘z;(j)}f

Initialize: set j = 0, pick a value ¢g

while H(%(l) — qAﬁ(j,l)H > e do

1. Compute (the E-step))
Qeldg), y) =B logm(z, 4y,
where the expectation is with respect to ﬂ'(Z‘(Z)U),y)
2. Maximize Q(@\q@m,y) in ¢ and take (the M-step)
b1y = afgg*aXQ(¢|¢A>(j)y}/)

andset j=j+1
L end

return (]Aﬁ(jJrl)
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Example: Gaussian model with unknown mean and variance i

= Suppose we weigh an object on a scale n times, with weightings
(y1,¥2, - --,yn) assumed to be independent with a A'(u, o?), where p is the
true weight of the object.

= Assume a prior N (i, 7¢) on 1, with 1o and 7§ known, and the standard
noninformative uniform prior on logo.

= Because the model is not fully conjugate, we can use the EM algorithm to
find the marginal posterior mode of u, averaging over o; that is, (u, o)
corresponds to (¢, z) in the general notation.

= The joint log-posterior density is

n

1 1
log p(p, oly) = —277_2(“ —110)> — (n+1)logo — 507 Z(y,- — p1)? + const,
® i=1
(16)

ignoring terms that do not depend on p or .
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Example: Gaussian model with unknown mean and variance ii

= E-step:

1
B llogp(u,oly)] = — 55 (1 — po)” = (n+ 1) log By [log 0]
0

. (17)
1 1
_ EE‘U/ |:;i| Z(_y, = ,u)2 + const.
i=1

We note that o?|u,y ~ Invy? (n, % 27:1()"' — M)2)- Then the conditional
posterior distribution of 1/02 is a scaled x? with mean equal to

(A3 (vi— ;/)2)_1, which can be supplied in (17). Notice that

E,[log o] does not depend on p and then is constant, will not affect the
M-step.
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Example: Gaussian model with unknown mean and variance iii

s M-step: we need to find out p that maximizes

n

Bullog plis oly)] = — 55 (1 — o) — 5 (1 S - m?) x
' (18)

500 - 1+ const,

i=1
that has the form of a normal log posterior density. Thus the M-step is
achieved by the mode of the equivalent posterior density, which is:
Lo+ ry~r sy
- 7 3 Z,'.':l(yﬁu/)Q
il n :
Hi N I3 iy

= If we iterate this computation, p converges to the marginal mode of 7(u|y).

(19)

19



The EM algorithm is a two-step optimization algorithm which is very

beneficial when we have an augmented data structure and we may want to
average over some missing data/auxiliary parameters z, both under a
classical or a Bayesian approach.

The EM algorithm has some similarities with the Gibbs sampling algorithm,
which also enjoys the data augmentation representation, and uses the full
conditionals to sample new values and approximate the underlying target
distribution.

Moreover, there exist some EM extensions, such as the Monte Carlo EM
algorithm and the ECM algorithm (see BDA, chapter 13 for more details).

However, the main connection of the EM algorithm is with Variational
Inference (VI) methods, where the iterations lead to a closed-form
approximation that is the closest fit to the posterior distribution within
some specified class of functions.
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Further reading

To properly capture EM (with examples):

= Sections 5.4.2 and 5.4.3 from Introducing Monte Carlo methods with
R, by C. Robert and G. Casella.

= Section 13.4 from Bayesian Data Analysis, by A. Gelman et al.
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